JP2001135865A - Thermoelectric conversion material and manufacturing method for it - Google Patents

Thermoelectric conversion material and manufacturing method for it

Info

Publication number
JP2001135865A
JP2001135865A JP31389799A JP31389799A JP2001135865A JP 2001135865 A JP2001135865 A JP 2001135865A JP 31389799 A JP31389799 A JP 31389799A JP 31389799 A JP31389799 A JP 31389799A JP 2001135865 A JP2001135865 A JP 2001135865A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
lattice
ytterbium
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31389799A
Other languages
Japanese (ja)
Inventor
Takeshi Koyanagi
剛 小柳
Yasumasa Nagamoto
泰征 長本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGUCHI IND PROMOTION FOUNDA
YAMAGUCHI INDUSTRIAL PROMOTION FOUNDATION
Original Assignee
YAMAGUCHI IND PROMOTION FOUNDA
YAMAGUCHI INDUSTRIAL PROMOTION FOUNDATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGUCHI IND PROMOTION FOUNDA, YAMAGUCHI INDUSTRIAL PROMOTION FOUNDATION filed Critical YAMAGUCHI IND PROMOTION FOUNDA
Priority to JP31389799A priority Critical patent/JP2001135865A/en
Publication of JP2001135865A publication Critical patent/JP2001135865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology for improving the thermoelectric characteristics of a CoSb3 material. SOLUTION: The void of a unit lattice of skutterudite compound CoSb3 is filled with Yb which is a rare earth element, to cause a phonon scatter due to rattling effect independent of surrounding lattice oscillation, providing a relatively low lattice heat conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱を電気に変換す
る機能と電気を熱に変換する機能とを備えた熱電変換素
子に関し、特に、ゼーベック効果を利用した熱を電気に
変換する機能を有する熱電変換材料に適用して有効な技
術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion element having a function of converting heat to electricity and a function of converting electricity to heat, and more particularly to a function of converting heat to electricity utilizing the Seebeck effect. The present invention relates to a technology that is effective when applied to a thermoelectric conversion material.

【0002】[0002]

【従来の技術】スクッテルダイト化合物は、共有結合性
が強く複雑な結晶構造を有することから、熱電材料とし
て有望視されている。なかでも、n型の導電型を示すコ
バルトアンチモン(CoSb3 )は、高いキャリア密度
(電気伝導率)でもゼーベック係数が高く、大きな出力
因子を有することから熱電材料として注目されている。
2. Description of the Related Art A skutterudite compound is considered to be promising as a thermoelectric material because it has a strong covalent bond and a complicated crystal structure. Above all, cobalt antimony (CoSb 3 ) exhibiting n-type conductivity has attracted attention as a thermoelectric material because it has a high Seebeck coefficient and a large output factor even at a high carrier density (electric conductivity).

【0003】ところで、熱電変換系の効率は、性能指数
(figure of merit )と呼ばれる物質パラメータによっ
て決まる。性能指数Zは以下の式、 Z=α2 σ/κ で表される。ここで、αは単位温度当たり発生する熱起
電力の大きさを示すゼーベック係数(V/K)、σは電
気伝導率(Ω-1cm-1)、κは熱伝導率(W/cmK)
であり、α2 σは出力因子(power factor)と呼ばれ
る。この性能指数は、以下の式で示される物質因子(Ma
terial Factor )βが大きいと、大きくなることが知ら
れている。
[0003] The efficiency of a thermoelectric conversion system is determined by a material parameter called a figure of merit. The figure of merit Z is represented by the following equation: Z = α 2 σ / κ. Here, α is the Seebeck coefficient (V / K) indicating the magnitude of the thermoelectromotive force generated per unit temperature, σ is the electric conductivity (Ω −1 cm −1 ), and κ is the heat conductivity (W / cmK).
And α 2 σ is called a power factor. This figure of merit is calculated using the material factor (Ma
It is known that terial Factor) increases as β increases.

【0004】 β=NkB Tμ/(eκL ) ∝m*3/2(μ/κL ) ここで、Nは有効状態密度、kB はボルツマン定数、T
は絶対温度、eは電子の電荷量、μは移動度(cm2
Vs)、κL は熱伝導率κの格子振動による成分、m*
はキャリア(電子または正孔)の有効質量である。
Β = Nk B Tμ / (eκ L ) ∝m * 3/2 (μ / κ L ) where N is the effective state density, k B is Boltzmann's constant, T
Is the absolute temperature, e is the electron charge, μ is the mobility (cm 2 /
Vs), κ L is a component of thermal conductivity κ due to lattice vibration, m *
Is the effective mass of carriers (electrons or holes).

【0005】従って、熱電材料の性能は、ゼーベック効
果によって熱から電気をどれだけ効率良く取り出せるか
によって決まり、一般にその効率は、キャリアの有効質
量と移動度が大きく、格子熱伝導率が小さくなるほど向
上する。
Accordingly, the performance of a thermoelectric material is determined by how efficiently electricity can be extracted from heat by the Seebeck effect, and the efficiency generally increases as the effective mass and mobility of the carrier increases and the lattice thermal conductivity decreases. I do.

【0006】なお、CoSb3 材料の熱電特性について
は、例えばジャーナル・オブ・アプライド・フィジクス
(Journal of Applied Physics, 80(8), p4442, 1996.
T. Caillat, A. Borshchevsky and J. P. Fleurial)に
記載されている。
The thermoelectric properties of the CoSb 3 material are described, for example, in Journal of Applied Physics, 80 (8), p4442, 1996.
T. Caillat, A. Borshchevsky and JP Fleurial).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、熱は格
子振動以外にもキャリアによって運ばれるため、一般に
電気伝導率が大きいと熱伝導率も大きくなる傾向にあ
る。
However, since heat is carried by the carrier in addition to the lattice vibration, the heat conductivity generally tends to increase as the electric conductivity increases.

【0008】CoSb3 においても格子熱伝導率が他の
熱電材料、例えばビスマステルル(Bi2 Te3 )系材
料の格子熱伝導率と比して3〜4倍程度高く、CoSb
3 の熱電性能の向上においては、格子熱伝導率を低下さ
せることが課題として残されている。
CoSb 3 also has a lattice thermal conductivity that is about three to four times higher than that of other thermoelectric materials, for example, bismuth tellurium (Bi 2 Te 3 ) -based materials.
In the improvement of the thermoelectric performance of 3, the reduction of the lattice thermal conductivity remains as an issue.

【0009】本発明の目的は、CoSb3 系材料の熱電
特性を向上することのできる技術を提供することにあ
る。
An object of the present invention is to provide a technique capable of improving the thermoelectric properties of a CoSb 3 -based material.

【0010】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0011】[0011]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
次のとおりである。
SUMMARY OF THE INVENTION Among the inventions disclosed in the present application, the outline of a representative one will be briefly described.
It is as follows.

【0012】(1)本発明の熱電変換材料は、スクッテ
ルダイト単位格子を構成するCoSb3 の空隙にドナー
として振る舞うイッテルビウム(Yb)が充填されてい
るものであって、理論密度に対して99%以上の焼結密
度を有するものである。
(1) The thermoelectric conversion material of the present invention is a material in which the voids of CoSb 3 constituting the skutterudite unit cell are filled with ytterbium (Yb) acting as a donor, which is 99% of the theoretical density. %.

【0013】(2)本発明の熱電変換材料は、スクッテ
ルダイト単位格子を構成するCoSb3 のアンチモン
(Sb)の一部をVIb族元素のテルル(Te)またはセ
レン(Se)、コバルト(Co)の一部をVIII族元素の
ニッケル(Ni)、パラジウム(Pd)または白金(P
t)でサイト置換し、さらに上記スクッテルダイト単位
格子の空隙にドナーとして振る舞うYbが充填されてい
るものである。
(2) In the thermoelectric conversion material of the present invention, a part of the antimony (Sb) of CoSb 3 constituting the skutterudite unit cell is converted from a group VIb element such as tellurium (Te) or selenium (Se), ) Is partially replaced by nickel (Ni), palladium (Pd) or platinum (P
The site is replaced by t), and the voids of the skutterudite unit cell are filled with Yb acting as a donor.

【0014】(3)本発明の熱電変換材料の製造方法
は、Ybをアルゴン(Ar)雰囲気中で研磨する工程
と、Yb、CoおよびSbを秤量する工程と、秤量した
材料を黒鉛るつぼに入れてAr雰囲気中で溶融し、その
後冷却してインゴットを作製する工程と、溶融した材料
をAr雰囲気中でステンレス鉢を用いて粉砕する工程
と、粉砕した材料を放電プラズマ焼結法によってAr雰
囲気中で焼結する工程とを有するものである。
(3) The method for producing a thermoelectric conversion material of the present invention comprises the steps of polishing Yb in an argon (Ar) atmosphere, weighing Yb, Co and Sb, and placing the weighed material in a graphite crucible. Melting in an Ar atmosphere and then cooling to produce an ingot, crushing the molten material using a stainless steel bowl in an Ar atmosphere, and crushing the crushed material in an Ar atmosphere by a discharge plasma sintering method. And a step of sintering.

【0015】上記した手段によれば、スクッテルダイト
化合物CoSb3 の単位格子の空隙にYbを充填するこ
とによって、出力因子を低減することなくCoSb3
格子熱伝導率よりも相対的に小さい格子熱伝導率が得ら
れて、この結果、相対的に高い無次元性能指数(dimens
ionless figure of merit :ZT)が得られる。
According to the above-mentioned means, by filling the voids of the unit lattice of the skutterudite compound CoSb 3 with Yb, the lattice thermal conductivity of the lattice is smaller than the lattice thermal conductivity of CoSb 3 without reducing the output factor. Thermal conductivity is obtained, resulting in a relatively high dimensionless figure of merit (dimens
ionless figure of merit (ZT) is obtained.

【0016】また、スクッテルダイト化合物CoSb3
の単位格子の構成元素の一部をTe、PdまたはNiで
置き換え、さらに、上記単位格子の空隙へYbを充填す
ることによって、CoSb3 の格子熱伝導率よりも相対
的に小さい格子熱伝導率が得られると同時に、キャリア
密度の最適化によって出力因子が向上し、無次元性能指
数の向上を図ることが可能となる。
The skutterudite compound CoSb 3
By replacing some of the constituent elements of the unit lattice with Te, Pd or Ni, and filling the voids of the unit lattice with Yb, the lattice thermal conductivity relatively smaller than the lattice thermal conductivity of CoSb 3 is obtained. Is obtained, the output factor is improved by optimizing the carrier density, and the dimensionless figure of merit can be improved.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0018】本発明の一実施の形態である熱電材料は、
スクッテルダイト化合物CoSb3の単位格子の空隙に
希土類元素であるYbを充填したものであって、空隙に
充填されたYbが周りの格子振動と無関係にガラガラの
ように鳴る運動(rattling効果)によるフォノン散乱に
よって、格子熱伝導率の低減を図ることができる。
The thermoelectric material according to one embodiment of the present invention comprises:
A skutterudite compound, CoSb 3 , in which the voids of the unit cell are filled with the rare earth element Yb, and the Yb filled in the voids rattles like a rattle independently of the surrounding lattice vibration (rattling effect). The lattice thermal conductivity can be reduced by phonon scattering.

【0019】次に、本実施の形態であるYbをCoSb
3 に充填したYby Co4 Sb12の製造方法の一例を図
1に示す工程図を用いて説明する。
Next, Yb of the present embodiment is replaced with CoSb.
An example of a manufacturing method of Yb y Co 4 Sb 12 filled in 3 will be described with reference to the process chart shown in FIG.

【0020】まず、YbをAr雰囲気中で研磨した後
(工程100)、Yb、CoおよびSbを各々秤量する
(工程101)。Yb、CoおよびSbの純度は、それ
ぞれ99. 9%、99. 998%および99. 9999
%である。これらの混合比は、例えばYb:Co:Sb
=0〜0. 25:4:13であって、後述する放電プラ
ズマ焼結法における損失を見越してYbとSbは過剰秤
量される。
First, after Yb is polished in an Ar atmosphere (step 100), Yb, Co and Sb are each weighed (step 101). The purity of Yb, Co and Sb was 99.9%, 99.998% and 99.99999, respectively.
%. These mixing ratios are, for example, Yb: Co: Sb
= 0 to 0.25: 4: 13, and Yb and Sb are excessively weighed in anticipation of a loss in the spark plasma sintering method described later.

【0021】次に、秤量した材料を黒鉛るつぼに入れて
Ar雰囲気中で1時間程度溶融し、その後冷却してイン
ゴットを作製した(工程102)。この溶融温度は、例
えば1000℃程度である。次いで、作製したインゴッ
トをAr雰囲気中でステンレス鉢を用いて粉砕し、粒径
を106μm以下とした後(工程103)、得られた粉
砕物を放電プラズマ焼結法を用いてAr雰囲気中で焼結
することによって、理論密度に対して99%以上の焼結
密度を有する緻密なYby Co4 Sb12を作製する(工
程104)。放電プラズマ焼結法における焼結温度は、
例えば700℃程度、焼結圧力は、例えば40MPa程
度、焼結時間は、例えば60〜90分程度である。
Next, the weighed material was placed in a graphite crucible and melted for about 1 hour in an Ar atmosphere, and then cooled to produce an ingot (Step 102). The melting temperature is, for example, about 1000 ° C. Next, the produced ingot is pulverized in an Ar atmosphere using a stainless steel bowl to reduce the particle size to 106 μm or less (step 103), and the obtained pulverized material is sintered in an Ar atmosphere using a discharge plasma sintering method. by sintering, to produce a dense Yb y Co 4 Sb 12 having a sintered density of 99% or more of the theoretical density (step 104). The sintering temperature in spark plasma sintering is
The sintering pressure is, for example, about 40 MPa, and the sintering time is, for example, about 60 to 90 minutes.

【0022】前記方法により作製したYby Co4 Sb
12は、例えばX線回折測定による結晶構造および格子定
数の評価、リートベルト解析法によるYbの充填率の評
価を行い、主要な熱電特性として、電気伝導率、ゼーベ
ック係数および熱伝導率を測定し、さらに室温でのホー
ル測定を行った。電気伝導率およびゼーベック係数は3
00〜900Kの温度範囲で測定され、熱伝導率はレー
ザーフラッシュ法によって測定された。
Yb y Co 4 Sb produced by the above method
12 evaluates the crystal structure and lattice constant by, for example, X-ray diffraction measurement, and evaluates the filling factor of Yb by Rietveld analysis, and measures electrical conductivity, Seebeck coefficient, and thermal conductivity as main thermoelectric characteristics. Further, a Hall measurement was performed at room temperature. Electric conductivity and Seebeck coefficient are 3
The temperature was measured in the temperature range of 00 to 900K, and the thermal conductivity was measured by a laser flash method.

【0023】次に、Yby Co4 Sb12が有する諸特性
を、図2〜図11を用いて以下に詳しく説明する。図2
は、Yby Co4 Sb12の格子定数とYbの仕込み量と
の関係を示すグラフ図、図3は、室温におけるYby
4 Sb12のキャリア密度とYb充填率との関係を示す
グラフ図、図4は、室温におけるYby Co4 Sb12
ホール移動度とキャリア密度との関係を示すグラフ図、
図5は、室温におけるYby Co4 Sb12のゼーベック
係数とキャリア密度との関係を示すグラフ図、図6は、
Yby Co4 Sb12のゼーベック係数の温度依存性を示
すグラフ図、図7は、Yby Co4 Sb12の電気伝導率
の温度依存性を示すグラフ図、図8は、Yby Co4
12の出力因子の温度依存性を示すグラフ図、図9は、
室温におけるYby Co4 Sb12の熱抵抗率のYb充填
率依存性を示すグラフ図、図10は、Yby Co4 Sb
12の格子熱伝導率とキャリア密度との関係を示すグラフ
図、図11は、Yb0.075 Co4 Sb12の無次元性能指
数の温度依存性を示すグラフ図である。
Next, various properties possessed by the Yb y Co 4 Sb 12, will be described in detail below with reference to figures 2-11. FIG.
Is a graph showing the relationship between the charge of the lattice constants and Yb of Yb y Co 4 Sb 12, FIG. 3, Yb y C at room temperature
o 4 graph showing the relationship between the carrier density and Yb filling factor of Sb 12, FIG. 4 is a graph showing the relationship between hole mobility and carrier density of Yb y Co 4 Sb 12 at room temperature,
Figure 5 is a graph showing the relationship between the Seebeck coefficient and the carrier density of Yb y Co 4 Sb 12 at room temperature, 6,
Graph showing the temperature dependence of the Seebeck coefficient of Yb y Co 4 Sb 12, FIG. 7 is a graph showing the temperature dependence of the electrical conductivity of Yb y Co 4 Sb 12, 8, Yb y Co 4 S
graph showing the temperature dependency of the output factor of b 12, 9,
Graph showing the Yb filling rate dependence of the thermal resistance of the Yb y Co 4 Sb 12 at room temperature, 10, Yb y Co 4 Sb
12 is a graph showing the relationship between the lattice thermal conductivity and the carrier density of FIG. 12, and FIG. 11 is a graph showing the temperature dependence of the dimensionless figure of merit of Yb 0.075 Co 4 Sb 12 .

【0024】図2に、Yby Co4 Sb12の格子定数と
Ybの仕込み量との関係を示す。図に示すように、Yb
y Co4 Sb12の格子定数はYbの仕込み量の増加に従
って単調に増加するが、Ybの仕込み量が約0. 2に達
すると格子定数は9. 042Å程度でほぼ飽和する。
FIG. 2 shows the relationship between the lattice constant of Yb y Co 4 Sb 12 and the charged amount of Yb. As shown in FIG.
The lattice constant of yCo 4 Sb 12 monotonically increases with an increase in the charged amount of Yb. However, when the charged amount of Yb reaches about 0.2, the lattice constant is almost saturated at about 9.042 °.

【0025】さらに、Yby Co4 Sb12のYb充填率
も格子定数と同様にYbの仕込み量の増加に従って増加
し、Ybの仕込み量が0. 25におけるYb充填率は
0. 075程度となる。また、X線回折パターンから、
Yby Co4 Sb12は微少な異相を含むものの、ほぼス
クッテルダイト化合物の単相であることが確認された。
Further, the Yb filling rate of Yb y Co 4 Sb 12 also increases with an increase in the charged amount of Yb as in the case of the lattice constant. When the charged amount of Yb is 0.25, the Yb filling rate becomes about 0.075. . Also, from the X-ray diffraction pattern,
Although Yb y Co 4 Sb 12 includes a minute secondary phase, it was confirmed that a single phase of approximately skutterudites.

【0026】図3に、室温にけるYby Co4 Sb12
キャリア密度とYb充填率との関係を示す。図中、実線
は、空隙中でYbが2価の陽イオンとなり、キャリアの
活性率を0. 3と仮定した時のキャリア密度を示し、点
線は、空隙中でYbが2価の陽イオンとなり、キャリア
の活性率を1と仮定した時のキャリア密度を示す。
[0026] FIG. 3 shows the relationship between the carrier density and Yb filling factor of Yb y Co 4 Sb 12 kick to room temperature. In the figure, the solid line indicates the carrier density when Yb is a divalent cation in the void and the activity rate of the carrier is assumed to be 0.3, and the dotted line indicates the Yb is a divalent cation in the void. , The carrier density when the activity rate of the carrier is assumed to be 1.

【0027】キャリア密度はYb充填率の増加に従いほ
ぼ単調に増加し、Yb充填率が0.075でのキャリア
密度は約1. 4×1020cm-3程度となる。さらに、測
定されたキャリア密度は、キャリアの活性率を0. 3と
した時のキャリア密度とほぼ一致することから、CoS
3 の活性化率はYbの充填によらず0. 3程度である
ことがわかる。なお、作製されたYby Co4 Sb12
導電型は全てn型である。
The carrier density increases almost monotonously as the Yb filling rate increases, and the carrier density at a Yb filling rate of 0.075 is about 1.4 × 10 20 cm −3 . Further, since the measured carrier density substantially coincides with the carrier density when the carrier activity rate is set to 0.3, the CoS
It can be seen that the activation rate of b 3 is about 0.3 regardless of the filling of Yb. Incidentally, the conductivity type of the Yb y Co 4 Sb 12 was produced are all n-type.

【0028】図4に、室温におけるYby Co4 Sb12
のホール移動度とキャリア密度との関係を示し、図5
に、室温におけるYby Co4 Sb12のゼーベック係数
とキャリア密度との関係を示す。図中、実線は比較例1
としてTeまたはPdをサイト置換したn型CoSb3
単結晶のホール移動度またはゼーベック係数を示す。
[0028] Figure 4, Yb y Co 4 Sb 12 at room temperature
FIG. 5 shows the relationship between hole mobility and carrier density in FIG.
FIG . 5 shows the relationship between the Seebeck coefficient of Yby Co 4 Sb 12 and the carrier density at room temperature. In the figure, the solid line indicates Comparative Example 1.
N-type CoSb 3 with site substitution of Te or Pd
Shows the hole mobility or Seebeck coefficient of a single crystal.

【0029】Yby Co4 Sb12のホール移動度はサイ
ト置換した比較例1のホール移動度と比して大きく、Y
y Co4 Sb12のゼーベック係数はサイト置換した比
較例1のゼーベック係数と比して小さい。これはYbの
充填により電子の有効質量が減少したためと考えられ
る。
The hole mobility of Yb y Co 4 Sb 12 is larger than the hole mobility of Comparative Example 1 sites substituted, Y
Seebeck coefficient b y Co 4 Sb 12 is smaller than the site substituted Seebeck coefficient of Comparative Example 1. This is presumably because the effective mass of electrons was reduced by the filling of Yb.

【0030】図6に、Yby Co4 Sb12のゼーベック
係数の温度依存性を示し、図7に、Yby Co4 Sb12
の電気伝導率の温度依存性を示す。ゼーベック係数は温
度が高くなるに従って徐々に増加し、最大値を有して減
少する傾向にある。また、電気伝導率は温度が高くなる
に従って徐々に減少する。さらにYb充填率が増加する
に従ってゼーベック係数は減少するが電気伝導率は増加
するという一般的な傾向を示す。
[0030] FIG. 6 shows the temperature dependence of the Seebeck coefficient of Yb y Co 4 Sb 12, in FIG. 7, Yb y Co 4 Sb 12
3 shows the temperature dependence of the electrical conductivity of the sample. The Seebeck coefficient gradually increases as the temperature increases, and tends to decrease with a maximum value. Further, the electric conductivity gradually decreases as the temperature increases. Further, as the Yb filling rate increases, the Seebeck coefficient decreases, but the electrical conductivity increases.

【0031】次に、図8に、前記図6に示したゼーベッ
ク係数および前記図7に示した電気伝導度から算出され
るYby Co4 Sb12の出力因子の温度依存性を示す。
室温における出力因子はYb充填率の増加に従って増加
し、充填率が0. 075(仕込み量0. 25)のYby
Co4 Sb12では、出力因子は40μWcm-1-2程度
となり、他のYby Co4 Sb12と比して相対的に大き
い値を示す。
Next, FIG. 8 shows the temperature dependence of the output factor of the Yb y Co 4 Sb 12 calculated from the electric conductivity shown in Seebeck coefficient and FIG 7 shown in FIG. 6.
The output factor at room temperature increases with an increase in the Yb filling rate, and the Yb y at a filling rate of 0.075 (a charged amount of 0.25) is increased.
In Co 4 Sb 12, the power factor becomes approximately 40μWcm -1 K -2, showing a relatively large value compared with other Yb y Co 4 Sb 12.

【0032】図9に、室温におけるYby Co4 Sb12
の熱抵抗率のYb充填率依存性を示す。ここで、熱抵抗
率とは、測定した熱伝導率からヴィーデマン−フランツ
則より計算した電子熱伝導率を差し引くことで得られる
格子熱伝導率の逆数である。図中、比較例2としてラン
タン(La)を充填したLay Co4 Sb12の熱抵抗
率、および比較例3として合成散乱によるフォノン散乱
の理論計算から得られる熱抵抗率を示す。
[0032] Figure 9, Yb y Co 4 Sb 12 at room temperature
Shows the Yb filling rate dependence of the thermal resistivity of Yb. Here, the thermal resistivity is the reciprocal of the lattice thermal conductivity obtained by subtracting the electronic thermal conductivity calculated by the Wiedemann-Franz rule from the measured thermal conductivity. In the figure, the thermal resistivity of La y Co 4 Sb 12 filled with lanthanum (La) is shown as Comparative Example 2, and the thermal resistivity obtained from theoretical calculation of phonon scattering by synthetic scattering is shown as Comparative Example 3.

【0033】充填されたYbのガラガラのように鳴る運
動(rattling効果)によるフォノン散乱は、合成散乱よ
りも熱抵抗率を増加させる効果が大きいことがわかる。
さらに、比較例2として示したLay Co4 Sb12の熱
抵抗率と比してYby Co4Sb!2の熱抵抗率が大き
く、これはLaイオンよりもYbイオンの方が空隙中で
の原子変位パラメータが大きく、ガラガラのように鳴る
運動(rattling効果)が強いことに起因すると考えられ
る。
It can be seen that phonon scattering due to the motion of the filled Yb rattling like rattle (rattling effect) has a greater effect of increasing the thermal resistivity than combined scattering.
Moreover, La y Co 4 than the Sb 12 thermal resistance of the Yb y Co 4 Sb! 2 thermal resistivity greater shown as Comparative Example 2, which in air gap towards the Yb ions than La ions This is considered to be due to the large atomic displacement parameter and strong rattling effect (rattling effect).

【0034】図10に、室温におけるYby Co4 Sb
12の格子熱伝導率を示す。図中、比較例4としてCo
(Sb1-x Tex 3 および比較例5としてLa0.2
4 Sb12の格子熱伝導率を示す。Yby Co4 Sb12
の格子熱伝導率は他の熱電材料の格子熱伝導率と比して
相対的に小さく、Co(Sb1-x Tex 3 の値の1/
2以下が得られている。
[0034] Figure 10, Yb at room temperature y Co 4 Sb
12 shows lattice thermal conductivity. In the figure, as Comparative Example 4, Co was used.
(Sb 1-x Te x) La 0.2 C as 3 and Comparative Example 5
4 shows lattice thermal conductivity of o 4 Sb 12 . Yb y Co 4 Sb 12
Has a relatively small lattice thermal conductivity as compared with the lattice thermal conductivity of other thermoelectric materials, and is 1/1 / Co (Sb 1-x Te x ) 3.
2 or less are obtained.

【0035】図11に、Yb充填率が0. 075のYb
0.075 Co4 Sb12の無次元性能指数の温度依存性を示
す。図中、比較例6としてCoSb3 の無次元性能指数
を示す。750Kの温度においてYb0.075 Co4 Sb
12の無次元性能指数は最大値となり、0. 8程度の相対
的に高い値を示す。
FIG. 11 shows that the Yb filling rate is 0.075.
The temperature dependence of the dimensionless figure of merit of 0.075 Co 4 Sb 12 is shown. In the figure, the dimensionless figure of merit of CoSb 3 is shown as Comparative Example 6. At a temperature of 750K, Yb 0.075 Co 4 Sb
The dimensionless figure of merit of 12 becomes the maximum value and shows a relatively high value of about 0.8.

【0036】このように、本実施の形態によれば、スク
ッテルダイト化合物CoSb3 の単位格子の空隙にYb
を充填することにより、Ybが周りの格子振動と無関係
にガラガラのように鳴る運動(rattling効果)によるフ
ォノン散乱が生じ、出力因子を低減することなくCoS
3 の格子熱伝導率よりも相対的に小さい格子熱伝導率
が得られて、0. 8程度の相対的に高い無次元性能指数
を得ることができる。
As described above, according to the present embodiment, Yb is formed in the space of the unit cell of the skutterudite compound CoSb 3.
Filling causes phonon scattering due to the rattling effect (rattling effect) of Yb irrespective of the surrounding lattice vibration, and the CoS is reduced without reducing the output factor.
than the lattice thermal conductivity of b 3 obtained relatively small lattice thermal conductivity can be obtained 0. of about 8 relatively high dimensionless figure of merit.

【0037】Yb0.075 Co4 Sb12の室温における物
質因子βは0. 065で、CoSb3 の性能向上のため
にSbの一部をTeでサイト置換した試料(無次元性能
指数750Kで約0. 8)の物質因子β0. 028に比
べても、約2倍以上大きく、本実施の形態では、上記の
両試料の無次元性能指数は同程度であるが、Yb0.07 5
Co4 Sb12のキャリア密度の最適化によって、潜在的
に熱電性能の向上が期待できる。
The material factor β of Yb 0.075 Co 4 Sb 12 at room temperature was 0.065, and a sample in which a part of Sb was site-substituted with Te in order to improve the performance of CoSb 3 (approximately 0. as compared to the material factor [beta] 0. 028 8), about 2 times or more greater, in the present embodiment, the dimensionless performance index of both samples of the above is of the same order, Yb 0.07 5
By optimizing the carrier density of Co 4 Sb 12 , a potential improvement in thermoelectric performance can be expected.

【0038】なお、本実施の形態では、スクッテルダイ
ト化合物CoSb3 の単位格子の空隙へYbを充填した
が、Sbの一部をVIb族元素のTeまたはSe、Coの
一部をVIII族元素のNi、PdまたはPtでサイト置換
した上記CoSb3 の単位格子の空隙へ、Ybを充填し
てもよい。前述したように、Ybを充填することによっ
てCoSb3 の格子熱伝導率よりも相対的に小さい格子
熱伝導率が得られ、同時に上記サイト置換元素の添加に
よって、キャリア密度の増加が図られて出力因子が向上
し、相対的に高い無次元性能指数を得ることが可能であ
る。
In the present embodiment, Yb was filled into the voids of the unit cell of the skutterudite compound CoSb 3 , but a part of Sb was replaced by Te of a VIb group element or a part of Se and Co was replaced by a group VIII element. Yb may be filled into the voids of the unit cell of CoSb 3 substituted with Ni, Pd or Pt. As described above, by filling with Yb, a lattice thermal conductivity relatively smaller than the lattice thermal conductivity of CoSb 3 is obtained, and at the same time, the carrier density is increased by the addition of the above-mentioned site substitution element, so that the output is increased. It is possible to improve the factor and obtain a relatively high dimensionless figure of merit.

【0039】以上、本発明者によってなされた発明を発
明の実施の形態に基づき具体的に説明したが、本発明は
前記実施の形態に限定されるものではなく、その要旨を
逸脱しない範囲で種々変更可能であることはいうまでも
ない。
Although the invention made by the inventor has been specifically described based on the embodiments of the present invention, the present invention is not limited to the above embodiments, and various modifications may be made without departing from the gist of the invention. Needless to say, it can be changed.

【0040】[0040]

【発明の効果】本願によって開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
以下のとおりである。
Advantageous effects obtained by typical ones of the inventions disclosed by the present application will be briefly described as follows.
It is as follows.

【0041】本発明によれば、スクッテルダイト化合物
CoSb3 の単位格子の空隙にYbを充填することによ
り相対的に小さい格子熱伝導率を得ることができて、熱
電特性の向上を図ることができる。
According to the present invention, a relatively small lattice thermal conductivity can be obtained by filling the gaps of the unit lattice of the skutterudite compound CoSb 3 with Yb, and the thermoelectric characteristics can be improved. it can.

【0042】また、スクッテルダイト化合物CoSb3
の単位格子の空隙へYbを充填し、さらに上記単位格子
の一部をサイト置換することによって相対的に小さい格
子熱伝導率と最適なキャリア密度を得ることができて、
熱電特性の向上を図ることが可能となる。
The skutterudite compound CoSb 3
By filling the voids of the unit lattice with Yb and further substituting a part of the unit lattice for sites, a relatively small lattice thermal conductivity and an optimal carrier density can be obtained,
It is possible to improve thermoelectric characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態であるYby Co4 Sb
12の製造方法を示す工程図である。
1 is an embodiment of the present invention Yb y Co 4 Sb
FIG. 13 is a process drawing illustrating a manufacturing method of No. 12 .

【図2】本発明の一実施の形態であるYby Co4 Sb
12の格子定数とYbの仕込み量との関係を示すグラフ図
である。
2 is an embodiment of the present invention Yb y Co 4 Sb
FIG. 13 is a graph showing a relationship between a lattice constant of 12 and a charged amount of Yb.

【図3】本発明の一実施の形態であるYby Co4 Sb
12の室温におけるキャリア密度とYb充填率との関係を
示すグラフ図である。
Figure 3 is an embodiment of the present invention Yb y Co 4 Sb
FIG. 12 is a graph showing the relationship between the carrier density and the Yb filling rate at room temperature in FIG.

【図4】本発明の一実施の形態であるYby Co4 Sb
12の室温におけるホール移動とキャリア密度との関係を
示すグラフ図である。
According to an embodiment of the present invention; FIG Yb y Co 4 Sb
FIG. 12 is a graph showing the relationship between hole movement and carrier density at room temperature in FIG.

【図5】本発明の一実施の形態であるYby Co4 Sb
12の室温におけるゼーベック係数とキャリア密度との関
係を示すグラフ図である。
5 is an embodiment of the present invention Yb y Co 4 Sb
12 is a graph showing the relationship between the Seebeck coefficient and the carrier density at room temperature of FIG.

【図6】本発明の一実施の形態であるYby Co4 Sb
12のゼーベック係数の温度依存性を示すグラフ図であ
る。
6 is an embodiment of the present invention Yb y Co 4 Sb
FIG. 13 is a graph showing the temperature dependence of a Seebeck coefficient of No. 12 .

【図7】本発明の一実施の形態であるYby Co4 Sb
12の電気伝導率の温度依存性を示すグラフ図である。
7 is an embodiment of the present invention Yb y Co 4 Sb
FIG. 12 is a graph showing the temperature dependence of the electrical conductivity of FIG.

【図8】本発明の一実施の形態であるYby Co4 Sb
12の出力因子の温度依存性を示すグラフ図である。
8 is an embodiment of the present invention Yb y Co 4 Sb
FIG. 14 is a graph showing the temperature dependence of 12 output factors.

【図9】本発明の一実施の形態であるYby Co4 Sb
12の室温における熱抵抗率のYb充填率依存性を示すグ
ラフ図である。
9 is an embodiment of the present invention Yb y Co 4 Sb
FIG. 12 is a graph showing the dependence of the thermal resistivity at room temperature on the Yb filling rate of No. 12 .

【図10】本発明の一実施の形態であるYby Co4
12の室温における格子熱伝導率を示すグラフ図であ
る。
According to an embodiment of the invention; FIG Yb y Co 4 S
It is a graph showing the lattice thermal conductivity at room temperature of b 12.

【図11】本発明の一実施の形態であるYb0.075 Co
4 Sb12の無次元性能指数の温度依存性を示すグラフ図
である。
FIG. 11 shows Yb 0.075 Co according to an embodiment of the present invention.
4 is a graph showing the temperature dependence of the dimensionless performance index of Sb 12.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 スクッテルダイト単位格子を構成する2
元化合物の空隙にイッテルビウムが充填されていること
を特徴とする熱電変換材料。
1. A method for forming a skutterudite unit cell
A thermoelectric conversion material characterized in that the voids of the original compound are filled with ytterbium.
【請求項2】 請求項1記載の熱電変換材料において、
前記2元化合物はコバルトアンチモンであることを特徴
とする熱電変換材料。
2. The thermoelectric conversion material according to claim 1,
The thermoelectric conversion material, wherein the binary compound is cobalt antimony.
【請求項3】 請求項2記載の熱電変換材料において、
前記コバルトアンチモンは、理論密度に対して99%以
上の焼結密度を有することを特徴とする熱電変換材料。
3. The thermoelectric conversion material according to claim 2,
The thermoelectric conversion material, wherein the cobalt antimony has a sintered density of 99% or more with respect to a theoretical density.
【請求項4】 スクッテルダイト単位格子を構成する2
元化合物の一部が、VIb族元素のテルル、セレンまたは
VIII族元素のニッケル、パラジウム、白金で置換され、
前記スクッテルダイト単位格子の空隙にイッテルビウム
が充填されていることを特徴とする熱電変換材料。
4. A skutterudite unit cell 2
Part of the source compound is a group VIb element tellurium, selenium or
Group VIII element nickel, palladium, replaced by platinum,
A thermoelectric conversion material, wherein voids of the skutterudite unit cell are filled with ytterbium.
【請求項5】 請求項4記載の熱電変換材料において、
前記2元化合物はコバルトアンチモンであることを特徴
とする熱電変換材料。
5. The thermoelectric conversion material according to claim 4,
The thermoelectric conversion material, wherein the binary compound is cobalt antimony.
【請求項6】 請求項1〜5のいずれか1項に記載の熱
電変換材料において、前記イッテルビウムはn型のドー
パントであることを特徴とする熱電変換材料。
6. The thermoelectric conversion material according to claim 1, wherein the ytterbium is an n-type dopant.
【請求項7】 イッテルビウムを研磨する研磨工程と、
前記研磨工程で得られたイッテルビウム、コバルトおよ
びアンチモンを秤量する秤量工程と、前記秤量工程で得
られた材料を黒鉛るつぼに入れて溶融し、その後冷却し
てインゴットを作製する溶融工程と、前記溶融工程で得
られた材料を粉砕する粉砕工程と、前記粉砕工程で得ら
れた材料を焼結する焼結工程とを有することを特徴とす
る熱電変換材料の製造方法。
7. A polishing step of polishing ytterbium;
A weighing step of weighing the ytterbium, cobalt and antimony obtained in the polishing step, a melting step of putting the material obtained in the weighing step into a graphite crucible and melting, and then cooling to produce an ingot, A method for producing a thermoelectric conversion material, comprising: a crushing step of crushing a material obtained in a step; and a sintering step of sintering the material obtained in the crushing step.
【請求項8】 請求項7記載の熱電変換材料の製造方法
において、前記研磨工程、前記溶融工程、前記粉砕工程
および前記焼結工程は不活性ガス雰囲気中で行われるこ
とを特徴とする熱電変換材料の製造方法。
8. The method for producing a thermoelectric conversion material according to claim 7, wherein the polishing step, the melting step, the pulverizing step, and the sintering step are performed in an inert gas atmosphere. Material manufacturing method.
【請求項9】 請求項7記載の熱電変換材料の製造方法
において、前記粉砕工程で得られた材料は、放電プラズ
マ法によって焼結されることを特徴とする熱電変換材料
の製造方法。
9. The method for producing a thermoelectric conversion material according to claim 7, wherein the material obtained in the pulverizing step is sintered by a discharge plasma method.
JP31389799A 1999-11-04 1999-11-04 Thermoelectric conversion material and manufacturing method for it Pending JP2001135865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31389799A JP2001135865A (en) 1999-11-04 1999-11-04 Thermoelectric conversion material and manufacturing method for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31389799A JP2001135865A (en) 1999-11-04 1999-11-04 Thermoelectric conversion material and manufacturing method for it

Publications (1)

Publication Number Publication Date
JP2001135865A true JP2001135865A (en) 2001-05-18

Family

ID=18046842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31389799A Pending JP2001135865A (en) 1999-11-04 1999-11-04 Thermoelectric conversion material and manufacturing method for it

Country Status (1)

Country Link
JP (1) JP2001135865A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005544A (en) * 2005-06-23 2007-01-11 Furukawa Co Ltd n-TYPE THERMOELECTRIC CONVERSION MATERIAL
JP2008047754A (en) * 2006-08-18 2008-02-28 Furukawa Co Ltd n-TYPE Yb-Co-Sb-BASED THERMOELECTRIC TRANSDUCTION MATERIAL, YbxCoySbz-BASED THERMOELECTRIC TRANSDUCTION MATERIAL AND METHOD FOR PRODUCING n-TYPE SKUTTERUDITE-BASED Yb-Co-Sb THERMOELECTRIC TRANSDUCTION MATERIAL
JP2008159680A (en) * 2006-12-21 2008-07-10 Furukawa Co Ltd Yb-ae-fe-co-sb (ae:ca, sr, ba, cu, ag, au)-based thermoelectric conversion material
WO2009093455A1 (en) 2008-01-23 2009-07-30 Furukawa Co., Ltd. Thermoelectric conversion material and thermoelectric conversion module
JP2012069968A (en) * 2011-10-27 2012-04-05 Furukawa Co Ltd MANUFACTURING METHOD OF n-TYPE SKUTTERUDITE-BASED Yb-Co-Sb THERMOELECTRIC CONVERSION MATERIAL
JP2014518008A (en) * 2011-05-13 2014-07-24 エルジー・ケム・リミテッド New compound semiconductors and their utilization
WO2019139168A1 (en) * 2018-01-15 2019-07-18 日立金属株式会社 Thermoelectric conversion material, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
CN112397635A (en) * 2020-11-16 2021-02-23 昆明理工大学 GeTe doped Co4Sb12Method for preparing thermoelectric material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005544A (en) * 2005-06-23 2007-01-11 Furukawa Co Ltd n-TYPE THERMOELECTRIC CONVERSION MATERIAL
JP2008047754A (en) * 2006-08-18 2008-02-28 Furukawa Co Ltd n-TYPE Yb-Co-Sb-BASED THERMOELECTRIC TRANSDUCTION MATERIAL, YbxCoySbz-BASED THERMOELECTRIC TRANSDUCTION MATERIAL AND METHOD FOR PRODUCING n-TYPE SKUTTERUDITE-BASED Yb-Co-Sb THERMOELECTRIC TRANSDUCTION MATERIAL
JP2008159680A (en) * 2006-12-21 2008-07-10 Furukawa Co Ltd Yb-ae-fe-co-sb (ae:ca, sr, ba, cu, ag, au)-based thermoelectric conversion material
US10508324B2 (en) 2008-01-23 2019-12-17 Furukawa Co., Ltd. Thermoelectric conversion material and thermoelectric conversion module
WO2009093455A1 (en) 2008-01-23 2009-07-30 Furukawa Co., Ltd. Thermoelectric conversion material and thermoelectric conversion module
JP2014518008A (en) * 2011-05-13 2014-07-24 エルジー・ケム・リミテッド New compound semiconductors and their utilization
JP2012069968A (en) * 2011-10-27 2012-04-05 Furukawa Co Ltd MANUFACTURING METHOD OF n-TYPE SKUTTERUDITE-BASED Yb-Co-Sb THERMOELECTRIC CONVERSION MATERIAL
WO2019139168A1 (en) * 2018-01-15 2019-07-18 日立金属株式会社 Thermoelectric conversion material, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
JPWO2019139168A1 (en) * 2018-01-15 2021-02-04 日立金属株式会社 Manufacturing method of thermoelectric conversion material, thermoelectric conversion module and thermoelectric conversion material
US11171278B2 (en) 2018-01-15 2021-11-09 Hitachi Metals, Ltd. Thermoelectric conversion material, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
JP7283396B2 (en) 2018-01-15 2023-05-30 株式会社プロテリアル Thermoelectric conversion material, thermoelectric conversion module, and method for producing thermoelectric conversion material
CN112397635A (en) * 2020-11-16 2021-02-23 昆明理工大学 GeTe doped Co4Sb12Method for preparing thermoelectric material
CN112397635B (en) * 2020-11-16 2023-04-18 昆明理工大学 GeTe doped Co 4 Sb 12 Method for preparing thermoelectric material

Similar Documents

Publication Publication Date Title
Caillat et al. Properties of single crystalline semiconducting CoSb3
Chen et al. Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12
US6342668B1 (en) Thermoelectric materials with filled skutterudite structure for thermoelectric devices
JP5636419B2 (en) Self-organized thermoelectric material
Isoda et al. Thermoelectric properties of p-type Mg 2.00 Si 0.25 Sn 0.75 with Li and Ag double doping
US6525260B2 (en) Thermoelectric conversion material, and method for manufacturing same
EP0874406A2 (en) A co-sb based thermoelectric material and a method of producing the same
US6369314B1 (en) Semiconductor materials with partially filled skutterudite crystal lattice structures optimized for selected thermoelectric properties and methods of preparation
JP2009277735A (en) Method of manufacturing thermoelectric material
JP4374578B2 (en) Thermoelectric material and manufacturing method thereof
JP4858976B2 (en) Composite thermoelectric conversion material
JPWO2017170914A1 (en) Compound, thermoelectric conversion material and method for producing compound
KR20140065721A (en) Thermoelectric material, thermoelectric device and apparatus comprising same, and preparation method thereof
JP2001135865A (en) Thermoelectric conversion material and manufacturing method for it
JPH09260729A (en) Thermoelectric transducer material and manufacture thereof
US20040217333A1 (en) N-type thermoelectric material and method of preparing thereof
JP6279639B2 (en) Thermoelectric conversion material and method for producing the same
JP2008147261A (en) P-type thermoelectric material, and its manufacturing method
JP2003197985A (en) Thermoelectric conversion material and thermoelectric conversion element using the same
JP2001064006A (en) Si CLATHRATE COMPOUND, ITS PRODUCTION AND THERMOELECTRIC MATERIAL
CN105970070A (en) P-type alpha-MgAgSbSn thermoelectric material with high optimum value and preparation method
Singsoog et al. Effecting the thermoelectric properties of p-MnSi1. 75 and n-Mg1. 98Ag0. 02Si module on power generation
US8309839B2 (en) Method of improving thermoelectric figure of merit of high efficiency thermoelectric materials
Kajikawa et al. Thermoelectric figure of merit of impurity doped and hot-pressed magnesium silicide elements
JP3541549B2 (en) Thermoelectric material for high temperature and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050324

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20061016