JP2008047754A - n-TYPE Yb-Co-Sb-BASED THERMOELECTRIC TRANSDUCTION MATERIAL, YbxCoySbz-BASED THERMOELECTRIC TRANSDUCTION MATERIAL AND METHOD FOR PRODUCING n-TYPE SKUTTERUDITE-BASED Yb-Co-Sb THERMOELECTRIC TRANSDUCTION MATERIAL - Google Patents

n-TYPE Yb-Co-Sb-BASED THERMOELECTRIC TRANSDUCTION MATERIAL, YbxCoySbz-BASED THERMOELECTRIC TRANSDUCTION MATERIAL AND METHOD FOR PRODUCING n-TYPE SKUTTERUDITE-BASED Yb-Co-Sb THERMOELECTRIC TRANSDUCTION MATERIAL Download PDF

Info

Publication number
JP2008047754A
JP2008047754A JP2006223096A JP2006223096A JP2008047754A JP 2008047754 A JP2008047754 A JP 2008047754A JP 2006223096 A JP2006223096 A JP 2006223096A JP 2006223096 A JP2006223096 A JP 2006223096A JP 2008047754 A JP2008047754 A JP 2008047754A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
type
thermoelectric
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006223096A
Other languages
Japanese (ja)
Other versions
JP4885648B2 (en
Inventor
Keien Ko
慧遠 耿
Shunichi Ochi
俊一 越智
Toshikiyo Kaku
俊清 郭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2006223096A priority Critical patent/JP4885648B2/en
Publication of JP2008047754A publication Critical patent/JP2008047754A/en
Application granted granted Critical
Publication of JP4885648B2 publication Critical patent/JP4885648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an n-type Yb-Co-Sb-based thermoelectric transduction material, a Yb<SB>x</SB>Co<SB>y</SB>Sb<SB>z</SB>-based thermoelectric transduction material, and a method for producing an n-type skutterudite-based Yb-Co-Sb thermoelectric transduction material, which are precise and have a high thermoelectric transduction performance at an inexpensive production cost. <P>SOLUTION: A solidification characteristic of the n-type skutterudite-based Yb-Co-Sb thermoelectric transduction material is analyzed, and a kind and temperature of a peritectic reaction are specified in which a volume is reduced. Also, it has been ascertained that a framework in which a crystal phase formed from a liquid phase is linked prevents a supply of a melted liquid and is a cause for a porous state occurrence, and a kind of a crude material and an appropriate temperature during melting have been discussed in detail. As a result, a melting method of not generating the peritectic reaction in which a volume is reduced and a melting method of not forming the framework in which the crystal phase is linked, have been found out. Thus, for example, a dense Yb<SB>0.15</SB>Co<SB>4</SB>Sb<SB>12</SB>thermoelectric transduction material which does not have the porous state is produced, and the n-type skutterudite-based Yb-Co-Sb thermoelectric transduction material having the high thermoelectric performance is provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱エネルギーを電気に、あるいは電気を熱エネルギーに直接変換できる熱電変換素子に使用する熱電変換材料およびその製造方法に関し、特に溶製法で製造されたスクッテルダイト構造を有するn−型Yb−Co−Sb系熱電変換材料、このn−型Yb−Co−Sb系熱電変換材料におけるYbの含有量x、Coの含有量y、Sbの含有量zを適正に定めて溶製法で製造するYbCoSb系熱電変換材料、これら熱電変換材料を製造するn−型スクッテルダイト系Yb−Co−Sb熱電変換材料の製造方法に関する。 The present invention relates to a thermoelectric conversion material used for a thermoelectric conversion element capable of directly converting heat energy into electricity or electricity directly into heat energy, and a method for producing the same, and in particular, an n-type having a skutterudite structure produced by a melting method. Yb-Co-Sb thermoelectric conversion material, Yb content x, Co content y, Sb content z in this n-type Yb-Co-Sb thermoelectric conversion material are appropriately determined and manufactured by a melting method The present invention relates to a Yb x Co y Sb z- based thermoelectric conversion material, and a method for producing an n-type skutterudite-based Yb—Co—Sb thermoelectric conversion material for producing these thermoelectric conversion materials.

近年、環境負荷の低減が世界的規模で推進される傾向にあり、エネルギーの効率的利用促進の一環として、熱機関などから発生する低品位廃熱を回収し、電気へ変換する技術が盛んに研究開発されている。熱電変換材料は、熱を電気に直接変換あるいは電気を印加して加熱・冷却できる材料であり、p−型熱電変換材料とn−型熱電変換材料を組み合わせ、一つの熱電変換素子が形成される。熱電変換素子を使用すれば、容易に加熱・冷却し、また従来利用しにくい低品位廃熱を電気に変換してエネルギーを有効に活用することができる。   In recent years, there has been a tendency to reduce the environmental burden on a global scale, and as a part of promoting efficient use of energy, technologies for recovering low-grade waste heat generated from heat engines, etc., and converting them to electricity have become popular. Has been researched and developed. The thermoelectric conversion material is a material that can directly convert heat into electricity or can be heated and cooled by applying electricity, and a p-type thermoelectric conversion material and an n-type thermoelectric conversion material are combined to form one thermoelectric conversion element. . If a thermoelectric conversion element is used, it can be easily heated and cooled, and low-grade waste heat, which is difficult to use conventionally, can be converted into electricity to effectively use energy.

熱電変換材料の性質は、性能指数Zによって評価される。性能指数Zとは、ゼーベック係数S、熱伝導率κおよび電気抵抗率ρを用いた次式(1)によって表される。
Z=S/(κρ) …(1)
また、熱電変換材料の性質は、性能指数Zと温度Tとの積によって評価されることがある。この場合には、上式(1)の両辺に温度Tを乗じて次式(2)とする。
The property of the thermoelectric conversion material is evaluated by the figure of merit Z. The figure of merit Z is expressed by the following equation (1) using the Seebeck coefficient S, the thermal conductivity κ, and the electrical resistivity ρ.
Z = S 2 / (κρ) (1)
Moreover, the property of the thermoelectric conversion material may be evaluated by the product of the figure of merit Z and the temperature T. In this case, the following equation (2) is obtained by multiplying both sides of the above equation (1) by the temperature T.

ZT=ST/(κρ) …(2)
上式(2)に示したZTは無次元性能指数と呼ばれ、熱電変換材料の性能を示す良い指標となる。熱電変換材料は、このZTの値が大きいほど、その温度Tにおける熱電性能が高い。上式(1)と(2)から、優れた熱電変換材料とは、無次元性能指数ZTの値を大きくできる材料、すなわちゼーベック係数Sが大きく、熱伝導率κおよび電気抵抗率ρが小さい材料である。
ZT = S 2 T / (κρ) (2)
ZT shown in the above formula (2) is called a dimensionless figure of merit, and is a good index indicating the performance of the thermoelectric conversion material. The thermoelectric conversion material has higher thermoelectric performance at the temperature T as the value of ZT is larger. From the above formulas (1) and (2), an excellent thermoelectric conversion material is a material that can increase the value of the dimensionless figure of merit ZT, that is, a material that has a large Seebeck coefficient S and a small thermal conductivity κ and electrical resistivity ρ. It is.

また、熱電変換材料の最大変換効率ηmaxは、次式(3)で表される。
ηmax={(T−T)/T}{(M−1)/(M+(T/T))} …(3)
上式(3)のMは、次式(4)によって表される。また、Tは熱電変換材料の高温端の温度、Tは低温端の温度である。
M={1+Z(T+T)/2}−0.5 …(4)
上記の式(1)〜(4)から、熱電変換材料の熱電変換効率は、性能指数及び高温端と低温端との温度差が大きいほど、向上することが分かる。
Further, the maximum conversion efficiency ηmax of the thermoelectric conversion material is expressed by the following formula (3).
ηmax = {(T h −T c ) / T h } {(M−1) / (M + (T c / T h ))} (3)
M in the above equation (3) is represented by the following equation (4). Further, Th is the temperature at the high temperature end of the thermoelectric conversion material, and T c is the temperature at the low temperature end.
M = {1 + Z (T h + T c ) / 2} −0.5 (4)
From the above formulas (1) to (4), it can be seen that the thermoelectric conversion efficiency of the thermoelectric conversion material improves as the performance index and the temperature difference between the high temperature end and the low temperature end increase.

ところで、現在までに研究されてきた熱電変換材料には、BiTe系、PbTe系、GeTe−AgSbTe系、SiGe系、FeSi系、ZnSb系、BC系、スクッテルダイト構造を有するLaFeSb12、LaFeCoSb12およびYb0.15CoSb12系材料、NaCo、CaCo、BiSrCo系酸化物などがある。 By the way, the thermoelectric conversion materials that have been studied so far include Bi 2 Te 3 system, PbTe system, GeTe-AgSbTe 2 system, SiGe system, Fe 2 Si system, Zn 4 Sb 3 system, B 4 C system, scooter. There are LaFe 4 Sb 12 , LaFe 3 CoSb 12 and Yb 0.15 Co 4 Sb 12 series materials having a terdite structure, NaCo 2 O 4 , Ca 3 Co 4 O 9 , Bi 2 Sr 2 Co 2 O 8 series oxides, etc. .

このような中で実用化されているのはBiTe系のみである。BiTe系熱電変換素子は、主として低温域での用途開発がなされているが、熱電変換効率が10%未満と低く、スペースユーティリティーが小さいペルチェ素子などに用途が限られている。
また、中温域で使用可能な熱電変換材料として、スクッテルダイトCoSb系熱電変換材料の開発が進められている。その熱電性能を向上させるために、CoをPd、Pt、Ru、Rh(化学式においてMで示す)で部分置換したCo1−xSb材料が開発されて、その製法も検討されてきた(特許文献1−9参照)。
Among these, only the Bi 2 Te 3 system is put into practical use. Bi 2 Te 3 -based thermoelectric conversion elements have been developed mainly for use in a low temperature range, but their applications are limited to Peltier elements having a low thermoelectric conversion efficiency of less than 10% and a small space utility.
Further, as a thermoelectric conversion material that can be used in the middle temperature range, a skutterudite CoSb 3- based thermoelectric conversion material is being developed. In order to improve the thermoelectric performance, a Co 1-x M x Sb 3 material in which Co is partially substituted with Pd, Pt, Ru, Rh (indicated by M in the chemical formula) has been developed, and its production method has also been studied. (See Patent Documents 1-9).

しかし、これらの材料系は一般に熱伝導率が大きく、無次元性能指数ZTが小さいために現在のところ実用化に至っていない。
CoSb系材料の熱伝導率を低下させるために、Slackらは、「Phonon Glass and Electron Crystal」というコンセプトを提唱してラットリング効果を利用したスクッテルダイト熱電変換材料を開発した。そして、1997年、Slackらはスクッテルダイト系化合物LaFeSb12、CeFeSb12が中温域で良好なp−型熱電性能を有することを報告し、その後CoなどでFeを部分置換したLaFeCoSb12材料が開発され、さらにこれらの材料の製法が種々に検討されてきた(特許文献10−17参照)。この結果、そのp−型熱電変換材料の無次元性能指数ZTとして0.8が得られているが、まだ実用材料としては性能が不十分であった。
However, these material systems generally have a large thermal conductivity and a dimensionless figure of merit ZT is small, so that they have not been put into practical use at present.
In order to reduce the thermal conductivity of CoSb 3- based materials, Slack et al. Proposed the concept of “Phonon Glass and Electron Crystal” and developed a skutterudite thermoelectric conversion material using the rattling effect. In 1997, Slack et al. Reported that skutterudite compounds LaFe 4 Sb 12 and CeFe 4 Sb 12 had good p-type thermoelectric performance in the middle temperature range, and then LaFe in which Fe was partially substituted with Co or the like. 3 CoSb 12 materials have been developed, and various methods for producing these materials have been studied (see Patent Documents 10-17). As a result, although the dimensionless figure of merit ZT of the p-type thermoelectric conversion material was 0.8, the performance was still insufficient as a practical material.

2000年にはNolasらによって、YbCoSb12(0<x≦1)が良好なn−型熱電性能を持つことが発見され、その無次元性能指数ZTは0.7と報告されている。
従来、これらの熱電変換材料を製造する場合、まず溶製法によって溶製材を作製する。すなわち目的とする化学組成に基づき秤量した原料を坩堝に入れて溶融し、その後冷却して溶製材を得る。次にこの溶製材をさらに粉砕したり、あるいは溶製法の途中で溶融後にアトマイズしたりして目的組成の微粉末を得る。この後、それら微粉末を原料としてホットプレス法、放電プラズマ焼結法などの固相成型法を用いて製造している。
In 2000, Nolas et al. Discovered that Yb x Co 4 Sb 12 (0 <x ≦ 1) had good n-type thermoelectric performance, and its dimensionless figure of merit ZT was reported to be 0.7. Yes.
Conventionally, when manufacturing these thermoelectric conversion materials, first, a molten material is produced by a melting method. That is, the raw materials weighed based on the target chemical composition are put in a crucible and melted, and then cooled to obtain a molten product. Next, the melted material is further pulverized, or atomized after melting in the course of the melting process to obtain a fine powder having the desired composition. Thereafter, these fine powders are used as raw materials by using a solid-phase molding method such as a hot press method or a discharge plasma sintering method.

ここで、CoSb材料を例として従来溶製法による溶製材が得られるまでの凝固プロセスを、図6のCo−Sb系状態図を参照して説明する。
まず、CoSbの作製を目的に原料を秤量してその融点以上に溶融し、図中の点(A)に保持する。そのまま冷却すると、まず温度T(T>1000℃)において、
(1)L(液相0) → β−CoSb T>1000℃
の反応によりβ−CoSbが析出しはじめる。さらに冷却していくとβ−CoSbの析出量が増し、温度T=931℃では、
(2)L(液相1) + β−CoSb → γ−CoSb=931℃
という包晶反応によって液相1とβ−CoSbからγ−CoSbが生成する。さらに温度が下がると温度T=876℃においては、このγ−CoSbと液相2による
(3)L(液相2) + γ−CoSb → δ−CoSb=876℃
という包晶反応によって、目的相であるδ−CoSbが生成、そのまま室温まで冷却していくと目的相であるδ−CoSbの溶製材が得られる。
Here, with reference to the Co—Sb phase diagram of FIG. 6, a solidification process until a melted material obtained by a conventional melting method is obtained by using a CoSb 3 material as an example.
First, raw materials are weighed for the purpose of producing CoSb 3 , melted to the melting point or higher, and held at point (A) in the figure. When cooled as it is, first, at a temperature T 0 (T 0 > 1000 ° C.),
(1) L 0 (Liquid phase 0) → β-CoSb T 0 > 1000 ° C.
Β-CoSb begins to precipitate due to the reaction. As the temperature is further cooled, the amount of β-CoSb deposited increases, and at a temperature T A = 931 ° C.,
(2) L 1 (Liquid phase 1) + β-CoSb → γ-CoSb 2 T A = 931 ° C.
Γ-CoSb 2 is produced from liquid phase 1 and β-CoSb by the peritectic reaction. In yet a temperature T B = 876 ° C. When the temperature decreases, due to the gamma-CoSb 2 and a liquid phase 2 (3) L 2 (liquid phase 2) + γ-CoSb 2 → δ-CoSb 3 T B = 876 ℃
By the peritectic reaction, δ-CoSb 3 that is the target phase is produced, and when it is cooled as it is to room temperature, a melted material of δ-CoSb 3 that is the target phase is obtained.

特開平8−186294号公報JP-A-8-186294 特開平9−64422号公報Japanese Patent Laid-Open No. 9-64422 特開平9−260728号公報JP-A-9-260728 特開平10−303468号公報JP-A-10-303468 特開平11−40860号公報Japanese Patent Laid-Open No. 11-40860 特開平11−40861号公報Japanese Patent Laid-Open No. 11-40861 特開平11−40862号公報Japanese Patent Laid-Open No. 11-40862 特開平11−46020号公報Japanese Patent Laid-Open No. 11-46020 特開平11−150307号公報JP-A-11-150307 特開2000−252526号公報JP 2000-252526 A 特開2001−196647号公報JP 2001-196647 A 特開2002−33526号公報JP 2002-33526 A 特開2002−33527号公報JP 2002-33527 A 特開2002−246656号公報JP 2002-246656 A 特開2002−246657号公報JP 2002-246657 A 特開2003−218410号公報JP 2003-218410 A 特開2004−76046号公報JP 2004-76046 A

しかし、上述した従来の熱電変換材料の製造工程において、溶製法によって溶製材を製作する場合、原料を溶融してからその後冷却して溶製材を得るが、この方法で得られた溶製材は、凝固の際に体積が縮小するという固有特性によって、後述で詳細に説明するように、緻密な構造とならず空隙の多いポーラス状態の組織が形成されてしまう。この結果、電気抵抗率が大きくなり熱電変換性能が低くなるという問題があった。   However, in the production process of the conventional thermoelectric conversion material described above, when producing a melted material by a melting method, the raw material is melted and then cooled to obtain a melted material. Due to the inherent characteristic that the volume is reduced during solidification, a porous structure with many voids is formed instead of a dense structure, as will be described in detail later. As a result, there is a problem that the electrical resistivity is increased and the thermoelectric conversion performance is lowered.

ポーラス状態の組織が形成される理由を説明する。
次の表1に、上述の(1)〜(3)の反応に関係する物質の密度とモル体積を示す。つまり、表1は、CoSbの生成に関する物質の密度とモル体積を表す。
The reason why a porous tissue is formed will be described.
Table 1 below shows the density and molar volume of substances related to the reactions (1) to (3) described above. In other words, Table 1 shows the density and molar volume of the substance related to the production of CoSb 3 .

Figure 2008047754
Figure 2008047754

これをもとに、下記の表2に示すように、(2)の包晶反応と(3)の包晶反応における反応前後での体積変化が求められる。なお、表2は、CoSbの生成反応における体積変化を表す。 Based on this, as shown in Table 2 below, the volume change before and after the reaction in the peritectic reaction of (2) and the peritectic reaction of (3) is determined. Table 2 shows the volume change in the CoSb 3 production reaction.

Figure 2008047754
Figure 2008047754

すなわち、(2)の包晶反応によって−2.6cm/モル、(3)の包晶反応によって−0.1cm/モル程度の体積が減少し、特に(2)の包晶反応による体積縮小が大きいことがわかる。 That is, the volume due to peritectic reaction -2.6Cm 3 / mol by peritectic reaction (2), reduces the -0.1Cm 3 / moles of volume by peritectic reaction (3), in particular (2) It can be seen that the reduction is large.

上記の(2)や(3)の包晶反応が液体−液体反応のように一様に起きれば全体的に体積縮小するのでポーラスな組織にはならない。しかし、それらの反応は固体−液体反応なので、反応の進行が固体の初期の組織形状に大きく依存し、物質全体が一様に体積縮小することが困難である。このため、部分的にポーラスな組織が形成されやすくなる。
そこで従来の製法では緻密な材料を作製するため、熱電変換材料の原材料を一度従来の溶製法で作製した後にさらにホットプレス法、放電プラズマ焼結法などを用いて緻密化することが行われてきた。しかしながら、このような方法では作製プロセスが多くなり、十分な熱電性能が得られないばかりか製造コストも高くなるという問題がある。
If the peritectic reaction of (2) or (3) above occurs uniformly like a liquid-liquid reaction, the volume is reduced as a whole, so that a porous structure is not obtained. However, since these reactions are solid-liquid reactions, the progress of the reaction largely depends on the initial tissue shape of the solid, and it is difficult to reduce the volume of the entire material uniformly. For this reason, it becomes easy to form a partially porous tissue.
Therefore, in order to produce a dense material in the conventional manufacturing method, the raw material of the thermoelectric conversion material is once prepared by the conventional melting method and then further densified by using a hot press method, a discharge plasma sintering method, or the like. It was. However, such a method has a problem that the number of manufacturing processes increases and sufficient thermoelectric performance cannot be obtained and the manufacturing cost is increased.

本発明は、このような課題に鑑みてなされたものであり、安価な製造コストにて、緻密で、熱電変換性能の高いn−型Yb−Co−Sb系熱電変換材料、YbCoSb系熱電変換材料、n−型スクッテルダイト系Yb−Co−Sb熱電変換材料の製造方法を提供することを目的としている。 The present invention has been made in view of such problems, and is an n-type Yb—Co—Sb thermoelectric conversion material, Yb x Co y Sb, which is dense and has high thermoelectric conversion performance at a low production cost. It is an object of the present invention to provide a method for producing a z- based thermoelectric conversion material and an n-type skutterudite-based Yb—Co—Sb thermoelectric conversion material.

上記目的を達成するために、本発明の請求項1によるn−型Yb−Co−Sb系熱電変換材料は、溶製法で製造されたスクッテルダイト構造を有するn−型Yb−Co−Sb系熱電変換材料において、密度が7.4g/cm以上で、かつ熱電変換性能を示す無次元性能指数ZT(Z:性能指数、T:絶対温度)が0.6以上を有することを特徴とする。 In order to achieve the above object, an n-type Yb-Co-Sb thermoelectric conversion material according to claim 1 of the present invention is an n-type Yb-Co-Sb system having a skutterudite structure manufactured by a melting method. The thermoelectric conversion material has a density of 7.4 g / cm 3 or more and a dimensionless figure of merit ZT (Z: figure of merit, T: absolute temperature) indicating thermoelectric conversion performance is 0.6 or more. .

また、本発明の請求項2によるYbCoSb系熱電変換材料は、請求項1に記載のn−型Yb−Co−Sb系熱電変換材料におけるYbの含有量xを0<x≦1、Coの含有量yを3.5≦y≦4.5、Sbの含有量zを10≦z≦15とする溶製法で製造されたことを特徴とする。 The Yb x Co y Sb z- based thermoelectric conversion material according to claim 2 of the present invention is such that the content x of Yb in the n-type Yb—Co—Sb thermoelectric conversion material according to claim 1 is 0 <x ≦. 1. It was manufactured by a melting method in which the Co content y was 3.5 ≦ y ≦ 4.5 and the Sb content z was 10 ≦ z ≦ 15.

また、本発明の請求項3によるn−型スクッテルダイト系Yb−Co−Sb熱電変換材料の製造方法は、請求項1に記載のn−型Yb−Co−Sb系熱電変換材料、又は請求項2に記載のYbCoSb系熱電変換材料を製造するn−型スクッテルダイト系Yb−Co−Sb熱電変換材料の製造方法において、CoSbもしくはCoSb、Yb、Co、Sbを原料とし、この原料を、溶解温度を875℃〜1000℃の温度範囲で加熱・溶解させた後、冷却して熱電変換材料を得ることを特徴とする。 The method for producing an n-type skutterudite-based Yb-Co-Sb thermoelectric conversion material according to claim 3 of the present invention is the n-type Yb-Co-Sb-based thermoelectric conversion material according to claim 1 or claim in the production method of Yb x Co y Sb z system for producing a thermoelectric conversion material n- type skutterudite Yb-CoSb thermoelectric conversion material according to claim 2, CoSb or CoSb 2, Yb, Co, and Sb raw material The raw material is heated and dissolved in a temperature range of 875 ° C. to 1000 ° C. and then cooled to obtain a thermoelectric conversion material.

この請求項3のn−型スクッテルダイト系Yb−Co−Sb熱電変換材料の製造方法によれば、請求項1に記載のn−型Yb−Co−Sb系熱電変換材料、又は請求項2に記載のYbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)系熱電変換材料を、溶製法のみで緻密に製造することができ、固相成型法を使用したときと同等以上の無次元性能指数を有する熱電変換材料を提供することが可能となる。 According to the method for producing an n-type skutterudite-based Yb-Co-Sb thermoelectric conversion material according to claim 3, the n-type Yb-Co-Sb-based thermoelectric conversion material according to claim 1, or claim 2 Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) -based thermoelectric conversion material can be densely produced only by a melting method, It becomes possible to provide a thermoelectric conversion material having a dimensionless figure of merit equal to or higher than that when using the solid-phase molding method.

この実現のため、本発明では、溶製法によるn−型スクッテルダイト系Yb−Co−Sb熱電変換材料の凝固特性を詳細に解析し、凝固時の体積縮小および縮小に伴った融液の補給不足がポーラス状態の組織形成の原因であることを明らかにした。この凝固時の体積縮小を抑え、あるいはこの体積縮小反応が起きても部分的ではなく全体的に一様に進行させることによって緻密な熱電変換材料を作製することができる。   In order to realize this, in the present invention, the solidification characteristics of the n-type skutterudite-based Yb-Co-Sb thermoelectric conversion material by melting method are analyzed in detail, and the replenishment of the melt accompanying the volume reduction and reduction during solidification It was clarified that the deficiency was the cause of porous tissue formation. A precise thermoelectric conversion material can be produced by suppressing the volume reduction at the time of solidification, or by making the whole volume proceed uniformly rather than partially even if this volume reduction reaction occurs.

すべてのn−型スクッテルダイト系Yb−Co−Sb熱電変換材料は包晶反応によって形成される。これらの材料の状態図は、上述で図6に例として挙げたCoSbの状態図に類似している。Yb元素添加によってCoSb相はYbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)となるが、熱分析および組成分析の結果、このYbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)は、上述の(1)〜(3)の3つの反応に類似する下記の(4)〜(6)に示す凝固プロセスによって形成され、また(5)および(6)の包晶反応の温度はCoSb相生成時の場合{(2)、(3)の反応温度}とほとんど変わっていないことがわかった。 All n-type skutterudite-based Yb—Co—Sb thermoelectric conversion materials are formed by a peritectic reaction. The phase diagram of these materials is similar to the CoSb 3 phase diagram given above as an example in FIG. By adding Yb element, the CoSb 3 phase becomes Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15). As a result of thermal analysis and composition analysis, Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) is the following (similar to the above three reactions (1) to (3) ( 4) to (6) are formed by the solidification process, and the peritectic reaction temperature of (5) and (6) is almost equal to {reaction temperature of (2) and (3)} in the case of CoSb three- phase formation. I found that it has not changed.

(4) L(液相0) → (Yb固溶)β−CoSb T>1000℃
(5)[包晶反応A]
(液相1) + (Yb固溶)β−CoSb→(Yb固溶)γ−CoSb
=930℃
(6)[包晶反応B]
(液相2) + (Yb固溶)γ−CoSb → YbxCoySbz
=875℃
以降、(5)の反応を包晶反応A、(6)の反応を包晶反応Bと呼ぶが、上記の表2に示した体積変化と同様に包晶反応Aの方が包晶反応Bよりも体積縮小率の大きい反応で、反応前の体積より反応後の体積が小さくなってポーラスな構造が生成する原因となる。
(4) L 0 (Liquid phase 0) → (Yb solid solution) β-CoSb T 0 > 1000 ° C.
(5) [Peritectic reaction A]
L 1 (Liquid phase 1) + (Yb solid solution) β-CoSb → (Yb solid solution) γ-CoSb 2
T A = 930 ° C.
(6) [Peritectic reaction B]
L 2 (liquid phase 2) + (Yb solid solution) γ-CoSb 2 → YbxCoySbz
T B = 875 ° C
Hereinafter, the reaction (5) is referred to as the peritectic reaction A, and the reaction (6) is referred to as the peritectic reaction B. The peritectic reaction A is similar to the peritectic reaction B as in the volume change shown in Table 2 above. In the reaction having a larger volume reduction ratio than the volume before the reaction, the volume after the reaction becomes smaller and the porous structure is generated.

ところで、従来の溶製法を用いてn−型スクッテルダイト系YbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)熱電変換材料を製造するとき、包晶反応Aにおける体積縮小反応が全体的に一様に起きれば結果的にポーラス状態にはならないが、この反応は固体-液体反応なので全体的に一様には生じにくく、部分的な体積縮小反応が起きて結果的にポーラス状態となる。 By the way, an n-type skutterudite-based Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) thermoelectric conversion material is manufactured using a conventional melting method. In this case, if the volume reduction reaction in the peritectic reaction A occurs uniformly throughout, it does not result in a porous state. However, since this reaction is a solid-liquid reaction, it is difficult to occur uniformly and partially. A volume reduction reaction takes place, resulting in a porous state.

この原因を詳しく調べた結果、(4)の反応によって融液(液相0)から初晶の(Yb固溶)β−CoSb相が析出する際に(Yb固溶)β−CoSb初晶相が骨格状に繋がった組織が形成され、次の包晶反応Aにおいて融液の補給が十分になされないために、一様な体積減少反応ではなく部分的に体積が減少してポーラス状態となることが判明した。したがって、緻密な材料を作製するためにはいかにして初晶相を互いに骨格状に繋がらないようにするかがポイントとなる。   As a result of examining this cause in detail, when the primary (Yb solid solution) β-CoSb phase is precipitated from the melt (liquid phase 0) by the reaction of (4), the (Yb solid solution) β-CoSb primary phase Is formed in a skeleton-like structure, and the melt is not sufficiently replenished in the next peritectic reaction A, so that the volume is partially reduced and becomes a porous state instead of a uniform volume reduction reaction. It has been found. Therefore, in order to produce a dense material, the key point is how to prevent the primary crystal phases from being connected to each other in a skeleton form.

本発明によれば上記の請求項1〜請求項3に係る溶製法で、溶製時の最高溶解温度(Tmax)を液相線温度以下に制御することで、溶解後の相構成および凝固プロセスが変化して、ポーラス状態形成の要因を排除することができ、緻密なn−型スクッテルダイト系YbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)熱電変換材料を製造することができる。 According to the present invention, in the melting method according to claims 1 to 3, the maximum melting temperature (Tmax) at the time of melting is controlled to be equal to or lower than the liquidus temperature, so that the phase configuration after dissolution and the solidification process Changes to eliminate the cause of the porous state formation, and the dense n-type skutterudite system Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) A thermoelectric conversion material can be manufactured.

すなわち最高溶解温度Tmaxを875℃〜930℃の温度範囲に制御した場合、液相中に骨格構造を作る初晶相(Yb固溶)β−CoSbそのものが形成されず、かつ反応前後の体積縮小変化が大きい包晶反応Aが発生することなく、(Yb固溶)γ−CoSbが液相から直接形成される。このため、ポーラス状態形成の要因が完全に排除されて緻密なn−型スクッテルダイト系YbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)熱電変換材料を製造することができる。 That is, when the maximum dissolution temperature Tmax is controlled in the temperature range of 875 ° C. to 930 ° C., the primary crystal phase (Yb solid solution) β-CoSb itself forming a skeleton structure is not formed in the liquid phase, and the volume is reduced before and after the reaction. (Yb solid solution) γ-CoSb 2 is formed directly from the liquid phase without the peritectic reaction A having a large change. For this reason, the factor of the porous state formation is completely eliminated, and the dense n-type skutterudite system Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) A thermoelectric conversion material can be manufactured.

さらに、最高溶解温度Tmaxを930℃〜1000℃(液相線温度以下)の温度範囲に制御した場合には、出発原料にCoSbおよびCoSbの少なくとも一種が含まれるように限定することによって、初晶相(Yb固溶)β−CoSbの形成時に互いに繋がった骨格を形成しない状態にすることができる。これにより包晶反応Aが起きると、反応に必要な融液が円滑に補給されて、全体的に一様な体積縮小反応が生じ、ポーラス状態が形成されないので緻密なn−型スクッテルダイト系YbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)熱電変換材料を製造することができる。 Furthermore, when the maximum melting temperature Tmax is controlled within a temperature range of 930 ° C. to 1000 ° C. (liquidus temperature or lower), by limiting the starting material to at least one of CoSb and CoSb 2 , When the crystal phase (Yb solid solution) β-CoSb is formed, the skeletons connected to each other can not be formed. Thus, when peritectic reaction A occurs, the melt necessary for the reaction is smoothly replenished, a uniform volume reduction reaction occurs as a whole, and a porous state is not formed, so a dense n-type skutterudite system Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) thermoelectric conversion material can be manufactured.

また、本発明のn−型スクッテルダイト系Yb−Co−Sb熱電変換材料の製造方法では、従来のようなホットプレス法、放電プラズマ焼結法などの作製プロセスが多く、製造コストが高い方法を用いないので、安価な製造コストにて、緻密で、熱電変換性能の高いn−型スクッテルダイト系Yb−Co−Sb熱電変換材料を製造することができる。   Further, in the method for producing an n-type skutterudite-based Yb—Co—Sb thermoelectric conversion material of the present invention, there are many production processes such as a conventional hot press method and a discharge plasma sintering method, and the production cost is high. Therefore, an n-type skutterudite-based Yb—Co—Sb thermoelectric conversion material with high density and high thermoelectric conversion performance can be produced at a low production cost.

以上説明したように本発明によれば、安価な製造コストにて、緻密で、熱電変換性能の高いn−型Yb−Co−Sb系熱電変換材料、YbCoSb系熱電変換材料、n−型スクッテルダイト系Yb−Co−Sb熱電変換材料の製造方法を提供することができるという効果がある。 As described above, according to the present invention, an n-type Yb-Co-Sb thermoelectric conversion material, a Yb x Co y Sb z thermoelectric conversion material, which is dense and has high thermoelectric conversion performance at a low production cost, There is an effect that a method for producing an n-type skutterudite-based Yb-Co-Sb thermoelectric conversion material can be provided.

以下、本発明の実施の形態を説明する。
(実施の形態)
本発明の請求項1〜請求項3に係るn−型スクッテルダイト系YbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)熱電変換材料を緻密化して製造するには、前述で説明したように最高溶解温度Tmaxを875℃〜930℃の温度範囲に制御することが望ましい。最高溶解温度Tmaxが875℃〜930℃の温度範囲内であれば、緻密なn−型スクッテルダイト系YbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)熱電変換材料を製造することができる。
Embodiments of the present invention will be described below.
(Embodiment)
The n-type skutterudite-based Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) thermoelectric conversion according to claims 1 to 3 of the present invention In order to manufacture the material by densifying the material, it is desirable to control the maximum melting temperature Tmax to a temperature range of 875 ° C. to 930 ° C. as described above. If the maximum dissolution temperature Tmax is within the temperature range of 875 ° C. to 930 ° C., a dense n-type skutterudite system Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) A thermoelectric conversion material can be produced.

さらに望ましくは、最高溶解温度Tmaxを900℃付近に設定する。875℃〜930℃の温度範囲で原材料を溶解して、保持することによって、L2(液相2)と(Yb固溶)γ−CoSbとの二相共存状態を実現した後、目標の熱電変換材料を形成する温度875℃より低い温度、例えば870℃まで降温して保持すれば、包晶反応Bは十分に進行し、緻密なYbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)熱電変換材料を得ることができる。ここで、最高溶解温度Tmaxを875℃〜930℃の温度範囲内に制御する製造方法を溶製法1と定義する。溶製法1は溶解時の出発原料の種類、例えば金属単体、化合物などを限定しない。 More desirably, the maximum melting temperature Tmax is set to around 900 ° C. After realizing the two-phase coexistence state of L 2 (liquid phase 2) and (Yb solid solution) γ-CoSb 2 by dissolving and holding the raw material in the temperature range of 875 ° C. to 930 ° C., the target If the temperature is lower than 875 ° C. for forming the thermoelectric conversion material, for example, kept at 870 ° C., the peritectic reaction B proceeds sufficiently, and dense Yb x Co y Sb z (0 <x ≦ 1, 3 0.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) A thermoelectric conversion material can be obtained. Here, the manufacturing method for controlling the maximum melting temperature Tmax within the temperature range of 875 ° C. to 930 ° C. is defined as melting method 1. Melting method 1 does not limit the type of starting material at the time of melting, such as a simple metal or a compound.

さらに、最高溶解温度Tmaxを930℃〜1000℃の温度範囲に制御した場合、n−型スクッテルダイト系YbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)熱電変換材料を緻密化して製造するには、出発原料をCoSbもしくはCoSbの少なくとも一種が含まれるように限定することが望ましい。930℃〜1000℃の温度範囲で原材料を溶解して、保持することによって、互いに繋がらないβ−CoSb相とL0(液相0)との二相共存状態を実現した後、例えば870℃まで降温して保持すれば、包晶反応Bは十分に進行し、緻密なn−型スクッテルダイト系YbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)熱電変換材料を得ることができる。ここで、最高溶解温度Tmaxを930℃〜1000℃の温度範囲に制御する製造方法を溶製法2と定義する。 Further, when the maximum melting temperature Tmax is controlled in the temperature range of 930 ° C. to 1000 ° C., the n-type skutterudite system Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) In order to manufacture a thermoelectric conversion material by densification, it is desirable to limit the starting material to include at least one of CoSb or CoSb 2 . After realizing the two-phase coexistence state of β-CoSb phase and L 0 (liquid phase 0) that are not connected to each other by dissolving and holding the raw material in the temperature range of 930 ° C. to 1000 ° C., for example, up to 870 ° C. If the temperature is lowered and held, the peritectic reaction B proceeds sufficiently, and the dense n-type skutterudite system Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) A thermoelectric conversion material can be obtained. Here, a manufacturing method for controlling the maximum melting temperature Tmax to a temperature range of 930 ° C. to 1000 ° C. is defined as a melting method 2.

溶製法1と溶製法2においては加熱方式を限定しない。例えば、電気炉加熱、高周波溶解加熱、その他の加熱方式などいずれの方式でも構わない。溶製法1と溶製法2において溶解を均一に行うために、溶融体を攪拌することを補助手段として採用する。溶融体内の固相・液相を均一にすることができれば、攪拌法としては特に限定されない。
いずれの製法で得られたn−型スクッテルダイト系YbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)熱電変換材料は緻密になっており、その密度が7.4g/cm以上であった。そのゼーベック係数、電気抵抗率、熱伝導率と温度との関係を測定し、各温度での無次元性能指数ZTを算出した結果、室温〜600℃の温度範囲で無次元性能指数ZTが0.7以上に達した。
In the melting method 1 and the melting method 2, the heating method is not limited. For example, any method such as electric furnace heating, high-frequency melting heating, and other heating methods may be used. In order to perform dissolution uniformly in the melting method 1 and the melting method 2, stirring the melt is employed as an auxiliary means. The stirring method is not particularly limited as long as the solid phase and liquid phase in the melt can be made uniform.
The n-type skutterudite-based Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) thermoelectric conversion material obtained by any method becomes dense. The density was 7.4 g / cm 3 or more. The relationship between the Seebeck coefficient, electrical resistivity, thermal conductivity and temperature was measured, and the dimensionless figure of merit ZT at each temperature was calculated. As a result, the dimensionless figure of merit ZT was 0 in the temperature range of room temperature to 600 ° C. Reached 7 or more.

また、溶製法1と溶製法2では、材料はn−型スクッテルダイト系YbCoSb(0<x≦1、3.5≦y≦4.5、10≦z≦15)熱電変換材料に限定されず、例えば、Coの一部、あるいは全部をFeで置換したもの、さらにYbの一部をCa、SrあるいはBaなどアルカリ土類金属元素で置換したn−型、p−型熱電変換材料にも適用できる。 Further, in the melting method 1 and the melting method 2, the material is an n-type skutterudite-based Yb x Co y Sb z (0 <x ≦ 1, 3.5 ≦ y ≦ 4.5, 10 ≦ z ≦ 15) thermoelectric. For example, n-type or p-type in which part or all of Co is substituted with Fe, and part of Yb is substituted with an alkaline earth metal element such as Ca, Sr or Ba. It can also be applied to thermoelectric conversion materials.

次に、実施例によって以下に本発明を具体的に説明する。以降、溶製法1を用いた場合の請求項1〜請求項3に係るn−型スクッテルダイト系Yb−Co−Sb熱電変換材料の製造方法およびその熱電変換性能について述べる。   Next, the present invention will be specifically described below with reference to examples. Hereinafter, a method for producing an n-type skutterudite-based Yb—Co—Sb thermoelectric conversion material according to claims 1 to 3 in the case of using the melting method 1 and its thermoelectric conversion performance will be described.

(実施例1)
Yb、Co、Sbの単体金属を出発原料とし、Yb:Co:Sb=1:9.0820:56.2922の重量比率で純金属Yb、Co、Sbの原料をアルミナ坩堝に入れ、不活性ガス雰囲気中において、電気炉を用いて最高温度900℃まで加熱・溶解して6時間保持した。その後800℃で24時間、そして650℃で12時間、さらに550℃で6時間それぞれ保持してから室温まで冷却すると、図1(a)のYb0.15CoSb12熱電変換材料の組織顕微鏡写真に示すように、密度が7.48g/cmである、ポーラス状態のない緻密なYb0.15CoSb12熱電変換材料を得ることができた。
(Example 1)
Using Yb, Co, and Sb simple metals as starting materials, Yb: Co: Sb = 1: 9.0820: 56.922 in a weight ratio of pure metals Yb, Co, and Sb are placed in an alumina crucible, and inert gas In an atmosphere, it was heated and melted to a maximum temperature of 900 ° C. using an electric furnace and held for 6 hours. Then, after holding at 800 ° C. for 24 hours, at 650 ° C. for 12 hours, and further at 550 ° C. for 6 hours, and then cooled to room temperature, the microstructure microscope of the Yb 0.15 Co 4 Sb 12 thermoelectric conversion material in FIG. As shown in the photograph, a dense Yb 0.15 Co 4 Sb 12 thermoelectric conversion material without a porous state having a density of 7.48 g / cm 3 could be obtained.

熱電性能評価装置を用い、室温〜600℃の温度範囲で上述の熱電変換材料のゼーベック係数、電気抵抗率および熱伝導率を測定し、無次元性能指数を算出した。これらの結果を図2〜図5に示す。これらのうち図5から分かるように、無次元性能指数ZTは400〜500℃の温度範囲で0.7に達した。
但し、図2はYb0.15CoSb12熱電変換材料のゼーベック係数と温度との関係図、図3はYb0.15CoSb12熱電変換材料の電気抵抗率と温度との関係図、図4はYb0.15CoSb12熱電変換材料の熱伝導率と温度との関係図、図5はYb0.15CoSb12熱電変換材料の無次元性能指数ZTと温度との関係図である。
Using a thermoelectric performance evaluation apparatus, the Seebeck coefficient, electrical resistivity, and thermal conductivity of the thermoelectric conversion material described above were measured in a temperature range of room temperature to 600 ° C., and a dimensionless figure of merit was calculated. These results are shown in FIGS. As can be seen from FIG. 5, the dimensionless figure of merit ZT reached 0.7 in the temperature range of 400 to 500 ° C.
However, FIG. 2 is a relationship diagram between the Seebeck coefficient of Yb 0.15 Co 4 Sb 12 thermoelectric conversion material and temperature, and FIG. 3 is a relationship diagram between the electrical resistivity of Yb 0.15 Co 4 Sb 12 thermoelectric conversion material and temperature. , 4 Yb 0.15 Co 4 Sb 12 thermal conductivity and the relationship diagram between the temperature of the thermoelectric conversion material, Figure 5 is a dimensionless figure of merit ZT and temperature of Yb 0.15 Co 4 Sb 12 thermoelectric conversion material It is a relationship diagram.

(実施例2)
Yb、Co、Fe、Sbの単体金属を出発原料とし、Yb:Co:Fe:Sb=1:4.2572:0.2689:28.1461の重量比率で純金属Yb、Co、Fe、Sbの原料をアルミナ坩堝に入れ、不活性ガス雰囲気中において電気炉で最高温度900℃まで加熱・溶解し、6時間保持した後、800℃で24時間、650℃で12時間、さらに550℃で6時間それぞれ保持してから室温まで冷却した。
(Example 2)
A single metal of Yb, Co, Fe, and Sb is used as a starting material, and pure metals Yb, Co, Fe, and Sb are mixed at a weight ratio of Yb: Co: Fe: Sb = 1: 4.2572: 0.2689: 28.461. The raw material is put in an alumina crucible, heated and dissolved in an inert gas atmosphere to a maximum temperature of 900 ° C. in an electric furnace, held for 6 hours, then held at 800 ° C. for 24 hours, 650 ° C. for 12 hours, and further 550 ° C. for 6 hours. Each was held and then cooled to room temperature.

すると密度が7.50g/cmであるポーラス状態のない緻密なYb0.3Co3.75Fe0.25Sb12熱電変換材料を得ることができた。さらに熱電性能評価装置を用いて室温〜600℃の温度範囲でこの材料における無次元性能指数を算出したところ、無次元性能指数ZTは400〜500℃の温度範囲で最大0.8に達した。 As a result, a dense Yb 0.3 Co 3.75 Fe 0.25 Sb 12 thermoelectric conversion material having a density of 7.50 g / cm 3 and having no porous state could be obtained. Furthermore, when the dimensionless figure of merit in this material was calculated in the temperature range of room temperature to 600 ° C. using a thermoelectric performance evaluation apparatus, the dimensionless figure of merit ZT reached a maximum of 0.8 in the temperature range of 400 to 500 ° C.

(実施例3)
Yb、Ca、Co、Fe、Sbの単体金属を出発原料とし、Yb:Ca:Co:Fe:Sb=1:0.0772:4.2572:0.2689:28.1461の重量比率で純金属Yb、Ca、Co、Fe、Sbの原料をアルミナ坩堝に入れ、不活性ガス雰囲気中において電気炉で最高温度900℃まで加熱・溶解し、6時間保持した後、800℃で24時間、650℃で12時間、さらに550℃で6時間それぞれ保持してから室温まで冷却した。
(Example 3)
Yb, Ca, Co, Fe, Sb simple metal starting material, Yb: Ca: Co: Fe: Sb = 1: 0.0772: 4.2572: 0.2689: 28.461 Yb, Ca, Co, Fe and Sb raw materials are put in an alumina crucible, heated and dissolved in an inert gas atmosphere to a maximum temperature of 900 ° C. in an electric furnace, held for 6 hours, then held at 800 ° C. for 24 hours, 650 ° C. For 12 hours and further at 550 ° C. for 6 hours, and then cooled to room temperature.

すると密度が7.51g/cmである、ポーラス状態のない緻密なYb0.3Ca0.1Co3.75Fe0.25Sb12熱電変換材料を得ることができた。さらに熱電性能評価装置を用いて室温〜600℃の温度範囲でこの材料における無次元性能指数を算出したところ、無次元性能指数ZTは400〜500℃の温度範囲で最大1.1に達した。 Then, a dense Yb 0.3 Ca 0.1 Co 3.75 Fe 0.25 Sb 12 thermoelectric conversion material having a density of 7.51 g / cm 3 and having no porous state could be obtained. Furthermore, when the dimensionless figure of merit in this material was calculated in the temperature range of room temperature to 600 ° C. using a thermoelectric performance evaluation apparatus, the dimensionless figure of merit ZT reached 1.1 at the maximum in the temperature range of 400 to 500 ° C.

(実施例4)
Yb、Sr、Co、Fe、Sbの単体金属を出発原料とし、Yb:Sr:Co:Fe:Sb=1:0.1688:4.2572:0.2689:28.1461の重量比率で純金属Yb、Sr、Co、Fe、Sbの原料をアルミナ坩堝に入れ、不活性ガス雰囲気中において電気炉で最高温度900℃まで加熱・溶解し、6時間保持した後、800℃で24時間、650℃で12時間、さらに550℃で6時間それぞれ保持してから室温まで冷却した。
Example 4
Yb, Sr, Co, Fe, Sb simple metal starting material, Yb: Sr: Co: Fe: Sb = 1: 0.1688: 4.2572: 0.2689: 28.461 The raw materials of Yb, Sr, Co, Fe, and Sb are put into an alumina crucible, heated and dissolved in an inert gas atmosphere to a maximum temperature of 900 ° C. in an electric furnace, held for 6 hours, then held at 800 ° C. for 24 hours, 650 ° C. For 12 hours and further at 550 ° C. for 6 hours, and then cooled to room temperature.

すると密度が7.52g/cmである、ポーラス状態のない緻密なYb0.3Sr0.1Co3.75Fe0.25Sb12熱電変換材料を得ることができた。さらに熱電性能評価装置を用いて室温〜600℃の温度範囲でこの材料における無次元性能指数を算出したところ、無次元性能指数ZTは400〜500℃の温度範囲で最大0.8に達した。 As a result, a dense Yb 0.3 Sr 0.1 Co 3.75 Fe 0.25 Sb 12 thermoelectric conversion material having a density of 7.52 g / cm 3 and having no porous state could be obtained. Furthermore, when the dimensionless figure of merit in this material was calculated in the temperature range of room temperature to 600 ° C. using a thermoelectric performance evaluation apparatus, the dimensionless figure of merit ZT reached a maximum of 0.8 in the temperature range of 400 to 500 ° C.

(実施例5)
Yb、Ba、Co、Fe、Sbの単体金属を出発原料とし、Yb:Ba:Co:Fe:Sb=1:0.2645:4.2572:0.2689:28.1461の重量比率で純金属Yb、Ba、Co、Fe、Sbの原料をアルミナ坩堝に入れ、不活性ガス雰囲気中において電気炉で最高温度900℃まで加熱・溶解し、6時間保持した後、800℃で24時間、650℃で12時間、さらに550℃で6時間それぞれ保持してから室温まで冷却した。
(Example 5)
Yb, Ba, Co, Fe, Sb simple metal starting material, Yb: Ba: Co: Fe: Sb = 1: 0.2645: 4.2572: 0.2689: 28.461 The raw materials of Yb, Ba, Co, Fe, and Sb are put in an alumina crucible, heated and dissolved in an inert gas atmosphere up to a maximum temperature of 900 ° C. in an electric furnace, held for 6 hours, then at 800 ° C. for 24 hours, 650 ° C. For 12 hours and further at 550 ° C. for 6 hours, and then cooled to room temperature.

すると密度が7.54g/cmである、ポーラス状態のない緻密なYb0.3Ba0.1Co3.75Fe0.25Sb12熱電変換材料を得ることができた。さらに熱電性能評価装置を用いて室温〜600℃の温度範囲でこの材料における無次元性能指数を算出したところ、無次元性能指数ZTは400〜500℃の温度範囲で最大0.9に達した。 Thus, a dense Yb 0.3 Ba 0.1 Co 3.75 Fe 0.25 Sb 12 thermoelectric conversion material having a density of 7.54 g / cm 3 and having no porous state could be obtained. Furthermore, when a dimensionless figure of merit in this material was calculated in the temperature range of room temperature to 600 ° C. using a thermoelectric performance evaluation apparatus, the dimensionless figure of merit ZT reached a maximum of 0.9 in the temperature range of 400 to 500 ° C.

(実施例6)
本実施例では、溶製法2を用いた場合の請求項1〜請求項3に係るYb0.15CoSb12熱電変換材料の製造方法およびその熱電変換性能について述べる。
(Example 6)
In this example, a method for producing a Yb 0.15 Co 4 Sb 12 thermoelectric conversion material according to claims 1 to 3 when the melting method 2 is used and the thermoelectric conversion performance thereof will be described.

CoSb化合物、Yb、Sbの単体金属を出発原料とし、Yb:CoSb:Sb=1:46.6101:18.7641の重量比率で純金属Yb、Sbの原料およびCoSb化合物の原料をアルミナ坩堝に入れ、不活性ガス雰囲気中において、電気炉加熱によって最高温度1000℃まで加熱・溶解し、2時間保持した後、900℃で6時間、800℃で24時間、そして650℃で12時間、さらに550℃で6時間それぞれ保持した。室温まで冷却すると、密度が7.45g/cmである、ポーラス状態のない緻密なYb0.15CoSb12熱電変換材料を得ることができた。 CoSb 2 compound, Yb, Sb simple metal as a starting material, Yb: CoSb 2 : Sb = 1: 46.6101: 18.7641 by weight ratio Pure metal Yb, Sb raw material and CoSb 2 compound raw material are alumina Put in a crucible and heat and melt to a maximum temperature of 1000 ° C by heating in an inert gas atmosphere, hold for 2 hours, then 900 ° C for 6 hours, 800 ° C for 24 hours, and 650 ° C for 12 hours, Furthermore, it hold | maintained at 550 degreeC for 6 hours, respectively. When cooled to room temperature, a dense Yb 0.15 Co 4 Sb 12 thermoelectric conversion material having a density of 7.45 g / cm 3 and having no porous state could be obtained.

熱電性能評価装置を用い、室温〜600℃の温度範囲で上述の熱電変換材料のゼーベック係数、電気抵抗率および熱伝導率を測定し、無次元性能指数を算出した。これらの結果を図2〜図5に示す。図5のように無次元性能指数ZTは400〜500℃の温度範囲でも0.7に達した。   Using a thermoelectric performance evaluation apparatus, the Seebeck coefficient, electrical resistivity, and thermal conductivity of the thermoelectric conversion material described above were measured in a temperature range of room temperature to 600 ° C., and a dimensionless figure of merit was calculated. These results are shown in FIGS. As shown in FIG. 5, the dimensionless figure of merit ZT reached 0.7 even in the temperature range of 400 to 500 ° C.

(比較例)
本比較例では、Yb0.15CoSb12熱電変換材料の従来溶製法およびその熱電性能について述べる。
(Comparative example)
In this comparative example, a conventional melting method of Yb 0.15 Co 4 Sb 12 thermoelectric conversion material and its thermoelectric performance will be described.

Yb、Co、Sbの単体金属を出発原料とし、Yb:Co:Sb=1:9.0820:56.2922の重量比率で純金属Yb、Co、Sbの原料をアルミナ坩堝に入れ、不活性ガス雰囲気中において、電気炉加熱によって液相線以上の温度まで例えば1200℃まで加熱・溶解し、2時間保持した後、徐冷し、900℃で6時間、800℃で24時間、650℃で12時間、さらに550℃で6時間それぞれ保持した。室温まで冷却すると、図1(b)に示すように、密度が7.0g/cmである、緻密ではないポーラス状態のYb0.15CoSb12熱電変換材料が得られた。 Using Yb, Co, and Sb simple metals as starting materials, Yb: Co: Sb = 1: 9.0820: 56.922 in a weight ratio of pure metals Yb, Co, and Sb are placed in an alumina crucible, and inert gas In an atmosphere, heating and melting to a temperature above the liquidus by heating in an electric furnace, for example, to 1200 ° C., holding for 2 hours, gradually cooling, 900 ° C. for 6 hours, 800 ° C. for 24 hours, 650 ° C. for 12 hours Held for 6 hours at 550 ° C. When cooled to room temperature, a non-dense porous Yb 0.15 Co 4 Sb 12 thermoelectric conversion material having a density of 7.0 g / cm 3 was obtained as shown in FIG.

熱電性能評価装置を用い、室温〜600℃の温度範囲で上述の熱電変換材料のゼーベック係数、電気抵抗率および熱伝導率を測定し、無次元性能指数を算出した。これらの結果を図2〜図5に示す。図2〜図5から分かるように、ゼーベック係数に関しては緻密な材料とポーラス状態の材料の間には大きい差がなかったが、ポーラス状態に起因する電気抵抗率はかなり大きくなってしまい、熱伝導率はポーラスの寄与によって少し小さくなった。よって、無次元性能指数ZTの最大値は0.35に低下し、その値は緻密な材料の半分であった。   Using a thermoelectric performance evaluation apparatus, the Seebeck coefficient, electrical resistivity, and thermal conductivity of the thermoelectric conversion material described above were measured in a temperature range of room temperature to 600 ° C., and a dimensionless figure of merit was calculated. These results are shown in FIGS. As can be seen from FIGS. 2 to 5, there was no significant difference between the dense material and the porous material with respect to the Seebeck coefficient, but the electrical resistivity due to the porous state became considerably large, and the heat conduction The rate was slightly reduced by the contribution of the porous. Therefore, the maximum value of the dimensionless figure of merit ZT was reduced to 0.35, which was half that of the dense material.

以上の結果から明らかなように、本発明の提供したn−型スクッテルダイト系Yb0.15CoSb12熱電変換材料の溶製法は従来の溶製法より優れた熱電性能を得ることができる。本発明の提供した製造方法はYb0.15CoSb12熱電変換材料に限らず、すべてのn−型スクッテルダイト系Yb−Co−Sb熱電変換材料に適用する。
但し、上記では具体的に示しながら発明の形態に基づいて本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない範囲においてあらゆる変形や変更が可能である。
As apparent from the above results, the melting method of the n-type skutterudite-based Yb 0.15 Co 4 Sb 12 thermoelectric conversion material provided by the present invention can obtain thermoelectric performance superior to that of the conventional melting method. . The manufacturing method provided by the present invention is applicable not only to Yb 0.15 Co 4 Sb 12 thermoelectric conversion materials but also to all n-type skutterudite-based Yb—Co—Sb thermoelectric conversion materials.
However, although the present invention has been described in detail based on the form of the invention specifically shown above, the present invention is not limited to the above contents, and all modifications and changes can be made without departing from the scope of the present invention. It can be changed.

本発明の実施の形態に係るYb0.15CoSb12熱電変換材料の組織顕微鏡写真である。It is a microphotograph of Yb 0.15 Co 4 Sb 12 thermoelectric conversion material according to the embodiment of the present invention. Yb0.15CoSb12熱電変換材料のゼーベック係数と温度との関係図である。It is a graph showing the relationship between the Seebeck coefficient and temperature of Yb 0.15 Co 4 Sb 12 thermoelectric conversion material. Yb0.15CoSb12熱電変換材料の電気抵抗率と温度との関係図である。It is a graph showing the relationship between electrical resistivity and temperature Yb 0.15 Co 4 Sb 12 thermoelectric conversion material. Yb0.15CoSb12熱電変換材料の熱伝導率と温度との関係図である。It is a graph showing the relationship between thermal conductivity and temperature of Yb 0.15 Co 4 Sb 12 thermoelectric conversion material. Yb0.15CoSb12熱電変換材料の無次元性能指数ZTと温度との関係図である。It is a graph showing the relationship between dimensionless figure of merit ZT and temperature of Yb 0.15 Co 4 Sb 12 thermoelectric conversion material. Co−Sb系状態図である。It is a Co-Sb system phase diagram.

Claims (3)

溶製法で製造されたスクッテルダイト構造を有するn−型Yb−Co−Sb系熱電変換材料において、密度が7.4g/cm以上で、かつ熱電変換性能を示す無次元性能指数ZT(Z:性能指数、T:絶対温度)が0.6以上を有することを特徴とするn−型Yb−Co−Sb系熱電変換材料。 In an n-type Yb-Co-Sb-based thermoelectric conversion material having a skutterudite structure manufactured by a melting method, the density is 7.4 g / cm 3 or more, and a dimensionless figure of merit ZT (Z N-type Yb—Co—Sb thermoelectric conversion material, characterized by having a figure of merit, T: absolute temperature) of 0.6 or more. 請求項1に記載のn−型Yb−Co−Sb系熱電変換材料におけるYbの含有量xを0<x≦1、Coの含有量yを3.5≦y≦4.5、Sbの含有量zを10≦z≦15とする溶製法で製造されたことを特徴とするYbCoSb系熱電変換材料。 In the n-type Yb-Co-Sb-based thermoelectric conversion material according to claim 1, the Yb content x is 0 <x ≦ 1, the Co content y is 3.5 ≦ y ≦ 4.5, and the Sb content is A Yb x Co y Sb z- based thermoelectric conversion material manufactured by a melting method in which the amount z is 10 ≦ z ≦ 15. 請求項1に記載のn−型Yb−Co−Sb系熱電変換材料、又は請求項2に記載のYbCoSb系熱電変換材料を製造するn−型スクッテルダイト系Yb−Co−Sb熱電変換材料の製造方法において、CoSbもしくはCoSb、Yb、Co、Sbを原料とし、この原料を、溶解温度を875℃〜1000℃の温度範囲で加熱・溶解させた後、冷却して熱電変換材料を得ることを特徴とするn−型スクッテルダイト系Yb−Co−Sb熱電変換材料の製造方法。 N- type Yb-Co-Sb based thermoelectric conversion material according to claim 1, or preparing the Yb x Co y Sb z based thermoelectric conversion material according to claim 2 n- type skutterudite Yb-Co- In the method for producing a Sb thermoelectric conversion material, CoSb or CoSb 2 , Yb, Co, Sb is used as a raw material. The raw material is heated and dissolved in a temperature range of 875 ° C. to 1000 ° C. A method for producing an n-type skutterudite-based Yb-Co-Sb thermoelectric conversion material, characterized by obtaining a conversion material.
JP2006223096A 2006-08-18 2006-08-18 Method for producing n-type skutterudite-based Yb-Co-Sb thermoelectric conversion material Expired - Fee Related JP4885648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006223096A JP4885648B2 (en) 2006-08-18 2006-08-18 Method for producing n-type skutterudite-based Yb-Co-Sb thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223096A JP4885648B2 (en) 2006-08-18 2006-08-18 Method for producing n-type skutterudite-based Yb-Co-Sb thermoelectric conversion material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011236274A Division JP5291783B2 (en) 2011-10-27 2011-10-27 Method for producing n-type skutterudite-based Yb-Co-Sb thermoelectric conversion material

Publications (2)

Publication Number Publication Date
JP2008047754A true JP2008047754A (en) 2008-02-28
JP4885648B2 JP4885648B2 (en) 2012-02-29

Family

ID=39181181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223096A Expired - Fee Related JP4885648B2 (en) 2006-08-18 2006-08-18 Method for producing n-type skutterudite-based Yb-Co-Sb thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP4885648B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156476A (en) * 2014-01-16 2015-08-27 株式会社豊田中央研究所 n-type thermoelectric material
CN111602257A (en) * 2018-01-15 2020-08-28 日立金属株式会社 Thermoelectric conversion material, thermoelectric conversion module, and method for producing thermoelectric conversion material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135865A (en) * 1999-11-04 2001-05-18 Yamaguchi Industrial Promotion Foundation Thermoelectric conversion material and manufacturing method for it
JP2002026400A (en) * 2000-06-30 2002-01-25 Toshiba Corp Thermoelectric conversion material and element
WO2005104255A2 (en) * 2004-04-14 2005-11-03 E.I. Dupont De Nemours And Company High performance thermoelectric materials and their method of preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135865A (en) * 1999-11-04 2001-05-18 Yamaguchi Industrial Promotion Foundation Thermoelectric conversion material and manufacturing method for it
JP2002026400A (en) * 2000-06-30 2002-01-25 Toshiba Corp Thermoelectric conversion material and element
WO2005104255A2 (en) * 2004-04-14 2005-11-03 E.I. Dupont De Nemours And Company High performance thermoelectric materials and their method of preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156476A (en) * 2014-01-16 2015-08-27 株式会社豊田中央研究所 n-type thermoelectric material
CN111602257A (en) * 2018-01-15 2020-08-28 日立金属株式会社 Thermoelectric conversion material, thermoelectric conversion module, and method for producing thermoelectric conversion material
EP3742504A4 (en) * 2018-01-15 2021-10-20 Hitachi Metals, Ltd. Thermoelectric conversion material, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
CN111602257B (en) * 2018-01-15 2023-04-28 株式会社博迈立铖 Thermoelectric conversion material, thermoelectric conversion module, and method for producing thermoelectric conversion material

Also Published As

Publication number Publication date
JP4885648B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
US10913117B2 (en) Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof
JP2009529799A (en) Doped lead telluride for thermoelectric applications
JP4976566B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
JP2012521648A (en) Self-organized thermoelectric material
JP2013008747A (en) Mg2Si1-xSnx-BASED POLYCRYSTALLINE MATERIAL AND PRODUCING METHOD THEREOF
JP5291783B2 (en) Method for producing n-type skutterudite-based Yb-Co-Sb thermoelectric conversion material
JP4865531B2 (en) Yb-AE-Fe-Co-Sb (AE: Ca, Sr, Ba, Ag) based thermoelectric conversion material
KR102157782B1 (en) Preparing method of composite thermoelectric material and the composite thermoelectric material obtained thereby
JP5352860B2 (en) Thermoelectric material and manufacturing method thereof
JP4885648B2 (en) Method for producing n-type skutterudite-based Yb-Co-Sb thermoelectric conversion material
JP2006086512A (en) Thermoelectric conversion system using filled skutterudite alloy
JP2008016610A (en) Zinc-antimony system thermoelectric conversion material and method for manufacturing the same
JP2008007825A (en) Yb-Fe-Co-Sb THERMOELECTRIC CONVERSION MATERIAL
JP2008124404A (en) Thermoelectric material and manufacturing method of thermoelectric material
JP4123388B2 (en) Zinc antimony compound sintered compact
JP6588194B2 (en) Thermoelectric materials and thermoelectric modules
JP5448942B2 (en) Thermoelectric conversion material
JP5931413B2 (en) P-type thermoelectric conversion material, method for producing the same, thermoelectric conversion element, and thermoelectric conversion module
JP2009111357A (en) Thermoelectric material and its manufacturing method
JP2009176967A (en) Thermoelectric transduction material
JP6747828B2 (en) Thermoelectric conversion material and manufacturing method thereof
JP2008288267A (en) Method of manufacturing type-i clathrate compound, thermoelectric conversion material and thermoelectric conversion element
JP6799341B2 (en) Thermoelectric materials, their manufacturing methods and thermoelectric power generation modules using them
JP5653654B2 (en) Method for manufacturing thermoelectric material
JP2006057125A (en) Clathrate compound, production method of clathrate compound, and thermoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4885648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees