JPH0548101A - Manufactur eof thin transistor - Google Patents

Manufactur eof thin transistor

Info

Publication number
JPH0548101A
JPH0548101A JP23111091A JP23111091A JPH0548101A JP H0548101 A JPH0548101 A JP H0548101A JP 23111091 A JP23111091 A JP 23111091A JP 23111091 A JP23111091 A JP 23111091A JP H0548101 A JPH0548101 A JP H0548101A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
film
gate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23111091A
Other languages
Japanese (ja)
Inventor
Hideo Naito
英雄 内藤
Hideki Kamata
英樹 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP23111091A priority Critical patent/JPH0548101A/en
Publication of JPH0548101A publication Critical patent/JPH0548101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To surely prevent the occurrence of short circuits between a gate electrode and source and drain electrodes by depositing a gate insulating film to a uniform thickness and securing the dielectric strength of the gate insulating film at a sufficiently high level near the side edges of the gate electrode. CONSTITUTION:After a base insulating film 2 is formed on a substrate 1 except a gate electrode forming area A, a metallic film 3 is formed on the substrate 1 and a gate electrode 3a is formed in the area A by etching the film 3. Then oxidized insulating layers 3b1 and 3b2 are formed by successively anodizing the side faces and upper surface of the electrode 3a. Thereafter, a gate insulating film 4 is formed on the surface of the electrode 3a after filling up the gaps between the side faces of the electrode 3a and base insulating film 2 and leveling the surface of the electrode 3a (surface of the layer 3b2) with that of the film 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜トランジスタの製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor.

【0002】[0002]

【従来の技術】薄膜トランジスタは、例えばアクティブ
マトリックス液晶表示素子の能動素子等に用いられてい
る。
2. Description of the Related Art Thin film transistors are used, for example, as active elements of active matrix liquid crystal display elements.

【0003】この薄膜トランジスタは、ガラス等からな
る絶縁性基板の上にゲート電極を形成し、その上にゲー
ト絶縁膜を形成するとともに、このゲート絶縁膜の上に
半導体層およびソース,ドレイン電極を形成する方法で
製造されている。
In this thin film transistor, a gate electrode is formed on an insulating substrate made of glass or the like, a gate insulating film is formed thereon, and a semiconductor layer and source / drain electrodes are formed on this gate insulating film. Is manufactured by the method.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記薄膜ト
ランジスタのゲート絶縁膜は、一般にプラズマCVD法
によって成膜されているが、この場合、基板上にはゲー
ト電極が形成されているため、基板上へのゲート絶縁膜
の成膜に際して、その堆積厚さが基板とゲート電極との
間の段差部において極端に薄くなり、そのため、ゲート
電極の側縁付近におけるゲート絶縁膜の絶縁耐圧が悪く
なって、ゲート電極とソース,ドレイン電極との間に短
絡を発生するおそれがある。
By the way, the gate insulating film of the above-mentioned thin film transistor is generally formed by the plasma CVD method. In this case, however, since the gate electrode is formed on the substrate, the gate insulating film is formed on the substrate. When the gate insulating film is formed, the deposited thickness becomes extremely thin in the step portion between the substrate and the gate electrode, so that the withstand voltage of the gate insulating film near the side edge of the gate electrode deteriorates, A short circuit may occur between the gate electrode and the source / drain electrodes.

【0005】本発明の目的は、基板上にゲート電極を形
成した後のゲート絶縁膜の成膜に際してこのゲート絶縁
膜を均一な厚さに堆積させ、ゲート電極の側縁付近にお
けるゲート絶縁膜の絶縁耐圧も十分に確保して、ゲート
電極とソース,ドレイン電極との間の短絡発生を確実に
防ぐことができる薄膜トランジスタの製造方法を提供す
ることにある。
An object of the present invention is to deposit the gate insulating film to a uniform thickness when forming the gate insulating film after forming the gate electrode on the substrate, and to form the gate insulating film near the side edges of the gate electrode. It is an object of the present invention to provide a method for manufacturing a thin film transistor, which can sufficiently secure the dielectric strength and can surely prevent a short circuit from occurring between the gate electrode and the source / drain electrodes.

【0006】[0006]

【課題を解決するための手段】本発明の薄膜トランジス
タの製造方法は、絶縁性基板上にゲート電極形成領域を
除いて下地絶縁膜を形成する工程と、この下地絶縁膜お
よび前記基板のゲート電極形成領域の上に前記下地絶縁
膜の膜厚より薄い厚さに金属膜を成膜する工程と、前記
金属膜の上にレジストマスクを形成してこの金属膜をエ
ッチングし、前記ゲート電極形成領域内に前記金属膜か
らなるゲート電極を形成する工程と、前記レジストマス
クを残したまま前記ゲート電極の側面を陽極酸化し、こ
のゲート電極の側面に、前記下地絶縁膜の側面に接する
厚さに酸化絶縁層を生成させる工程と、前記レジストマ
スクを除去し、この後、前記ゲート電極の上面を陽極酸
化して、このゲート電極の上に、表面が前記下地絶縁膜
の表面と面一になる厚さに酸化絶縁層を生成させる工程
と、前記ゲート電極の上の酸化絶縁層および前記下地絶
縁膜の上にゲート絶縁膜を成膜し、その上に半導体層お
よびソース,ドレイン電極を形成する工程とからなるこ
とを特徴とするものである。
A method of manufacturing a thin film transistor according to the present invention comprises a step of forming a base insulating film on an insulating substrate except for a gate electrode forming region, and a step of forming the base insulating film and the gate electrode of the substrate. In the gate electrode formation region, a step of forming a metal film having a thickness smaller than that of the base insulating film on the region, and forming a resist mask on the metal film and etching the metal film. A step of forming a gate electrode made of the metal film, and a side surface of the gate electrode is anodized while leaving the resist mask, and the side surface of the gate electrode is oxidized to a thickness in contact with the side surface of the base insulating film. The step of forming an insulating layer, the resist mask is removed, and then the upper surface of the gate electrode is anodized so that the surface of the gate electrode is flush with the surface of the base insulating film. Forming an oxide insulating layer to a thickness, forming a gate insulating film on the oxide insulating layer on the gate electrode and the underlying insulating film, and forming a semiconductor layer and source / drain electrodes thereon It is characterized by comprising steps.

【0007】[0007]

【作用】すなわち、本発明は、基板上にゲート電極形成
領域を除いて下地絶縁膜を形成しておき、金属膜の成膜
およびそのエッチングにより前記ゲート電極形成領域内
にゲート電極を形成した後、このゲート電極の側面およ
び上面を順次陽極酸化して酸化絶縁層を生成させること
により、ゲート電極の側面と下地絶縁膜の側面との間の
隙間をなくすとともに、ゲート電極の表面(酸化絶縁層
の表面)を前記下地絶縁膜の表面と面一にして、ゲート
絶縁膜の成膜面を段差のない平坦面とし、その上にゲー
ト絶縁膜を成膜するものである。
That is, according to the present invention, the base insulating film is formed on the substrate except the gate electrode formation region, and the gate electrode is formed in the gate electrode formation region by forming a metal film and etching the metal film. By sequentially anodizing the side surface and the upper surface of the gate electrode to generate an oxide insulating layer, the gap between the side surface of the gate electrode and the side surface of the base insulating film is eliminated, and the surface of the gate electrode (oxide insulating layer Surface of the base insulating film is flush with the surface of the base insulating film, the film forming surface of the gate insulating film is a flat surface without steps, and the gate insulating film is formed thereon.

【0008】このようにゲート絶縁膜の成膜面を段差の
ない平坦面にできるのは、金属を酸化させるとその体積
が増大するためであり、前記ゲート電極の側面を陽極酸
化すると、この電極側面に生成した酸化絶縁層を含むゲ
ート電極幅が広がり、ゲート電極の側面と下地絶縁膜の
側面との間の隙間がなくなる。また、前記ゲート電極の
上面を酸化させると、このゲート電極の上に生成した酸
化絶縁層を含むゲート電極の膜厚が厚くなるため、下地
絶縁膜の膜厚より薄い厚さにゲート電極を形成しておい
てその上面を、生成する酸化絶縁層の表面が下地絶縁膜
の表面と面一になるまで陽極酸化してやれば、この後に
成膜するゲート絶縁膜の成膜面が段差のない平坦面にな
る。
The reason why the surface on which the gate insulating film is formed can be made flat without any step is that the volume of the metal increases when it is oxidized, and when the side surface of the gate electrode is anodized, this electrode is formed. The width of the gate electrode including the oxide insulating layer formed on the side surface is widened, so that there is no gap between the side surface of the gate electrode and the side surface of the base insulating film. Further, when the upper surface of the gate electrode is oxidized, the film thickness of the gate electrode including the oxide insulating layer formed on the gate electrode becomes thicker, so the gate electrode is formed to a thickness smaller than that of the base insulating film. If the upper surface of the gate insulating film is anodized until the surface of the oxide insulating layer to be formed is flush with the surface of the base insulating film, the film surface of the gate insulating film to be formed thereafter is a flat surface without steps. become.

【0009】そして、このようにゲート絶縁膜の成膜面
が段差のない平坦面であれば、ゲート絶縁膜の成膜に際
して、このゲート絶縁膜が均一な厚さに堆積するため、
ゲート電極の側縁付近におけるゲート絶縁膜の絶縁耐圧
も十分である。
If the gate insulating film deposition surface is a flat surface without steps, the gate insulating film is deposited to a uniform thickness when the gate insulating film is deposited.
The withstand voltage of the gate insulating film near the side edge of the gate electrode is also sufficient.

【0010】しかも、本発明によれば、ゲート電極の上
の絶縁層が、ゲート電極の上に生成させた酸化絶縁層
と、その上に成膜したゲート絶縁膜との二層膜になるた
め、ゲート電極とソース,ドレイン電極との間の絶縁耐
圧はさらに高くなる。
Further, according to the present invention, the insulating layer on the gate electrode is a two-layer film including the oxide insulating layer formed on the gate electrode and the gate insulating film formed on the oxide insulating layer. The withstand voltage between the gate electrode and the source / drain electrodes is further increased.

【0011】[0011]

【実施例】以下、本発明の一実施例を、アクティブマト
リックス液晶表示素子の能動素子である薄膜トランジス
タの製造を例にとって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below by taking as an example the manufacture of a thin film transistor which is an active element of an active matrix liquid crystal display element.

【0012】図1は薄膜トランジスタの製造工程図であ
り、ここでは逆スタガー型と呼ばれる薄膜トランジスタ
の製造工程を示している。この薄膜トランジスタは次の
ようにして製造する。
FIG. 1 is a manufacturing process diagram of a thin film transistor, showing a manufacturing process of an inverse stagger type thin film transistor here. This thin film transistor is manufactured as follows.

【0013】[工程1]まず、図1(a)に示すよう
に、ガラス等からなる透明な絶縁性基板1の上に、ゲー
ト電極形成領域(ゲート電極およびその配線部の形成領
域)Aを除いて下地絶縁膜2を形成する。
[Step 1] First, as shown in FIG. 1A, a gate electrode formation region (a formation region of a gate electrode and its wiring portion) A is formed on a transparent insulating substrate 1 made of glass or the like. Except for this, the base insulating film 2 is formed.

【0014】この下地絶縁膜2は、プラズマCVD法に
よって基板1上のほぼ全面にSi N(窒化シリコン)膜
を成膜し、このSi N膜のゲート電極形成領域Aに対応
する部分をエッチング除去して形成する。この下地絶縁
膜2は、基板1上に形成するゲート電極の厚さより十分
厚い膜厚(例えば約500nm)に形成する。
As the base insulating film 2, a Si N (silicon nitride) film is formed on almost the entire surface of the substrate 1 by the plasma CVD method, and a portion of the Si N film corresponding to the gate electrode forming region A is removed by etching. To form. The base insulating film 2 is formed to have a film thickness (for example, about 500 nm) that is sufficiently thicker than the thickness of the gate electrode formed on the substrate 1.

【0015】[工程2]次に、図1(b)に示すよう
に、上記下地絶縁膜2および基板1のゲート電極形成領
域Aの上に、スパッタリング法によって、下地絶縁膜2
の膜厚(約500nm)より若干薄い厚さ(約400n
m)に金属膜3を成膜する。なお、この金属膜3には、
Cr ,Ta ,Ta −Mo 合金,Al またはAl に微量の
Ti を含有させたTi 含有Al 等の金属を用いる。
[Step 2] Next, as shown in FIG. 1B, the base insulating film 2 is formed on the base insulating film 2 and the gate electrode forming region A of the substrate 1 by a sputtering method.
Thickness (about 400n)
The metal film 3 is formed in m). In addition, the metal film 3 has
A metal such as Cr, Ta, Ta-Mo alloy, Al or Ti-containing Al in which a trace amount of Ti is contained in Al is used.

【0016】[工程3]次に、図1(b)に示したよう
に、上記金属膜3の上に、基板1のゲート電極形成領域
Aの上に形成するゲート電極およびその配線部の形状に
応じたパターンのレジストマスクMを形成してこの金属
膜3をエッチングし、図1(c)に示すように、基板1
上のゲート電極形成領域A内に前記金属膜3からなるゲ
ート電極3aおよびその配線部(図示せず)を形成す
る。
[Step 3] Next, as shown in FIG. 1B, the shape of the gate electrode formed on the gate electrode formation region A of the substrate 1 on the metal film 3 and the wiring portion thereof. A resist mask M having a pattern corresponding to the pattern is formed, and the metal film 3 is etched, and as shown in FIG.
In the upper gate electrode formation region A, the gate electrode 3a made of the metal film 3 and its wiring portion (not shown) are formed.

【0017】この場合、上記レジストマスクMは、その
形成誤差を見込んで、ゲート電極形成領域Aの幅より若
干小さい幅に形成する。このような幅にレジストマスク
Mを形成すれば、レジストマスクMの形成位置がずれた
場合でも、ゲート電極3aおよびその配線部(以下、配
線部を含んでゲート電極という)をゲート電極形成領域
A内のみに形成できるから、このゲート電極3aの側縁
部が下地絶縁膜2の上に重なって、下地絶縁膜2上に突
出してしまうことはない。
In this case, the resist mask M is formed to have a width slightly smaller than the width of the gate electrode formation region A in consideration of the formation error. If the resist mask M is formed to have such a width, the gate electrode 3a and its wiring portion (hereinafter, including the wiring portion will be referred to as a gate electrode) are formed in the gate electrode formation region A even when the formation position of the resist mask M is deviated. Since the gate electrode 3a can be formed only inside, the side edge portion of the gate electrode 3a does not overlap with the underlying insulating film 2 and does not project onto the underlying insulating film 2.

【0018】[工程4]図1(d)に示すように、ゲー
ト電極3aの上のレジストマスクMを残したままゲート
電極3aの側面を陽極酸化し、このゲート電極3aの側
面に、下地絶縁膜2の側面に接する厚さに酸化絶縁層3
b1を生成させる。
[Step 4] As shown in FIG. 1D, the side surface of the gate electrode 3a is anodized while leaving the resist mask M on the gate electrode 3a. Oxide insulating layer 3 having a thickness in contact with the side surface of film 2
Generate b1.

【0019】このゲート電極3aの陽極酸化は、その配
線部の端部の上のレジストマスクMだけを部分的に除去
して、この配線部の端部をクリップ型コネクタ等により
直流電源の陽極に接続し、基板1を電解液(例えばゲー
ト電極3aがAl 膜またはTi 含有Al 膜である場合は
ホウ酸アンモニウム溶液)中に浸漬してゲート電極3a
を電解液中に配置した対向電極(陰極)と対向させ、ゲ
ート電極3aと対向電極との間に電圧を印加して行な
う。
In this anodic oxidation of the gate electrode 3a, only the resist mask M on the end of the wiring portion is partially removed, and the end of the wiring portion is made into an anode of the DC power source by a clip type connector or the like. After connecting, the substrate 1 is immersed in an electrolytic solution (for example, an ammonium borate solution when the gate electrode 3a is an Al film or a Ti-containing Al film) and the gate electrode 3a
Is opposed to the counter electrode (cathode) arranged in the electrolytic solution, and a voltage is applied between the gate electrode 3a and the counter electrode.

【0020】このように電解液中においてゲート電極3
aと対向電極との間に電圧を印加すると、陽極であるゲ
ート電極3aの電解液に接している側面が化成反応を起
して陽極酸化されて行く。そして、金属を酸化させる
と、その体積が増大するため、上記のようにゲート電極
3aの側面を陽極酸化すると、この電極側面に生成した
酸化絶縁層3b1を含むゲート電極幅が広がり、ゲート電
極3aの側面と下地絶縁膜2の側面との間の隙間がなく
なる。
In this way, in the electrolytic solution, the gate electrode 3
When a voltage is applied between a and the counter electrode, the side surface of the gate electrode 3a, which is the anode, in contact with the electrolytic solution undergoes a chemical conversion reaction and is anodized. Then, when the metal is oxidized, the volume thereof is increased. Therefore, when the side surface of the gate electrode 3a is anodized as described above, the width of the gate electrode including the oxide insulating layer 3b1 generated on the side surface of the electrode is widened and the gate electrode 3a is expanded. There is no gap between the side surface of the underside and the side surface of the base insulating film 2.

【0021】なお、酸化絶縁層3b1の生成厚さは基本的
には印加電圧によって決まるが、酸化絶縁層3b1が成長
して下地絶縁膜2の側面との間の隙間がなくなると、ゲ
ート電極3aの非酸化面が電解液に触れなくなるため、
この時点で印加電圧に関係なく酸化の進行が停止する。
The generated thickness of the oxide insulating layer 3b1 is basically determined by the applied voltage. However, when the oxide insulating layer 3b1 grows and there is no gap between the oxide insulating layer 3b1 and the side surface of the base insulating film 2, the gate electrode 3a is formed. Since the non-oxidized surface of will not touch the electrolyte,
At this point, the progress of oxidation stops regardless of the applied voltage.

【0022】また、上記ゲート電極3aの側面と下地絶
縁膜2の側面との間の隙間は、上記レジストマスクMの
形成誤差によるゲート電極3aの位置ずれや、ゲート電
極3aの側面のエッチング状態等によって異なるため、
ゲート電極3aの各側面に生成する酸化絶縁層3b1が同
時に下地絶縁膜2の側面に接するとは限らないが、酸化
絶縁層3aが下地絶縁膜2の側面に接するまで成長して
いない部分には電解液が接しているため、ある程度の時
間電圧を印加し続ければ、この部分の酸化絶縁層3b1も
下地絶縁膜2の側面に接するまで成長するから、最終的
には、ゲート電極3aの各側面の全ての箇所と下地絶縁
膜2の側面との間の隙間が完全になくなる。
The gap between the side surface of the gate electrode 3a and the side surface of the underlying insulating film 2 is such that the gate electrode 3a is misaligned due to the formation error of the resist mask M and the side surface of the gate electrode 3a is etched. Because it depends on
The oxide insulating layer 3b1 generated on each side surface of the gate electrode 3a does not always contact the side surface of the base insulating film 2 at the same time, but the oxide insulating layer 3a does not grow on the side surface of the base insulating film 2 where it does not grow. Since the electrolytic solution is in contact, if the voltage is continuously applied for a certain period of time, the oxide insulating layer 3b1 in this portion also grows until it comes into contact with the side surface of the base insulating film 2, so that finally each side surface of the gate electrode 3a is formed. The gaps between all the points and the side surface of the base insulating film 2 are completely eliminated.

【0023】[工程5]次に、図1(e)に示すよう
に、ゲート電極3aの上のレジストマスクMを全て除去
し、この後、上記電極側面の陽極酸化と同様にしてゲー
ト電極3aの上面を陽極酸化し、このゲート電極3aの
上にも、酸化絶縁層3b2を生成させる。
[Step 5] Next, as shown in FIG. 1E, the resist mask M on the gate electrode 3a is completely removed, and thereafter, the gate electrode 3a is processed in the same manner as the anodic oxidation of the side surface of the electrode. The upper surface of the gate electrode 3 is anodized to form an oxide insulating layer 3b2 on the gate electrode 3a.

【0024】このようにゲート電極3aの上面を陽極酸
化すると、ゲート電極3aの上面の酸化領域の堆積が増
大して、酸化絶縁層3b2を含むゲート電極3aの膜厚が
厚くなって行く。
When the upper surface of the gate electrode 3a is anodized in this manner, the deposition of an oxidized region on the upper surface of the gate electrode 3a increases, and the film thickness of the gate electrode 3a including the oxide insulating layer 3b2 increases.

【0025】このゲート電極3aの上面の陽極酸化は、
電極上に生成する酸化絶縁層3b2の表面が下地絶縁膜2
の表面と面一になるまで行なう。なお、この酸化絶縁層
3b2の生成厚さは前述したように印加電圧によって決ま
るため、あらかじめ酸化試験を行なって適正な印加電圧
値を求めておき、この値に印加電圧を制御すれば、ゲー
ト電極3a上に、表面が下地絶縁膜2の表面と面一にな
る厚さに酸化絶縁層3b2を生成させることができる。
The anodic oxidation of the upper surface of the gate electrode 3a is
The surface of the oxide insulating layer 3b2 formed on the electrode is the base insulating film 2.
Repeat until the surface is flush with. Since the thickness of the oxide insulating layer 3b2 generated depends on the applied voltage as described above, an oxidation test is performed in advance to find an appropriate applied voltage value, and if the applied voltage is controlled to this value, the gate electrode The oxide insulating layer 3b2 can be formed on the surface 3a to a thickness such that the surface thereof is flush with the surface of the base insulating film 2.

【0026】このように上記ゲート電極3aの上面を陽
極酸化してやれば、このゲート電極3aの上の酸化絶縁
層3b2の表面と下地絶縁膜2の表面とが段差のない平坦
面になる。
When the upper surface of the gate electrode 3a is anodized in this manner, the surface of the oxide insulating layer 3b2 on the gate electrode 3a and the surface of the base insulating film 2 become a flat surface having no step.

【0027】[工程6]次に、図1(f)に示すよう
に、上記ゲート電極3aの上に生成させた酸化絶縁層3
b2および下地絶縁膜2の上に、Si Nからなるゲート絶
縁膜4を成膜し、その上にa−Si (アモルファスシリ
コン)からなるi型半導体層5を形成するとともに、こ
のi型半導体層5のチャンネル領域の上にSi Nからな
るブロッキング絶縁膜6を形成し、さらに前記i型半導
体層5の両側部の上に、不純物をドープしたa−Si か
らなるn型半導体層7を介してソース電極8とドレイン
電極9およびその配線部を形成して、薄膜トランジスタ
を完成する。
[Step 6] Next, as shown in FIG. 1F, the oxide insulating layer 3 formed on the gate electrode 3a.
A gate insulating film 4 made of SiN is formed on b2 and the base insulating film 2, and an i-type semiconductor layer 5 made of a-Si (amorphous silicon) is formed on the gate insulating film 4, and the i-type semiconductor layer is formed. 5, a blocking insulating film 6 made of SiN is formed on the channel region 5, and an n-type semiconductor layer 7 made of a-Si doped with an impurity is formed on both sides of the i-type semiconductor layer 5. The source electrode 8, the drain electrode 9 and the wiring portion thereof are formed to complete the thin film transistor.

【0028】なお、これらは、ゲート絶縁膜4とi型半
導体層5とブロッキング絶縁膜6とをプラズマCVD法
により連続して成膜し、ブロッキング絶縁膜6とi型半
導体層5とを順次パターニングした後、n型半導体層7
をプラズマCVD法により成膜するとともに、その上に
金属膜(例えばCr 膜等)をスパッタリング法により成
膜し、この金属膜とその下のn型半導体層7とをソー
ス,ドレイン電極8,9の形状にパターニングする方法
で形成する。
Incidentally, in these, the gate insulating film 4, the i-type semiconductor layer 5, and the blocking insulating film 6 are continuously formed by the plasma CVD method, and the blocking insulating film 6 and the i-type semiconductor layer 5 are sequentially patterned. After that, the n-type semiconductor layer 7
Is formed by a plasma CVD method, and a metal film (for example, a Cr film) is formed thereon by a sputtering method. The metal film and the n-type semiconductor layer 7 thereunder are formed as source and drain electrodes 8 and 9. It is formed by a method of patterning in the shape of.

【0029】また、図1(f)において、10は上記ゲ
ート絶縁膜4の上に形成した画素電極であり、この画素
電極10は上記薄膜トランジスタのソース電極8に接続
されている。なお、この画素電極10は、ITO等の透
明導電膜を成膜し、この透明導電膜をパターニングして
形成する。
Further, in FIG. 1F, 10 is a pixel electrode formed on the gate insulating film 4, and the pixel electrode 10 is connected to the source electrode 8 of the thin film transistor. The pixel electrode 10 is formed by forming a transparent conductive film such as ITO and patterning the transparent conductive film.

【0030】上記薄膜トランジスタの製造方法によれ
ば、基板1上にゲート電極3を形成した後のゲート絶縁
膜4の成膜に際して、このゲート絶縁膜4を均一な厚さ
に堆積させることができる。
According to the method of manufacturing a thin film transistor, when the gate insulating film 4 is formed on the substrate 1 after the gate electrode 3 is formed, the gate insulating film 4 can be deposited to a uniform thickness.

【0031】すなわち、上記製造方法は、基板1上にゲ
ート電極形成領域Aを除いて下地絶縁膜2を形成してお
き、金属膜3の成膜およびそのエッチングにより前記ゲ
ート電極形成領域A内にゲート電極3aを形成した後、
このゲート電極3aの側面および上面を順次陽極酸化し
て酸化絶縁層3b1,3b2を生成させることにより、ゲー
ト電極3aの側面と下地絶縁膜2の側面との間の隙間を
なくすとともに、ゲート電極3aの表面(酸化絶縁層3
b2の表面)を下地絶縁膜2の表面と面一にして、ゲート
絶縁膜4の成膜面を段差のない平坦面とするものであ
る。
That is, in the above manufacturing method, the base insulating film 2 is formed on the substrate 1 except the gate electrode forming region A, and the metal film 3 is formed and etched to form the gate electrode forming region A in the gate electrode forming region A. After forming the gate electrode 3a,
The side surface and the upper surface of the gate electrode 3a are sequentially anodized to generate the oxide insulating layers 3b1 and 3b2, so that the gap between the side surface of the gate electrode 3a and the side surface of the base insulating film 2 is eliminated and the gate electrode 3a is formed. Surface (oxidation insulation layer 3
The surface b2) is flush with the surface of the base insulating film 2, and the film forming surface of the gate insulating film 4 is a flat surface without steps.

【0032】そして、このようにゲート絶縁膜4の成膜
面が段差のない平坦面であれば、ゲート絶縁膜4の成膜
に際して、このゲート絶縁膜4が均一な厚さに堆積する
ため、ゲート電極3aの側縁付近におけるゲート絶縁膜
4の絶縁耐圧も十分になる。
If the gate insulating film 4 has a flat surface without steps, the gate insulating film 4 is deposited to a uniform thickness when the gate insulating film 4 is formed. The withstand voltage of the gate insulating film 4 near the side edge of the gate electrode 3a is also sufficient.

【0033】しかも、上記製造方法で薄膜トランジスタ
を製造すると、ゲート電極3aの上の絶縁層が、ゲート
電極3aの上に生成させた酸化絶縁層3b2と、その上に
成膜したゲート絶縁膜4との二層膜になるため、ゲート
電極3aとソース,ドレイン電極8,9との間の絶縁耐
圧はさらに高くなる。
In addition, when a thin film transistor is manufactured by the above manufacturing method, the insulating layer on the gate electrode 3a includes the oxide insulating layer 3b2 formed on the gate electrode 3a and the gate insulating film 4 formed on the oxide insulating layer 3b2. Since it is a two-layer film, the withstand voltage between the gate electrode 3a and the source / drain electrodes 8 and 9 is further increased.

【0034】したがって、上記製造方法によれば、ゲー
ト電極3aの側縁付近におけるゲート絶縁膜4の絶縁耐
圧も十分に確保して、ゲート電極3aとソース,ドレイ
ン電極8,9との間の短絡発生を確実に防ぎ、信頼性の
高い薄膜トランジスタを製造することができる。
Therefore, according to the above-mentioned manufacturing method, the dielectric strength of the gate insulating film 4 near the side edge of the gate electrode 3a is sufficiently ensured, and the gate electrode 3a and the source / drain electrodes 8 and 9 are short-circuited. It is possible to reliably prevent the generation of the thin film transistor and to manufacture a highly reliable thin film transistor.

【0035】なお、上記実施例では、逆スタガー型薄膜
トランジスタの製造について説明したが、本発明は、ソ
ース,ドレイン電極をゲート絶縁膜とi型半導体層との
間に形成した逆コプラナー型薄膜トランジスタの製造に
も適用することができる。
Although the manufacturing of the inverted stagger type thin film transistor has been described in the above embodiment, the present invention manufactures the inverted coplanar type thin film transistor in which the source and drain electrodes are formed between the gate insulating film and the i type semiconductor layer. Can also be applied to.

【0036】[0036]

【発明の効果】本発明によれば、基板上にゲート電極を
形成した後のゲート絶縁膜の成膜に際してこのゲート絶
縁膜を均一な厚さに堆積させ、ゲート電極の側縁付近に
おけるゲート絶縁膜の絶縁耐圧も十分に確保して、ゲー
ト電極とソース,ドレイン電極との間の短絡発生を確実
に防ぐことができる。
According to the present invention, when the gate insulating film is formed after the gate electrode is formed on the substrate, the gate insulating film is deposited to a uniform thickness so that the gate insulating film near the side edge of the gate electrode is formed. The dielectric strength of the film can be sufficiently ensured, and the occurrence of a short circuit between the gate electrode and the source / drain electrodes can be reliably prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す薄膜トランジスタの製
造工程図。
FIG. 1 is a manufacturing process diagram of a thin film transistor showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…基板、A…ゲート電極形成領域、2…下地絶縁膜、
3…金属膜、3a…ゲート電極、3b1,3b2…酸化絶縁
層、4…ゲート絶縁膜、5…i型半導体層、6…ブロッ
キング絶縁膜、7…n型半導体層、8…ソース電極、9
…ドレイン電極、10…画素電極、M…レジストマス
ク。
1 ... Substrate, A ... Gate electrode forming region, 2 ... Base insulating film,
3 ... Metal film, 3a ... Gate electrode, 3b1, 3b2 ... Oxidation insulating layer, 4 ... Gate insulating film, 5 ... i-type semiconductor layer, 6 ... Blocking insulating film, 7 ... N-type semiconductor layer, 8 ... Source electrode, 9
... Drain electrode, 10 ... Pixel electrode, M ... Resist mask.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板上にゲート電極形成領域を除い
て下地絶縁膜を形成する工程と、 この下地絶縁膜および前記基板のゲート電極形成領域の
上に前記下地絶縁膜の膜厚より薄い厚さに金属膜を成膜
する工程と、 前記金属膜の上にレジストマスクを形成してこの金属膜
をエッチングし、前記ゲート電極形成領域内に前記金属
膜からなるゲート電極を形成する工程と、 前記レジストマスクを残したまま前記ゲート電極の側面
を陽極酸化し、このゲート電極の側面に、前記下地絶縁
膜の側面に接する厚さに酸化絶縁層を生成させる工程
と、 前記レジストマスクを除去し、この後、前記ゲート電極
の上面を陽極酸化して、このゲート電極の上に、表面が
前記下地絶縁膜の表面と面一になる厚さに酸化絶縁層を
生成させる工程と、 前記ゲート電極の上の酸化絶縁層および前記下地絶縁膜
の上にゲート絶縁膜を成膜し、その上に半導体層および
ソース,ドレイン電極を形成する工程と、 からなることを特徴とする薄膜トランジスタの製造方
法。
1. A step of forming a base insulating film on an insulating substrate except a gate electrode forming region, and a film thickness of the base insulating film thinner than the base insulating film and the gate electrode forming region of the substrate. Forming a metal film to a thickness, forming a resist mask on the metal film and etching the metal film, and forming a gate electrode made of the metal film in the gate electrode formation region. A step of anodizing the side surface of the gate electrode while leaving the resist mask, and forming an oxide insulating layer on the side surface of the gate electrode to a thickness in contact with the side surface of the base insulating film, and removing the resist mask And thereafter, anodizing the upper surface of the gate electrode to form an oxide insulating layer on the gate electrode to a thickness such that the surface is flush with the surface of the base insulating film, Electric Method of manufacturing the thin film transistor gate insulating film is formed, and wherein the semiconductor layer and the source thereon, and forming a drain electrode, that consists on the oxide insulating layer and the underlying insulating film on the.
JP23111091A 1991-08-20 1991-08-20 Manufactur eof thin transistor Pending JPH0548101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23111091A JPH0548101A (en) 1991-08-20 1991-08-20 Manufactur eof thin transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23111091A JPH0548101A (en) 1991-08-20 1991-08-20 Manufactur eof thin transistor

Publications (1)

Publication Number Publication Date
JPH0548101A true JPH0548101A (en) 1993-02-26

Family

ID=16918460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23111091A Pending JPH0548101A (en) 1991-08-20 1991-08-20 Manufactur eof thin transistor

Country Status (1)

Country Link
JP (1) JPH0548101A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000015170A (en) * 1998-08-27 2000-03-15 김영환 Method of manufacturing a thin film transistor
US6503459B1 (en) 1999-06-17 2003-01-07 S.C. Johnson & Son, Inc. Heated volatile dispenser
US8054147B2 (en) 2009-04-01 2011-11-08 General Electric Company High voltage switch and method of making

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000015170A (en) * 1998-08-27 2000-03-15 김영환 Method of manufacturing a thin film transistor
US6503459B1 (en) 1999-06-17 2003-01-07 S.C. Johnson & Son, Inc. Heated volatile dispenser
US6663838B1 (en) 1999-06-17 2003-12-16 S.C. Johnson & Son, Inc. Heated volatile dispenser
US8054147B2 (en) 2009-04-01 2011-11-08 General Electric Company High voltage switch and method of making

Similar Documents

Publication Publication Date Title
US6432755B2 (en) Thin film transistor and manufacturing method therefor
JPH07202210A (en) Thin film transistor and manufacture thereof
JPS63178560A (en) Forming method of thin-film transistor
KR960006110B1 (en) Semiconductor device and the method for producing the same
JP3094610B2 (en) Method for manufacturing thin film transistor
JPH0548101A (en) Manufactur eof thin transistor
JPH0475670B2 (en)
JP3175225B2 (en) Method for manufacturing thin film transistor
JP2752983B2 (en) Method of manufacturing thin film transistor for liquid crystal display
JPH04217370A (en) Gate electrode of thin film transistor and manufacture thereof
KR100302999B1 (en) Thin film transistor using double gate
JPH0548102A (en) Manufacture of thin film transistor
JPH0815733A (en) Thin film transistor panel and its production
JP2570607B2 (en) Method for manufacturing capacitor
JP3599174B2 (en) Thin film transistor panel and method of manufacturing the same
JPH06332008A (en) Active matrix substrate and its production
JPH09232585A (en) Electronic device with anodic oxide film, and etching of anodic oxide film
JPS6184065A (en) Manufacture of thin film transistor
JP2762383B2 (en) Thin film transistor
JPH10242469A (en) Manufacture of thin-film transistor
JP3149034B2 (en) Thin film transistor
JPH06326309A (en) Manufacture of thin film transistor element
JPH06244417A (en) Thin-film transistor and its production
JPH04302474A (en) Thin-film transistor
JPH0221663A (en) Manufacture of thin film transistor