JPH0544783B2 - - Google Patents

Info

Publication number
JPH0544783B2
JPH0544783B2 JP60038103A JP3810385A JPH0544783B2 JP H0544783 B2 JPH0544783 B2 JP H0544783B2 JP 60038103 A JP60038103 A JP 60038103A JP 3810385 A JP3810385 A JP 3810385A JP H0544783 B2 JPH0544783 B2 JP H0544783B2
Authority
JP
Japan
Prior art keywords
charging
battery
voltage
prismatic
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60038103A
Other languages
Japanese (ja)
Other versions
JPS61198577A (en
Inventor
Juji Matsumaru
Kenjiro Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP60038103A priority Critical patent/JPS61198577A/en
Publication of JPS61198577A publication Critical patent/JPS61198577A/en
Publication of JPH0544783B2 publication Critical patent/JPH0544783B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は角形密閉鉛蓄電池における交互充放電
使用の回復充電方法に関するものである。 従来技術とその問題点 密閉形鉛蓄電池には、薄形電極及びセパレータ
により構成される極群をスパイラル状に巻き込
み、これを円筒状電槽に挿入した例えば米国特許
第3862861号に見られる如きもの、及び極群を従
来の箱形電槽に挿入したものがある。前者は円筒
状であり、且つ外装缶として金属製のケースを使
うことも可能であるので、耐圧性が大きく2〜3
Kg/cm2といつた高内圧にも充分に耐え得る。従つ
て、このような内圧になり得るような大きな電流
による充電が可能であり、短かい時間での回復充
電が出来る。後は箱形電槽、しかもそれは合成樹
脂製であり、耐圧性が小さいので、電池内圧を円
筒状電池程高く、維持できない。それ故にこの電
池に使用する安全弁は1Kg/cm2以下の如く低く設
定してある。一方、角形電池に使用する極板は、
円筒形のそれに比べて一般的に厚いので充電々流
密度も高くなり、従つて負極での酸素ガス吸収効
率も角形の方が小さい。角形密閉鉛蓄電池の充電
には時間がかゝり、短かいものでも5時間程度を
要しており、携帯用等の機器を使う場合、即ち交
互充放電使用においては大層使い難かつた。 これは1時間あるいは30分以内の短時間充電が
可能である密閉形Ni−Cd電池や前記円筒形密閉
鉛蓄電池と比較して、特に交互充放電で使用され
る用途においては角形密閉鉛蓄電池が有している
大きな問題点の1つである。 発明の目的 本発明の目的は、角形密閉鉛蓄電池の充電を短
時間で行なう方法を提供することにあり、特に該
電池に対する内圧上昇に伴う電槽膨れ、異常な温
度上昇、それに伴なう熱暴走等の問題を発生する
ことなく、1時間以内、条件によつては30分以内
での充電を可能とする方法を提供するものであ
る。 発明の構成 本発明は上記目的を達成すべく、角形密閉鉛蓄
電池に適用する充電方法において、定電流部分の
最大電流が電池公称容量の2倍から4倍とし、そ
れに引き続き定電圧部分の電圧を電池の単セル当
り、2.40Vから2.55Vに設定した充電方法であり、
且つ1時間以内に自動的に設定された充電時間で
充電回路を遮断するものである。 又、角形密閉鉛蓄電池の充電開始前の蓄電池温
度が40℃以下で充電回路が導通するような安全保
護回路を設けたものである。 本発明による充電方法を適用できる角形密閉鉛
蓄電池としては、電解液を例えば1ミクロン以
下のガラス繊維を主体としてシート状に形成した
セパレータ及び極板活物質内に保持させたもの、
この電解液を希ゲル化せしめたもの、及び従
来のゲル状電解液を有するものがある。しかし
は内部抵抗が小さく発熱が小さいので、が最
適である。同時にその鉛蓄電池のストラツプ、セ
ル間といつた接続部分は、大電流により溶断等の
ないように確実にしたものでなければならない。 実施例 実施例 1 セパレータとして、0.8ミクロンのガラス繊維
を90wt%と11ミクロンのガラス繊維10wt%とを
ランダムに絡み合わせて形成したシート状物を有
し、希硫酸電解液を有する20時間率における公称
容量が4AH、6Vの完全に充電された角形密閉鉛
蓄電池を用意した。この電池を0.25C(1A)で終
止電圧5.10Vまで放電した。放電持続時間は3時
間24分であり、0.25Cにおける容量は、3.40AHで
あつた。この電池を最大電流2.5C(10A)、7.50V
定電圧に設定した定電流定電圧充電を1時間した
ところ、第1図に示す結果を得た。尚、充電開始
時の電池温度は20℃であつた。次に充電後の電池
を前記と同じ条件によつて放電したところ、
0.25Cにおける放電容量は3.40AHであり、完全に
元の状態まで充電されていた。この充電における
全累積充電々気量は、3.75AHであり、充電開始
30分後には、3.5AH充電されていた。尚、電池は
充電開始後約33分で最高温度38℃になつた。この
充電前後における電池重量の変化は0.01g以下で
あり、密閉反応が円滑に行なわれていた。 実施例 2 実施例1と同じ構成の電池を用い、最大電流、
設定電圧及び充電時間を変えて、定電流定電圧充
電を行なつた。充電は30℃の空気槽中で行なつ
た。充電後の容量回復率(充電後容量÷充電前容
量)、充電による温度上昇それに伴なう電槽膨れ
を測定し、第1表に示す結果を得た。該表におい
て、〇印は容量回復率が充分で、電槽膨れの無つ
たもの、△印は電槽膨れが認められ(かつ熱暴走
を起こしかけたものを含む)たもの、×印は容量
回復率が90%以下と不充分であつたものを示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a recovery charging method using alternate charging and discharging in a prismatic sealed lead acid battery. Prior art and its problems Sealed lead-acid batteries include a type in which a pole group consisting of a thin electrode and a separator is spirally wound and inserted into a cylindrical battery case, such as the one seen in U.S. Pat. No. 3,862,861. , and one in which the electrode group is inserted into a conventional box-shaped battery case. The former has a cylindrical shape and can also use a metal case as an exterior can, so it has a high pressure resistance of 2 to 3
It can withstand high internal pressures such as Kg/ cm2 . Therefore, it is possible to charge with a large current that can cause such an internal pressure, and recovery charging can be performed in a short time. The rest is a box-shaped battery case, which is made of synthetic resin and has low pressure resistance, so it cannot maintain the internal pressure of the battery as high as a cylindrical battery. Therefore, the safety valve used in this battery is set at a low value, such as 1 kg/cm 2 or less. On the other hand, the electrode plates used in prismatic batteries are
Since the cylindrical shape is generally thicker than the cylindrical shape, the charging current density is also higher, and therefore the oxygen gas absorption efficiency at the negative electrode is also lower in the prismatic shape. It takes a long time to charge a prismatic sealed lead-acid battery, and it takes about 5 hours at the shortest time, making it very difficult to use when using a portable device, that is, when using alternating charging and discharging. Compared to sealed Ni-Cd batteries and the aforementioned cylindrical sealed lead-acid batteries, which can be charged for a short period of time within 1 hour or 30 minutes, prismatic sealed lead-acid batteries are suitable for applications that require alternate charging and discharging. This is one of the major problems that we have. Purpose of the Invention The purpose of the present invention is to provide a method for charging a prismatic sealed lead-acid battery in a short time. The present invention provides a method that enables charging within one hour, or within 30 minutes depending on the conditions, without causing problems such as runaway. Structure of the Invention In order to achieve the above object, the present invention provides a charging method applied to a prismatic sealed lead-acid battery, in which the maximum current in the constant current part is set to 2 to 4 times the nominal capacity of the battery, and then the voltage in the constant voltage part is set to 2 to 4 times the nominal capacity of the battery. This is a charging method that sets the voltage from 2.40V to 2.55V per single battery cell.
Moreover, the charging circuit is cut off at the automatically set charging time within one hour. In addition, a safety protection circuit is provided so that the charging circuit becomes conductive when the temperature of the storage battery is 40°C or less before charging of the prismatic sealed lead acid battery starts. Examples of prismatic sealed lead-acid batteries to which the charging method of the present invention can be applied include those in which the electrolyte is held within a separator formed into a sheet shape mainly made of glass fiber of 1 micron or less and an electrode plate active material;
There are two types: one in which this electrolyte is made into a dilute gel, and one in which the electrolyte is in the form of a conventional gel. However, since it has a small internal resistance and generates little heat, it is optimal. At the same time, the lead-acid battery's straps and connections between cells must be made securely so that they will not melt due to large currents. Examples Example 1 As a separator, a sheet-like material formed by randomly intertwining 90 wt% of 0.8 micron glass fibers and 10 wt% of 11 micron glass fibers was used. A fully charged prismatic sealed lead-acid battery with a nominal capacity of 4AH and 6V was prepared. This battery was discharged at 0.25C (1A) to a final voltage of 5.10V. The discharge duration was 3 hours and 24 minutes, and the capacity at 0.25C was 3.40AH. This battery has a maximum current of 2.5C (10A), 7.50V
When constant current and constant voltage charging was performed for one hour at a constant voltage, the results shown in FIG. 1 were obtained. Note that the battery temperature at the start of charging was 20°C. Next, when the charged battery was discharged under the same conditions as above,
The discharge capacity at 0.25C was 3.40AH, and it was completely charged to its original state. The total cumulative charging capacity in this charging is 3.75AH, and charging starts.
After 30 minutes, it was charged to 3.5AH. The battery reached a maximum temperature of 38°C approximately 33 minutes after charging started. The change in battery weight before and after charging was less than 0.01 g, indicating that the sealing reaction was occurring smoothly. Example 2 Using a battery with the same configuration as Example 1, the maximum current,
Constant current and constant voltage charging was performed by changing the set voltage and charging time. Charging was performed in an air bath at 30°C. The capacity recovery rate after charging (capacity after charging/capacity before charging), the temperature rise due to charging, and the resulting swelling of the battery case were measured, and the results shown in Table 1 were obtained. In the table, ○ marks indicate that the capacity recovery rate is sufficient and there is no bulging of the battery case, △ mark indicates that the battery case has bulged (and includes cases that are about to cause thermal runaway), and × mark indicates the capacity. Indicates an insufficient recovery rate of 90% or less.

【表】 上記の結果より、最大電流が1Cの時には充電
時間が30分では充電不足であり、必ず1時間は充
電する必要がある。又最大電流が5Cになると短
時間の充電が可能であるが、発熱が激しく電槽変
形し易い。短時間での充電性と充電の切り忘れ等
の場合に対する安全性を考慮した場合、最大電流
は2〜4Cに設定すべきことがわかる。又設定電
圧については、2.30V/セルでは何れの場合も充
分には充電できない。2.60V/セルでは、1時間
後には発熱とそれに伴なう熱暴走が発生しかけて
いる。充電を確保し、且つ安全性を考えると、
2.40〜2.55V/セルに設定するべきであるが、充
電器製造上の設定電圧の実際のバラツキ、及び電
池電圧の温度によるバラツキ、電池の減液による
充電末電圧の低下を考慮すると安全上、2.45〜
2.50V/セルに設定すべきである。 我々の経験によるとこの種の密閉形鉛蓄電池に
おいて、ガス吸収効率が100%近くになつた電池
では、電池温度が55℃を超え、且つ設定電圧が
2.50V/セルよりも高いと熱暴走により自己破壊
に至り、極めて危険である。従つて、充電開始時
の電池温度は約40℃以下に保つべきであり、電池
温度が高くなる用途では、特に設定電圧を低く設
定するべきである。 充電時間を1時間以下に設定し、設定時間後自
動的に充電回路が遮断されるように設定する。 又電池温度を検知することにより、電池温度が
40℃以下で充電回路が導通するような保護回路を
設けることにより、より安全な充電方法となる。 発明の効果 上述した如く、本発明の充電方法は、充電々流
2〜4Cに設定し、設定電圧を2.40〜2.55V/セル
に設定することによつて、角形密閉鉛蓄電池の電
槽の熱変形に伴う膨れ暴熱膨走の必配なしに、1
時間以内、最適条件においては30分以内で充電す
ることができる。それ故に、これまで限定されて
きたこの種の角形密閉鉛蓄電池を交互充放電用途
に使用でき、その工業的価値は極めて大である。
[Table] From the above results, when the maximum current is 1C, charging time of 30 minutes is insufficient for charging, and it is necessary to charge for 1 hour. Also, when the maximum current is 5C, short-time charging is possible, but the battery case is easily deformed due to intense heat generation. It can be seen that the maximum current should be set to 2 to 4C when considering short-time charging performance and safety against forgetting to turn off the battery. Regarding the set voltage, 2.30V/cell cannot charge the battery sufficiently in any case. At 2.60V/cell, heat generation and associated thermal runaway are about to occur after one hour. In order to secure charging and consider safety,
It should be set to 2.40 to 2.55V/cell, but for safety reasons, considering actual variations in the set voltage due to charger manufacturing, variations in battery voltage due to temperature, and a drop in the charging end voltage due to battery fluid loss. 2.45~
Should be set to 2.50V/cell. According to our experience, in this type of sealed lead-acid battery, when the gas absorption efficiency is close to 100%, the battery temperature exceeds 55℃ and the set voltage is
If the voltage is higher than 2.50V/cell, thermal runaway will lead to self-destruction, which is extremely dangerous. Therefore, the battery temperature at the start of charging should be kept at about 40° C. or lower, and in applications where the battery temperature becomes high, the set voltage should be set particularly low. Set the charging time to 1 hour or less, and set the charging circuit to automatically shut off after the set time. Also, by detecting the battery temperature, the battery temperature can be
A safer charging method is provided by providing a protection circuit that allows the charging circuit to conduct at temperatures below 40°C. Effects of the Invention As described above, the charging method of the present invention reduces the heat of the battery case of a prismatic sealed lead-acid battery by setting the charging current to 2 to 4 C and setting the set voltage to 2.40 to 2.55 V/cell. 1 without the inevitable swelling and violent thermal expansion associated with deformation.
It can be charged within 30 minutes under optimal conditions. Therefore, this type of prismatic sealed lead-acid battery, which has been limited so far, can be used for alternate charging and discharging applications, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による充電方法を示す図であ
る。
FIG. 1 is a diagram showing a charging method according to the present invention.

Claims (1)

【特許請求の範囲】 1 電池公称容量(C)の2倍(2C)から4倍(4C)
の定電流で電池電圧が単セル当り2.40V〜2.55V
になるまで充電した後、単セル当り2.40V〜
2.55Vの定電圧で充電して充電電流を垂下させ、
充電開始から1時間後に充電回路を自動的に遮断
することを特徴とする角形密閉鉛蓄電池の充電方
法。 2 電池温度が40℃を越えると充電回路を遮断さ
せる安全保護回路が付加されていることを特徴と
する特許請求の範囲第1項記載の角形密封鉛蓄電
池の充電方法。
[Claims] 1. Two times (2C) to four times (4C) the battery nominal capacity (C)
Battery voltage is 2.40V to 2.55V per single cell at a constant current of
2.40V~ per single cell after charging until
Charge with a constant voltage of 2.55V and let the charging current drop,
A method for charging a sealed prismatic lead-acid battery, characterized in that the charging circuit is automatically cut off one hour after the start of charging. 2. The method for charging a prismatic sealed lead-acid battery according to claim 1, further comprising a safety protection circuit that shuts off the charging circuit when the battery temperature exceeds 40°C.
JP60038103A 1985-02-26 1985-02-26 Charging method for square enclosed lead storage battery Granted JPS61198577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60038103A JPS61198577A (en) 1985-02-26 1985-02-26 Charging method for square enclosed lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60038103A JPS61198577A (en) 1985-02-26 1985-02-26 Charging method for square enclosed lead storage battery

Publications (2)

Publication Number Publication Date
JPS61198577A JPS61198577A (en) 1986-09-02
JPH0544783B2 true JPH0544783B2 (en) 1993-07-07

Family

ID=12516133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60038103A Granted JPS61198577A (en) 1985-02-26 1985-02-26 Charging method for square enclosed lead storage battery

Country Status (1)

Country Link
JP (1) JPS61198577A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644936A1 (en) * 1989-03-22 1990-09-28 Oldham France Sa Process for charging a sealed lead battery with gas recombination and especially with gellified electrolyte, for any application requiring cycling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863040A (en) * 1981-10-06 1983-04-14 松下電器産業株式会社 Battery charging method
JPS6219365A (en) * 1985-07-17 1987-01-28 Enshu Ltd Optical fiber polishing of convex spherical tip connector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863040A (en) * 1981-10-06 1983-04-14 松下電器産業株式会社 Battery charging method
JPS6219365A (en) * 1985-07-17 1987-01-28 Enshu Ltd Optical fiber polishing of convex spherical tip connector

Also Published As

Publication number Publication date
JPS61198577A (en) 1986-09-02

Similar Documents

Publication Publication Date Title
CN100468911C (en) Charging-discharging automatic balancing method for serial power lithium battery
US20140002942A1 (en) Secondary Lithium Ion Battery With Mixed Nickelate Cathodes
JPH05325943A (en) Cylindrical secondary battery
JP3596097B2 (en) Method for detecting micro short circuit of rechargeable lithium battery, charging method and charger
TWI353075B (en) Structure for electrochemical device to improve sa
US7407725B2 (en) Non-aqueous electrolyte secondary cell
CN218351525U (en) Lithium ion cell and lithium ion battery
JPH0544783B2 (en)
JPH09129241A (en) Nonaqueous electrolytic secondary battery
JP2002190294A (en) Nonaqueous electrolyte secondary cell
JP2004152579A (en) Lithium ion battery and lithium ion battery pack
CN109103353A (en) It is a kind of to use safe lithium ion battery
JP4439870B2 (en) Nonaqueous electrolyte secondary battery
WO2021114683A1 (en) Charger and charging method therefor
JPH05266878A (en) Cylindrical secondary battery
CN203553296U (en) Improved lithium battery structure
CN111029582A (en) Lithium ion battery positive electrode material, lithium ion battery positive electrode, lithium ion battery and preparation method thereof
JP3456710B2 (en) Power system
JPH05234614A (en) Cylindrical battery
JP3409861B2 (en) Non-aqueous electrolyte secondary battery
JPH1064497A (en) Battery
JP3573825B2 (en) Battery with current interruption function
JP3163197B2 (en) Collective battery
RU205771U1 (en) PRISMATIC LITHIUM-ION BATTERY
CN208478386U (en) It is a kind of to use safe lithium ion battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees