JPS5863040A - Battery charging method - Google Patents

Battery charging method

Info

Publication number
JPS5863040A
JPS5863040A JP56159996A JP15999681A JPS5863040A JP S5863040 A JPS5863040 A JP S5863040A JP 56159996 A JP56159996 A JP 56159996A JP 15999681 A JP15999681 A JP 15999681A JP S5863040 A JPS5863040 A JP S5863040A
Authority
JP
Japan
Prior art keywords
voltage
charging
battery
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56159996A
Other languages
Japanese (ja)
Inventor
久保 観治
古本 光信
吉朗 土山
金谷 幸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56159996A priority Critical patent/JPS5863040A/en
Publication of JPS5863040A publication Critical patent/JPS5863040A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は充電可能な二次電池(以下単に電池と称す)の
充電方法(関するものであり、特に、定電流充電方式を
用いた急速充電方法において、短時間に効率良く急速充
電が可能な、新規な充電方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for charging a rechargeable secondary battery (hereinafter simply referred to as a battery). The present invention provides a new charging method that enables fast charging.

二次電池の需要は可搬形のボータブμ機器の増加に伴っ
てふえ、竹に、比較的大電流を必要とするl−タブμの
ビデオテープレコーダ(以下YrRと称す)の電源は、
その殆んどが二次電池を使用している。ボータブIvv
′TRに使用される二次電池は、過去の使用実績から、
密閉形鉛蓄電池(pb電池)が一般的であるが、pb電
池は重量1体積の点から小形、軽量化をめざすポータ1
2機器には不利でおる。これに対し、密閉形ニッケμカ
ドミウム電池(NiCd電池)は、内部抵抗が非常に小
さいため大電流での放電特性にすぐれていること、比較
的広い温度範囲で安定した特性が得られること、他の電
池に比べて急速充電が容易にできること、充放電サイク
〃寿命が300−500回以上でおることなどの特徴が
あり、最近のボータ13機器の多くがNiCd電池を採
用する傾向にある。
The demand for secondary batteries has increased with the increase in the number of portable boat-tab μ devices, and the power source for the l-tab μ video tape recorder (hereinafter referred to as YrR), which requires a relatively large current, is
Most of them use secondary batteries. Votab Ivv
'The secondary batteries used in the TR are based on past usage results.
Sealed lead-acid batteries (PB batteries) are common, but PB batteries aim to be smaller and lighter in terms of weight and volume.
2 devices are at a disadvantage. On the other hand, sealed nickel μ-cadmium batteries (NiCd batteries) have very low internal resistance, so they have excellent discharge characteristics at large currents, stable characteristics over a relatively wide temperature range, and other advantages. Many recent Vota 13 devices tend to use NiCd batteries because they can be easily charged quickly and have a charge/discharge cycle life of 300-500 times or more.

NiCd電池の急速充電方法には、大別して定電圧充電
方式と定電流充電方式とがある。定電圧充電方式の代表
的なものは、ジョグル充電方式であシ、電池電圧が所定
の値になるまでは大電流で充電し、所定値以りになれば
断読したパルス状の充を電流を流し、電池電圧の微小な
電圧増加に応じて充電電流を減少させる方式である。こ
の方式は効率の良い急速充電ができること、過充電が防
止できることなどの長所をもつが、反面、高感度電圧ス
イッチや高周波コンバータを必要とするため回路が複雑
になること、パルス状の充電電流を用いるため空中に弛
ぶノイズをシーμドする必要があること、電源フィンに
重畳するノイ゛ズを防止するためラインフィルターを必
要とすること、などの欠点を有する。
Rapid charging methods for NiCd batteries can be roughly divided into constant voltage charging methods and constant current charging methods. A typical constant voltage charging method is the joggle charging method, in which the battery is charged with a large current until the battery voltage reaches a predetermined value, and when the battery voltage reaches a predetermined value, the interrupted pulse-like charging is resumed with current. In this method, the charging current is reduced in response to a small voltage increase in the battery voltage. This method has the advantages of efficient rapid charging and the ability to prevent overcharging, but on the other hand, it requires a highly sensitive voltage switch and a high frequency converter, making the circuit complex, and it requires a pulsed charging current. It has drawbacks such as the need to seed the noise hanging in the air for use, and the need for a line filter to prevent noise from being superimposed on the power supply fins.

これに対し定電流充電方式は、近年、半導体技術の進歩
に伴って、高性能のトランジスタや演算増幅器等が安価
に手に入るようになったため、簡単な回路で定電流回路
が構成できること、連続した電流を扱うためジログV充
電方式で問題となるノイズ対策を必要としないことなど
の利点によシ、該充電方1式が見値されている。
On the other hand, with the constant current charging method, in recent years, with the advancement of semiconductor technology, high performance transistors and operational amplifiers have become available at low cost, so it is possible to construct a constant current circuit with a simple circuit. This charging method is valued for its advantages such as not requiring noise countermeasures, which are a problem with the Zilog V charging method, since it handles such a large amount of current.

定電流充電方式の代表的なものは1通称Vテーパ一方式
と呼ばれる方法である。この方法は電池電圧が所定の値
になるまでは、はぼ一定の大電流で充電し、電池電圧が
所定値以上になると大電流での充電をやめ、コンデンサ
Cと抵抗Rとで構成されるCR放電曲線に従って充電電
流を減少させる、比較的効率の良い急速充電方法である
A typical constant current charging method is a method commonly referred to as a V-taper one-way method. This method charges the battery with a fairly constant large current until the battery voltage reaches a predetermined value, and stops charging with the large current when the battery voltage exceeds the predetermined value. This is a relatively efficient fast charging method that reduces the charging current according to the CR discharge curve.

本発明の詳細な説明する前に、まずVテーパ一方式の充
電方法について説明する。第1図にVテーパ一方式によ
る充電パターンを、第2図に第1図の充電特性を得るた
めの具体回路例を示す、第1図にシいて、横軸には充電
時間を、縦軸には電池電圧と充電電流とを示しである。
Before explaining the present invention in detail, first, a V-taper type charging method will be explained. Figure 1 shows a charging pattern using a V-taper type, and Figure 2 shows a specific circuit example for obtaining the charging characteristics shown in Figure 1. In Figure 1, the horizontal axis shows charging time, and the vertical axis shows charging time. shows the battery voltage and charging current.

十分に放電された電池をVテーパ一方式で充電した場合
、充電電流はiで示す変化を示し、電池電圧はマで示す
変化を示す。
When a sufficiently discharged battery is charged using the V taper method, the charging current shows a change shown by i, and the battery voltage shows a change shown by ma.

充電初期の時間t、〜t8の期間は、電池容量ICに相
当する比較的大きな電流で定電流充電される。
During a period from time t to t8 at the initial stage of charging, constant current charging is performed with a relatively large current corresponding to the battery capacity IC.

この時、電池電圧は充電が進むにつれて徐々に上昇し、
充電容量がα7c近傍に達すると電池電圧は急激に増加
する。この状態で引続きlc前後の大電流で充電を継続
させた場合、ガスの発生による電池内部の圧力及び電池
温度の急激な増加をきたす。
At this time, the battery voltage gradually increases as charging progresses,
When the charging capacity reaches around α7c, the battery voltage increases rapidly. If charging is continued in this state with a large current around lc, the pressure inside the battery and the battery temperature will rapidly increase due to the generation of gas.

密閉形NiCd電池には通常安全弁が装着されているた
め、万一内圧が異常に上昇しても破裂することはない、
しかし、一度安全弁が作動してガスを放出した場合電池
の容量は劣化する。また、大電流による連続過充電は異
常な温度上昇、水素ガスの引火などによる破裂もあル得
るため、無理な使用方法は絶対に避ける必要がある。
Sealed NiCd batteries are usually equipped with a safety valve, so they will not explode even if the internal pressure rises abnormally.
However, once the safety valve is activated and gas is released, the battery capacity deteriorates. In addition, continuous overcharging due to large currents can cause abnormal temperature rises and explosions due to ignition of hydrogen gas, so it is absolutely necessary to avoid using unreasonable methods.

電池の充電完了を検出する因子としては電圧。Voltage is the factor that detects when the battery is fully charged.

温度、内圧の3つに限定される。内圧の検出には圧力の
検出素子が必要になり、安価に検出する方式はまだ実現
されていない、一般に広く用いられている方式は電圧検
出方式でちゃ、該方式に加えて温度検出方式が併用され
る。この時の温度検出の目的は、周囲温度の変化に応じ
て電圧の検出Vぺyを変化させるためである。温度検出
方式は本発明の主旨とは異なるため、ここでは詳細な説
明は省略する。
It is limited to three things: temperature and internal pressure. Detecting internal pressure requires a pressure detection element, and an inexpensive detection method has not yet been realized.The generally widely used method is the voltage detection method, but in addition to this method, a temperature detection method is also used. be done. The purpose of temperature detection at this time is to change the detected voltage Vpay in accordance with changes in ambient temperature. Since the temperature detection method is different from the gist of the present invention, detailed explanation will be omitted here.

第1図において、電池の電圧が制御開始電圧v(に達し
た点、すなわち時間t、の時点以後1時間1゜までの間
は充電電流をCR放電曲線に沿った形で徐々に減少させ
る。制御開始電圧マCは電池の内部圧力及び電池の温度
が異常に上昇しない安全な電圧に設定する。CR放電曲
線は、急峻にすると満充電になるまでに多くの時間がか
かり、あまり緩慢にすると1に以後の充電電流によって
電池電圧が制御開始電圧マC以上に上昇することになる
。従って。
In FIG. 1, the charging current is gradually decreased along the CR discharge curve for 1 hour and 1° after the point at which the battery voltage reaches the control start voltage v(, that is, time t). Set the control start voltage MC to a safe voltage that will not cause the internal pressure and temperature of the battery to rise abnormally.If the CR discharge curve is set too steeply, it will take a long time to reach full charge, but if it is set too slowly, it will take a long time to reach full charge. 1, the subsequent charging current causes the battery voltage to rise above the control start voltage MAC.

α放電曲線dtt以後の電池電圧が制御開始電圧VC以
下にな夛、かつ、できるだけ緩慢な曲線になるように設
定される0時開t、以後の充電電流は、長時間の連続充
電を行なっても電池に異常をきたさないQlc以下の電
流値に設定する。
The charging current after 0 o'clock opening t is set so that the battery voltage after the α discharge curve dtt is below the control start voltage VC and the curve is as slow as possible. Also, set the current value below Qlc, which will not cause abnormality to the battery.

以上の説明のごとく充電電流を設定すれば、比較的短時
間に急速充電が可能である。
If the charging current is set as explained above, rapid charging is possible in a relatively short time.

次に第2図を用いて、第1図の充電パターンを実現する
具体回路例について説明する。第2図において、(1)
は電池を示し1例えば10個の電池が直列に□接続され
ている。(乃は定電流充電回路であシ、第1図に示した
時間【。〜t8の間電池を定電流で充電する。定電流充
電回路(匂は例えば演算増幅器で構成される周知の回路
であシ、電池α)に流れる電流を、比較的低い値(例え
ば1Ω)をもつ抵抗R7の電圧降下として検出し、0点
の電圧値と0点の基準電圧値とが等しくなるように充電
電流を制御する。トランジスタQlは充電初期t、〜t
1の期間はOFF状態である。従って、(c)点の基準
電圧は抵抗R2とR3との分割比で決定される0点の電
位からダイオードD1の電圧降下を引いた値となる。な
お。
Next, a specific circuit example for realizing the charging pattern shown in FIG. 1 will be explained using FIG. 2. In Figure 2, (1)
1 indicates a battery, for example, 10 batteries are connected in series. (No is a constant current charging circuit, and the battery is charged with a constant current for the time shown in FIG. The current flowing through the battery α) is detected as a voltage drop across the resistor R7, which has a relatively low value (for example, 1Ω), and the charging current is adjusted so that the voltage value at the 0 point is equal to the reference voltage value at the 0 point. The transistor Ql controls the charging initial stage t, ~t
A period of 1 is an OFF state. Therefore, the reference voltage at point (c) is a value obtained by subtracting the voltage drop across diode D1 from the potential at point 0 determined by the division ratio of resistors R2 and R3. In addition.

ここでは、抵抗対は敵船の値であ1、抵抗R2及びR3
は数舶の値をとるため、抵抗R1の影響は省略して説明
した。
Here, the resistance pair is the value of the enemy ship, 1, resistance R2 and R3
Since it takes several values, the influence of the resistance R1 has been omitted in the explanation.

電圧検出回路A(3)は電池の電圧を検出する回路であ
夛、0点の出力には第1図に示した電圧特性のマが出力
される。電圧検出回路B(4)はヒステリシス特性をも
ったシュミット回路であり、(0点の出力には時間t、
〜t1の期間L01t 電圧が出力される。
The voltage detection circuit A (3) is a circuit that detects the voltage of the battery, and the voltage characteristic shown in FIG. 1 is outputted at the zero point. Voltage detection circuit B (4) is a Schmitt circuit with hysteresis characteristics (0 point output requires time t,
A voltage L01t is output during a period of ~t1.

従って、トランジスタQlはOFF状態である。(C)
点の電池電圧が制御開始電圧マCに達した時、電圧検出
回路B(4)の出力点ωの電圧はHi gh電圧になp
Therefore, transistor Ql is in an OFF state. (C)
When the battery voltage at the point reaches the control start voltage maC, the voltage at the output point ω of the voltage detection circuit B (4) becomes a High voltage.
.

トランジスタQ1はON状態になる。この時、トランジ
スタQlのコレクターエミッタ間の飽和電圧を零と仮定
すれば、(06点)の電位は抵抗R3とR4との並列抵
抗値と、抵抗RZとの分割比で決定される。
Transistor Q1 is turned on. At this time, assuming that the collector-emitter saturation voltage of the transistor Ql is zero, the potential at point 06 is determined by the parallel resistance value of the resistors R3 and R4 and the division ratio of the resistor RZ.

この時の0点の電位は、定電流充電回路ぐ)の出力電電
流がαIC程度になるように設定される。すなわち、時
間t、以後の充電電流値を決定する。トランジスタQ1
がONI、た時間t1か゛ら1,1での間、0点の電位
はり点の電位より低くなる。なぜならば1、:; (ロ)点の電位は)フンジスタQlがON状態にかった
時すぐに降下するが、0点の電位はコンデンサCIに蓄
積された電荷の量によって決定され、すぐには降下しな
い、定電流充電回路(21の入力インピーダンスをほぼ
無限大と仮定すれば、コンデンサCtに蓄積された電荷
は抵抗対を通じてのみ放電される。
The potential at the zero point at this time is set so that the output current of the constant current charging circuit (g) is approximately αIC. That is, the charging current value after time t is determined. Transistor Q1
is ONI, and from time t1 to 1,1, the potential at the 0 point becomes lower than the potential at the peak point. This is because the potential at point 0 (b) drops immediately when fungistor Ql is in the ON state, but the potential at point 0 is determined by the amount of charge accumulated in capacitor CI, and Assuming that the input impedance of the non-drop, constant current charging circuit (21) is nearly infinite, the charge stored in the capacitor Ct is discharged only through the resistor pair.

電池への充電電流は(c)点の電位で決定されるため、
時間t1〜t8間の充電電流はC1・R1の放電特性に
沿った形で餘々に減少する。(C)点の電位が0点の電
位からダイオードD1の電圧降下分だけ下がった電位に
達すれば、以後(6点の電位は一定となり、1=以後の
電流値を設定することになる。
Since the charging current to the battery is determined by the potential at point (c),
The charging current between time t1 and t8 gradually decreases in accordance with the discharge characteristics of C1 and R1. If the potential at point (C) reaches a potential that is lower than the potential at point 0 by the voltage drop of diode D1, from then on (the potential at point 6 becomes constant, and 1=the subsequent current value is set.

なお、時間t3以後の電池電圧は、制御開始電圧マCか
ら一定量下がった電位で安定する。この時、電圧検出回
路B(4)の出力点ωの電圧が再びLOW電位にならな
いよう、該回路B(4)にはヒステリシス特性をもたせ
てあり、出力点(Dの電圧がLOW電位になるための入
力のスVツy工Vべμは1例えば、第1図に示すvhの
電位に設定しである。
Note that the battery voltage after time t3 is stabilized at a potential lowered by a certain amount from the control start voltage MAC. At this time, in order to prevent the voltage at the output point ω of the voltage detection circuit B (4) from becoming a LOW potential again, the circuit B (4) is provided with a hysteresis characteristic, so that the voltage at the output point (D) becomes a LOW potential. The input voltage V and μ for this purpose is set to 1, for example, to the potential vh shown in FIG.

以上がVテーパ一方式の充電/<ターン及び具体回路例
である。この方式は比較的簡単な回路構成で連続した充
tt流を扱うことカニできること、CR放電特性を利用
して比較的効率の良い急速充電を行なえることなどの利
点をもつが1反面、下記の欠点を有する。
The above is an example of charging/<turn and a specific circuit of the V taper one-way type. This method has advantages such as being able to handle continuous charging current with a relatively simple circuit configuration and being able to perform relatively efficient rapid charging using CR discharge characteristics. It has its drawbacks.

第1の問題点蝶、少量の放電を行なった電池を再充電す
ることができない点にある。第1図に示したCR放電曲
線は、既゛に説明したように、急峻にすると満充電にな
るまでに多くの時間がかがシ。
The first problem is that it is not possible to recharge a battery that has undergone a small discharge. As already explained, if the CR discharge curve shown in FIG. 1 is made steep, it will take a long time to reach full charge.

あt#)緩慢にするとt1以後の電池電圧が制御開始電
圧マC以上に上昇することになるため、tt以後の電池
電圧が制御開始電圧マC以下にな9、かつ、できるだけ
緩慢な曲線になるように設定されている。
At#) If it is made slow, the battery voltage after t1 will rise above the control start voltage mac, so the battery voltage after tt will be below the control start voltage mac9, and the curve will be as slow as possible. It is set to be.

しかし%t1以後の充電電流と電池電圧との関係は。However, what is the relationship between charging current and battery voltage after %t1?

それまでの電池の充電履歴に関連して変化する。It changes in relation to the battery's charging history up to that point.

例えばx−hw当# LOV程度までに十分放電させた
電池を再充電する場合には、第1図に示したような充電
パターンをとるが、少量の放電しか行なっていないもの
、もしく拡満充電状態の電池を強制的に再充電させた場
合には、第3図に実線で示す充電パターンとなる。第3
図において1時間toにおいて強制的に再充電が開始さ
れた電池の電圧は急激に上昇し、短時間にて制御開始電
圧マCに達する、この時点で前述の電圧検出回路B(4
)が作動し、充電電流は実線ilで示すCR放電曲線に
沿って減少する。しかし、満充電に近い電池を再充電さ
せた場合、十分に放電された電池を効率良く充電するα
放電曲線1mは緩慢すぎるため、電池電圧はすぐには下
降せず、実線v1で示すように変化する。この時、電池
電圧は安全電圧を越えて上昇し、電池の内部圧力も増加
する。その結果安全弁が作動し、電池容量を劣化させる
ことになる。満充電に近い電池を再充電させる場合には
、破線i、で示す急峻なCR放電曲線を用いれば良く、
この時の電池電圧の変化は破線マ、となシ、制御開始電
圧マCを越えない特性を得ることができる。しかし、こ
れまでの■テーパ一方式の充電方法では、放電の履歴に
よってCR放電曲線の急峻さを変えることは容易ではな
かった。このため、従来の充電回路は、前述したごとく
、電圧検出回路B !417ヒステリシス特性をもたせ
、満充電に近い電池に対しては、大電流で再充電を行な
わない構成をとっていたが、該方法は実際に電池を使用
する側にとっては不便であ電池が十分に放電しきるまで
機器を操作する場合もあるが、適当な時間機器を操作し
た後、次の操作に備えて電池を再充電しておく必要性も
頻繁に生じるからである。また、電池を長時間使用せず
に放置した場合、自然放電によって電池の充電残量が減
少するが、この時の電池を再充電する場合にも、一度十
分放電させた後で再充電を行なわなければなら表い不便
さがあった。
For example, when recharging a battery that has been fully discharged to about x-hw LOV, the charging pattern shown in Figure 1 will be used. When a battery in a charged state is forcibly recharged, the charging pattern shown by the solid line in FIG. 3 is obtained. Third
In the figure, the voltage of the battery forcibly started to be recharged at 1 hour to suddenly rises and reaches the control start voltage MAC in a short time. At this point, the voltage detection circuit B (4
) is activated, and the charging current decreases along the CR discharge curve shown by the solid line il. However, when recharging a battery that is close to fully charged, α
Since the discharge curve 1m is too slow, the battery voltage does not drop immediately, but changes as shown by the solid line v1. At this time, the battery voltage increases beyond the safe voltage, and the internal pressure of the battery also increases. As a result, the safety valve will operate and the battery capacity will deteriorate. When recharging a battery that is close to fully charged, it is sufficient to use the steep CR discharge curve shown by the broken line i.
At this time, it is possible to obtain a characteristic that the change in battery voltage does not exceed the control start voltage C, which is indicated by the broken line M and N. However, in the conventional (1) taper-type charging method, it is not easy to change the steepness of the CR discharge curve depending on the discharge history. Therefore, as mentioned above, the conventional charging circuit has a voltage detection circuit B! 417 hysteresis characteristics, and a battery that is close to fully charged is not recharged with a large current, but this method is inconvenient for those who actually use the battery, and the battery is not fully charged. Although there are cases where the device is operated until the battery is fully discharged, it is often necessary to recharge the battery in preparation for the next operation after operating the device for a suitable period of time. Also, if the battery is left unused for a long time, the remaining charge of the battery will decrease due to natural discharge, but when recharging the battery at this time, please discharge it sufficiently and then recharge it. There was an obvious inconvenience to it.

第2の問題点は、第1図に示す電位マhの設定である。The second problem is the setting of the potential ma shown in FIG.

この電位マha、電池を充電器にセットした場合、該電
池を初期大電流で再充電をするか、しないかを決定する
電位である。電池の電圧は充電残量に応じて変化する。
This potential ma is the potential that determines whether or not to recharge the battery with an initial large current when the battery is set in a charger. The battery voltage changes depending on the remaining charge.

従って、電位マhを高く設定すればするほど、充電残量
の多い電池、すなわち満充電に近い電池全再充電するこ
とができる。
Therefore, the higher the electric potential h is set, the more the battery with a large amount of remaining charge, that is, the battery that is close to a full charge, can be completely recharged.

しかし、実際には電位1は安全をみて低い値に設定置れ
ムなぜならば、電池の特性のバラツキによって電位マh
の設定値も異なるため、任意の電池の特性に合わせて電
位マhを設定した場合%電池によって前記第1の問題点
の項で述べたように、過充電を行なう恐れがあるからで
ある。電位マhを低い値に設定した場合には、充電残量
の少ない電池しか再充電ができないと言う欠点を有する
However, in reality, potential 1 cannot be set to a low value for safety reasons.
This is because, as the set values of are different, if the potential mah is set according to the characteristics of a given battery, there is a risk of overcharging depending on the battery as described in the first problem section. If the electric potential h is set to a low value, it has the disadvantage that only batteries with a small remaining charge can be recharged.

第3の問題点は、CR放電曲線の設定である。 CR放
電曲線は、既に説明したように、急峻でなく。
The third problem is the setting of the CR discharge curve. As already explained, the CR discharge curve is not steep.

過充電をおこさない程度に緩慢な傾斜をもつように設定
される。しかしCR放電曲線も、電池のバフツキを考え
た場合、安全をみて過充電をおこさない急峻な曲線に設
定する。このことは、満充電になるまでの時間が長くな
ることを意味する。また、電池によって満充電になるま
での充電時間が大きくバラツクことを意味する。なぜな
らば、 CR放電曲線以後の充電電流は(llc以下の
低電流に設定されるため、電池の定格容量が少しでもバ
フツクと、低電流による充電時間は大きくバフツクため
である。
The slope is set to be gentle enough to prevent overcharging. However, considering the buffiness of the battery, the CR discharge curve is set to be a steep curve that will not cause overcharging for safety reasons. This means that it takes longer to fully charge the battery. This also means that the charging time required to reach full charge varies greatly depending on the battery. This is because the charging current after the CR discharge curve is set to a low current below (llc), so if the rated capacity of the battery is slightly increased, the charging time due to the low current will be greatly increased.

本発明は定電流充電回路と定電圧充電回路とを組み合わ
すことにより、過去の充放電電流量に関係なく再充電が
可能なこと、過充電防止回路を兼用できること、電池特
性のバフツキや電池の充電量に応じて、前述のCR放電
曲線に相当する充電電流の減少曲線を自動的に設定でき
ること、従来のVテーパ一方式に比べて、極めて短時間
に効率良く充電を完了することができること、などの特
徴を有する。
By combining a constant current charging circuit and a constant voltage charging circuit, the present invention is capable of recharging regardless of past charging/discharging current amounts, can also be used as an overcharge prevention circuit, and can prevent buffing of battery characteristics. It is possible to automatically set a charging current decreasing curve corresponding to the above-mentioned CR discharge curve according to the amount of charge, and it is possible to complete charging efficiently in an extremely short time compared to the conventional V-taper type. It has the following characteristics.

以下1図面と共に本発明の詳細な説明する。第4図は、
定電流充電回路と定電圧充電回路とを組み合わせて使用
した時の充電パターンを示しである0時間t、において
定電流充電が開始され、この時の電流値をi$で示す、
電池電圧Vは定電流充電期間中徐々に上昇し、制御開始
電圧マCに達する。
The present invention will be described in detail below with reference to one drawing. Figure 4 shows
A charging pattern when a constant current charging circuit and a constant voltage charging circuit are used in combination is shown. Constant current charging is started at time t, and the current value at this time is indicated by i$.
The battery voltage V gradually increases during the constant current charging period and reaches the control start voltage MAC.

この時の時間をtlとする6時間t8以後は定電圧充電
回路に切換え、電池電圧が常に一定電圧になるように充
電回路を制御してやれば、その時の充電電流社蓬、〜1
@で示す変化をとる。tlの時点では電池はまだ満充電
されておらず、満充電状態を100%とすれば1例えば
80%程度の充電量である。定電圧充電を行なった場合
、t、以後の充電電流はそれまでの充電量に応じて充電
電流が減少し、taで示す変ずヒを示す、充電電流力E
l、で示す電流値よりも少なければ、電池電圧は制御開
始電圧マCよりも減少し、太ければ増大する。充電電流
は電流値I。
After 6 hours t8, where the time at this time is tl, if you switch to the constant voltage charging circuit and control the charging circuit so that the battery voltage is always constant, the charging current at that time will be ~1
Takes the change indicated by @. At the time of tl, the battery is not yet fully charged, and if a fully charged state is defined as 100%, the amount of charge is about 1, for example, 80%. When constant-voltage charging is performed, the charging current after t decreases according to the amount of charge up to that point, and the charging current force E is constant, which is indicated by ta.
If the current value is less than the current value indicated by 1, the battery voltage will decrease compared to the control start voltage maC, and if it is thicker, the battery voltage will increase. The charging current is current value I.

で最小値となる。この時の時間をtsとす−る。定電圧
充電期間における充電電流の最小点において、電池はほ
ぼ100%に近い満充電状態になることが実験によって
確認されている。この現象は電池のバラツキや再充電前
の充電残量には関係しない。
becomes the minimum value. Let the time at this time be ts. It has been confirmed through experiments that the battery reaches a fully charged state close to 100% at the minimum point of the charging current during the constant voltage charging period. This phenomenon is not related to battery variations or the amount of charge remaining before recharging.

時間ts以後、すなわち、満充電された電池を引続き定
電圧回路で充電すると、電池電圧は1・で示す曲線に沿
って増加する。これは電池の温度が上昇し、化学反応が
活発になるためである。t−以後の充電電流の増加は、
初期緩やかであるが次第に急減に増加する。この状態で
充電を持続すれば、ガスの発生により電池内部の圧力が
増加し、密閉形NiCd電池に装着されている安全弁が
作動し、ガスの放出によって電池容量が劣化することに
なる。
After time ts, when the fully charged battery is continuously charged by the constant voltage circuit, the battery voltage increases along the curve indicated by 1. This is because the temperature of the battery rises and chemical reactions become active. The increase in charging current after t- is
Initially it is gradual, but it gradually increases sharply. If charging is continued in this state, the pressure inside the battery will increase due to the generation of gas, the safety valve attached to the sealed NiCd battery will operate, and the battery capacity will deteriorate due to the release of gas.

そこで、後述するように、初期定電流充電を行ない、電
池電圧が制御開始電圧マCに達した時から定電圧充電回
路に切換え、定電圧充電期中での充電電流の最小値を検
出して充電を停止させる構成をとれば、短時間に極めて
効率の良い充電を行なうことができる。
Therefore, as will be described later, initial constant current charging is performed, and when the battery voltage reaches the control start voltage MAC, the circuit is switched to a constant voltage charging circuit, and the minimum value of the charging current during the constant voltage charging period is detected and charging is performed. If a configuration is adopted in which the battery is stopped, extremely efficient charging can be performed in a short period of time.

次に本発明の具体回路について説明する。第5図は本発
明の一実施例を示してあシ、第2図と同一記号のものは
同じ機能を有する。第6図は第5図に示す具体回路例を
用いた時の充電パターンを示しである。
Next, a specific circuit of the present invention will be explained. FIG. 5 shows an embodiment of the present invention, and the same symbols as in FIG. 2 have the same functions. FIG. 6 shows a charging pattern when the specific circuit example shown in FIG. 5 is used.

第S図において、充電初期、電圧検出回路C(5)の出
力端ωの電圧と電流制御回路(6)の出力端@の電圧は
Lot電位である。従って、トランジスタQ1と02と
はOFF状態である。この時、定電流充電回路(2)の
充電電流は抵抗R2とR3との分割比で決まるり点O電
位で決定される。定電流充電期間中、電池電圧は徐々に
上昇する。電池電圧は電圧検出回路ACIIIIを経て
出力端ωに取少出される。電圧検出回路C(IIは電池
の電圧が制御開始電圧70以上になった時、その出力端
ωKH1gk電圧を発生するVユ1 ミツ)回路であJ’sIl:ステ9Vス特性を有しない
In FIG. S, at the initial stage of charging, the voltage at the output terminal ω of the voltage detection circuit C (5) and the voltage at the output terminal @ of the current control circuit (6) are at Lot potential. Therefore, transistors Q1 and 02 are in the OFF state. At this time, the charging current of the constant current charging circuit (2) is determined by the potential at the point O, which is determined by the division ratio between the resistors R2 and R3. During the constant current charging period, the battery voltage gradually increases. The battery voltage is output to the output terminal ω via the voltage detection circuit ACIII. The voltage detection circuit C (II is a VYU1MITSU circuit that generates a voltage at its output terminal ωKH1GK when the voltage of the battery becomes equal to or higher than the control start voltage 70) does not have the J'sIl:ST9V characteristic.

従って電池電圧が制御開始電圧マcQ下になれば、その
出力端(Dの電化は再びLow電圧となる。出力端(ト
)の電圧がHigh電圧の時、)ランジスタQ2はON
状態となる。トランジスタQ2が完全にON状態になっ
た時のコレクターエミッタ間の電圧vC菖を零と仮定す
れば、この時の0点の電位は、抵抗R3に比べて比較的
小さな抵抗RIOと抵抗R3との並列抵抗値と、抵抗R
2との分割比で決定される電位となる。
Therefore, when the battery voltage falls below the control start voltage macQ, the transistor Q2 is turned on.
state. Assuming that the collector-emitter voltage vC when transistor Q2 is completely turned on is zero, the potential at the 0 point at this time is the difference between resistor RIO and resistor R3, which are relatively small compared to resistor R3. Parallel resistance value and resistance R
The potential is determined by the division ratio of 2.

そしてこの時、電池への充電電流は減少する。充電電流
が減少すると電池電圧が下が9、その結果電圧検出回路
C(6)の出力端ωの電圧はLOW電位となる。従って
、トランジスタQ2がOFFとなり、再び充電電流が増
加して電池電圧も上昇する。トランジスタQ2は実際に
は不飽和状態で使用されて可変抵抗として動作するため
%この動作は実際には連続して行なわれ、第6図に示す
t1〜t1間の電流値l、を自動的に決定する。すなわ
ち、時間t1マでの充電電流は、抵抗R2とR3で決定
される開μmデ系であるが、時間t8〜t、の間の充電
電流は電圧検出回路A (枠、電圧検出回路C(Il、
)フンジスタQ2で負帰還された閉ループ制御系を構成
し、この間は定電圧充電回路として動作することになる
At this time, the charging current to the battery decreases. When the charging current decreases, the battery voltage decreases by 9, and as a result, the voltage at the output terminal ω of the voltage detection circuit C(6) becomes a LOW potential. Therefore, transistor Q2 is turned off, the charging current increases again, and the battery voltage also rises. Since the transistor Q2 is actually used in an unsaturated state and operates as a variable resistor, this operation is actually performed continuously, and the current value l between t1 and t1 shown in FIG. decide. That is, the charging current at time t1 is an open μm system determined by resistors R2 and R3, but the charging current between time t8 and t is determined by voltage detection circuit A (frame, voltage detection circuit C ( Il,
) A closed loop control system with negative feedback is formed by the fungistor Q2, and during this period it operates as a constant voltage charging circuit.

電流制御回路(81の詳細については後述するが、該回
路(61杜定電圧充電期間中の充電電流が最小になった
時、その出力端ωの電圧aHigh電圧となる。
The details of the current control circuit (81 will be described later), but when the charging current during the constant voltage charging period of this circuit (61) becomes the minimum, the voltage at the output terminal ω becomes aHigh voltage.

該出力端ωの電圧の一方は電圧検出回路C(6)に入力
され、他方はトランジスタQ1に入力される。出力端0
の電圧がHijgh電圧の時、電圧検出回路C(6)の
出力端ωは0点の電池電圧に関係なく強制的にLOW電
位にされる。このため、トランジスタQ2はOFFとな
る。一方、この時)フンジスタQ1はON状態となるた
め、コレクターエミッタ間の電位を零と仮定すれば、0
点の電位は抵抗R4とR3との並列抵抗値と、抵抗R2
との分割比で決定される。この時の電流値は第6図に1
1で示す電流値であり、連続充電可能なale以下の低
電流値に設定しである。
One of the voltages at the output terminal ω is input to the voltage detection circuit C(6), and the other is input to the transistor Q1. Output end 0
When the voltage is a high voltage, the output terminal ω of the voltage detection circuit C(6) is forced to a LOW potential regardless of the battery voltage at the 0 point. Therefore, transistor Q2 is turned off. On the other hand, since the fungistor Q1 is in the ON state at this time, assuming that the potential between the collector and emitter is zero, the potential is 0.
The potential at the point is determined by the parallel resistance value of resistors R4 and R3 and the resistor R2.
It is determined by the division ratio. The current value at this time is shown in Figure 6.
This is the current value indicated by 1, and is set to a low current value below ale that allows continuous charging.

時間tl以後は充電電流を急減させるため、電池の電圧
も第6図に示すように減少し、異常な電圧・温度及び圧
力1昇を伴なうことはない。
Since the charging current is rapidly reduced after time tl, the voltage of the battery is also reduced as shown in FIG. 6, and no abnormal voltage/temperature or pressure increases occur.

またこれまでは充電電流の最小値を検知した時。Also, until now, when the minimum value of charging current was detected.

充電電流値を第C図に示す1寥から11に急激に減少さ
せる本式について説明したが1時間1.において充電電
流値を急激に減少させる必要はな(、CR放電曲線を利
用して充電電流を徐々に減少させる方式をとっても良い
、この時の回路構成は、第2図に示すダイオードD1、
抵抗R1,コンデンサCIを第5図に示す回路内に付加
し、コンデンサCIの電荷を放電させるべく、抵抗RI
Oを介してトランジスタQ2を接続する構成をとれば良
い。
We have explained this formula for rapidly reducing the charging current value from 1 to 11 as shown in Fig. C, but the method is as follows: 1. There is no need to suddenly decrease the charging current value (it is also possible to use a method of gradually decreasing the charging current using the CR discharge curve. The circuit configuration at this time is the diode D1 shown in Fig. 2,
A resistor R1 and a capacitor CI are added to the circuit shown in FIG.
It is sufficient to adopt a configuration in which the transistor Q2 is connected through O.

電流制御回路+61 Fi、出力端Vが一度H1gh電
圧を出力した後、その状態を保持する。従って、新しい
電池を再充電する時には、充電器に電池を着脱する時に
出力@がLow電位となるように、電流制御回路(8)
を自動的にリセットしても良く、再充電時に手動のリセ
ットボタンを押すようにしても良い。
After the current control circuit +61 Fi and the output terminal V once output the H1gh voltage, that state is maintained. Therefore, when recharging a new battery, the current control circuit (8)
The battery may be reset automatically, or a manual reset button may be pressed when recharging.

第7図には充電材料の異なる電池を再充電した時ノ充電
パターンを示している。十分に放電され大電流を再充電
した時の充電パ″:゛ターンは、第7図に実線で示す電
圧変化V、及び充電電流の変化i・を示す、この特性に
ついては既に詳しく説明した。
FIG. 7 shows charging patterns when recharging batteries with different charging materials. The charging pattern when fully discharged and recharged with a large current shows the voltage change V and the charging current change i, shown by the solid line in FIG. 7. This characteristic has already been described in detail.

池を再充電した時の充電パターンは第7図に破線で示す
ごとく変化する。充電初期には定格容111c近傍の大
電流I・で充電が行なわれ、この間電池電圧は急激に上
昇する。電池電圧が制御開始電圧マCに達した時、充電
電流は石で示すごとく急激に減少する。該減少曲線は電
池電圧が一定となるように自動的に決定され、再充電前
の充電残量に応じて異表るが、この時にも電流!1゜の
最小点で充電が完了する。従って、電流1.の最小値を
検出して充電電流を1.□で示す(lie以下の電流値
に切換えれば、放電量の少ない電池も再充電が可能であ
る。
When the battery is recharged, the charging pattern changes as shown by the dashed line in FIG. In the initial stage of charging, charging is performed with a large current I· near the rated capacity 111c, and during this period the battery voltage rises rapidly. When the battery voltage reaches the control start voltage MAC, the charging current decreases rapidly as shown by the stone. The decreasing curve is automatically determined so that the battery voltage remains constant, and varies depending on the remaining charge before recharging, but even at this time, the current decreases! Charging is completed at the minimum point of 1°. Therefore, the current 1. Detect the minimum value of and change the charging current to 1. If the current value is changed to less than (ie) indicated by □, it is possible to recharge even a battery with a small amount of discharge.

次に、第5図に示した電流制御回路(6)の見本回路構
成例について説明する。電流制御回路(61は、既に説
明したように、定電充電期間中における充電電流の最小
値を検出する回路である。実用上は充電電流の最小値を
厳密に検出する必要はなく、′1:。
Next, a sample circuit configuration example of the current control circuit (6) shown in FIG. 5 will be described. The current control circuit (61, as already explained, is a circuit that detects the minimum value of the charging current during the constant current charging period.In practice, it is not necessary to strictly detect the minimum value of the charging current; :.

最小値近傍であれば十分である。A value near the minimum value is sufficient.

第8図に紘電流制御図路(IIOjglの具体回路例を
示しである。第9図には第8図の各部の波形を示しであ
る。第8図において、端子(]1からは充電電流に応じ
た電圧波形(al W入力される。該電圧波形(ml)
12第5図に示した抵抗R7の端子電圧を利用すれば良
い0回路面は発振回路であ)、第9図6)に示す矩形波
を出力する。なお発振回路−は家庭の商用電源を矩形波
整形して置き換えることも可能である0回路(11)及
び回路O磐はパμス整形回路でちゃ、第9図り及び顧に
示すパμスを出力する。
Fig. 8 shows a specific circuit example of the current control circuit (IIOjgl). Fig. 9 shows the waveforms of each part in Fig. 8. In Fig. 8, the charging current is Voltage waveform (al W is input according to the voltage waveform (ml)
12 The circuit surface that can be used by using the terminal voltage of the resistor R7 shown in FIG. 5 is an oscillation circuit), which outputs a rectangular wave shown in FIG. 9 (6). Note that the oscillation circuit can also be replaced by rectangular wave shaping of the commercial power supply at home. Circuit 0 (11) and circuit 0 are path shaping circuits, so the path μ shown in Figure 9 and the following is Output.

これらの各パνスは、発振回路叫の出力■の立上シ、も
しくは立上りを利用して容易に形成することができる0
回路(8)はサンプμホーVド回路であシ、入力される
電圧波形(鳳l)をパμス整形回路0烏)の出カバyス
ωでサンプリングし、各バμス間はサンプリングした電
圧をホーμドする。従って、サンプyホーMド回路(8
)の出力波形(a2B第9図G)に波線で示すごとく変
化する6回路111+は電圧比較回路であり、入力(a
l)と(at)との電圧Vペルを比較する。比較するタ
イミングはパμス整形回路卸の出力■がHigh電圧に
なっている期間のみ(11)(!2め電圧レベνを比較
し、その結果をり七ットセットフリッププロップ(R5
−FF) (1:lに入力する。
Each of these paths ν can be easily formed using the rising edge or the rising edge of the output of the oscillation circuit.
The circuit (8) is a sampling μ-hold voltage circuit, which samples the input voltage waveform (O) at the output of the path shaping circuit (0), and performs sampling between each bus. Hoard the voltage. Therefore, the sump y hold circuit (8
6 circuits 111+ whose output waveforms (a2B, Fig. 9G) change as shown by dotted lines are voltage comparison circuits, and the input (a
Compare the voltage Vpels of l) and (at). The timing of comparison is only during the period when the output ■ of the path shaping circuit is at High voltage (11) (! Compare the second voltage level ν, and use the result as
-FF) (Input to 1:l.

電圧比較回路(9)の出力は、@で示す正パルスの期間
において、 (at)の電位が(11)liり電位よシ
も高い時にはLOW電圧を出力し、(atめ電位が(a
l)の電位よりも低い時にはH1gh電圧を出力する@
  (at)’7)電圧と(s+2)の電圧とのνぺν
が逆転する時は、第9図ωに示す図からも明らかなよう
に、充電電流が最小点近傍になった時である。従って、
第8図に示す回路構成を用いれば、充電電流の最小値近
傍を検出することができる。なお、電圧比較回路II)
 t)出力は(11)と(at)との電圧レベμが反転
した時に111gk電圧を出力する構成に限ることはな
く(麿1)とくat)との電位差が一定しペμになった
時にHigh電圧を出力する構成をとっても良い、 R
9−FF回路−の出力は電圧比較回路(91の出力がH
igh電圧になった時I11gh電圧を出力する。従っ
て、充電電流の最小値近傍を検出した後は電池電圧に関
係なく、端子・(にはHigh電圧が出力される。スイ
ッチ−は新たな電池を再充電する時、電流制御回路(6
)を再動作させるためのリセットスイッチである。
The output of the voltage comparator circuit (9) outputs a LOW voltage when the potential at (at) is higher than the potential at (11) li during the positive pulse period indicated by @, and when the potential at (at) is higher than the potential at (a
When the potential is lower than l), outputs H1gh voltage @
(at)'7) Voltage and (s+2) voltage νpeν
As is clear from the diagram shown in FIG. 9, ω is reversed when the charging current is near the minimum point. Therefore,
By using the circuit configuration shown in FIG. 8, it is possible to detect the vicinity of the minimum value of the charging current. In addition, voltage comparator circuit II)
t) The output is not limited to the configuration that outputs 111gk voltage when the voltage level μ between (11) and (at) is reversed, but when the potential difference between (Maro 1) and at) is constant and becomes peμ A configuration that outputs a high voltage may also be used.
The output of 9-FF circuit- is the voltage comparator circuit (the output of 91 is H
When the voltage reaches the igh voltage, the I11gh voltage is output. Therefore, after detecting the vicinity of the minimum value of the charging current, a high voltage is output to the terminal (6) regardless of the battery voltage.
) is a reset switch to restart the operation.

なお、第8図に示す回路は、電池電圧が制御開始へ 電圧マCに達した時から動作させる。Note that the circuit shown in Figure 8 is used when the battery voltage reaches the start of control. It starts operating when the voltage reaches the voltage max.

第10図は電流制御回路(6)の第2の具体回路例であ
り、第11図は第10図の各部の波形である。第10図
において、端子Hからは充電電流に応じた電圧波形(a
)が入力される。電圧波形ωは反転増幅回路071で反
転増幅され、その出力Bsは第11図に(bl )”f
fi示す電圧波形と同様の変化をする。ダイオードD3
はダイオードD2で生じる電圧降下分を補正するための
ものである。ダイオードD2とコンデンtc2はピーク
ホールド回路−であ)、反転された電圧波形の最大値を
ホーμドする。ビークホー〃ド回路−の出力を第11図
に破線(b2)で示す0回路−は電圧比較回路であり、
 (bl)と(b2)の電圧レベμを比較する0両入力
が同−Vぺ〜であれば電圧比較回路−の出力を)はLO
W電位であシ、一定の電圧差以上になればHigh電位
となる。出力(dが)ILgh電位になった時、充電電
流は最小値近傍であるため、!!10図に示す回路構成
で充電電流の最小値近傍を検出することができる。新た
な電池を再充電する時には、スイッチ翰を用いてコンデ
ンサC2の電荷を放電させれば良い。
FIG. 10 shows a second specific circuit example of the current control circuit (6), and FIG. 11 shows waveforms at various parts in FIG. In FIG. 10, a voltage waveform (a
) is input. The voltage waveform ω is inverted and amplified by the inverting amplifier circuit 071, and its output Bs is shown in FIG.
It changes in the same way as the voltage waveform shown by fi. Diode D3
is for correcting the voltage drop caused by the diode D2. The diode D2 and capacitor tc2 are a peak hold circuit and hold the maximum value of the inverted voltage waveform. The 0 circuit whose output from the beak hoard circuit is indicated by a broken line (b2) in FIG. 11 is a voltage comparison circuit.
Compare the voltage level μ of (bl) and (b2).0If both inputs are the same -Vpe~, the output of the voltage comparison circuit -) is LO
The potential is W, and if the voltage difference exceeds a certain level, the potential becomes High. When the output (d) reaches the ILgh potential, the charging current is near the minimum value, so! ! With the circuit configuration shown in FIG. 10, it is possible to detect the vicinity of the minimum value of the charging current. When recharging a new battery, the charge on capacitor C2 can be discharged using a switch.

以上の説明で明らかなように、本発明によれば、初期の
充電は定電流充電方式を用い、電池電圧が制御開始電圧
に達した時点で定電圧充電方式に切換え、充電電流の最
小値近傍を検出して充電電流を急減させる方式をとるた
め、種々の利点を有する。
As is clear from the above explanation, according to the present invention, initial charging is performed using a constant current charging method, and when the battery voltage reaches the control start voltage, the method is switched to a constant voltage charging method, and when the charging current is near the minimum value. Since the charging current is detected and the charging current is rapidly reduced, it has various advantages.

第1の利点は、定電圧充電期間中の充電電流の減少度合
は、電池の過去の充放電履歴に応じて自動的に変化する
ため、過去の履歴に関係なく短時間に極めて効率良く満
充電を行なうことができる点にある。
The first advantage is that the degree of decrease in charging current during the constant voltage charging period automatically changes according to the battery's past charging and discharging history, so it can be fully charged in a short time and extremely efficiently regardless of the past history. The point is that it can be done.

1152の利点は、定電圧充電期間中の充電電流は一度
減少し、満充電状態になれば温度上昇と共に充電電流が
再び増加するため、定電圧充電期間中の充電電流の最小
値近傍を検出することができれば、満充電状態を知ると
とができる点にある。
The advantage of 1152 is that the charging current decreases once during the constant voltage charging period, and once it reaches a fully charged state, the charging current increases again as the temperature rises, so the vicinity of the minimum value of the charging current during the constant voltage charging period can be detected. If possible, it would be possible to know when the battery is fully charged.

第3の利点は、定電流充電方式と併用して定電圧充電方
式を用いるため、過大電流による充電及び過充電を防止
することができる点にある。従って、電池の過去の充放
電履歴に関係なく再充電が可能である。
The third advantage is that since the constant voltage charging method is used in combination with the constant current charging method, charging due to excessive current and overcharging can be prevented. Therefore, the battery can be recharged regardless of its past charging/discharging history.

なお、ここでは電池の温度補償についての説明は省略し
たが、温度により抵抗値の変化するサーミスタ等の素子
を用いて電池の温度上昇を検出し。
Although a description of battery temperature compensation has been omitted here, a temperature rise in the battery is detected using an element such as a thermistor whose resistance value changes depending on the temperature.

充電電流が最小値になる少し前に充電電流を急減させる
ことは適宜性なわれても良く1本発明の主旨に反するも
のではない。
It may be appropriate to suddenly reduce the charging current slightly before the charging current reaches the minimum value, but it does not go against the spirit of the present invention.

また、前記サーミスタ等の素子を用いて温度上昇を検出
し、温度上昇にて充電電流の最小値な検出する方法を用
いても良い。
Alternatively, a method may be used in which a temperature rise is detected using an element such as the thermistor, and the minimum value of the charging current is detected based on the temperature rise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のVテーパ一方式の充電パターン図、第2
図は従来のVテーパ一方式の具体回路偶因、第3図は充
放電履歴の異なる電池を従来のVテーパ動式で充電した
時の充電パターン図、第4図は゛本発明の詳細な説明す
るための図でラシ、定電流充電方式と定電圧充電方式を
併用した時の充電パターン図、第5図は本発明の具体回
路偶因。 WiG図は本発明による充電パターン図、第7図は本発
明による充電方法で、充放電履歴の異なる電池を充電し
た時の充電パターン図、第8図は充電電流の最小値を検
出する第1の実施例を示す回路図、第9図社第8図の各
部の波形図、第10図は充電電流の最小値を検出する第
2の実施例を示す回路図、第11図は310図の各部の
波形図である。 a)−電池、(2)一定電流充電回路、 13)・−電
圧検出回路A s fi+−電圧検出回路C、(6)・
・・電圧検出回路〆、(8)−サンプ〜ホーμド回路、
191−・電圧比較回路、−一発振回路、fi1+U−
バシス斃形回路、0η・・・反転増幅回路、拳−一ピー
クホーμド回路、翰・・・電圧比較回路 代理人  森 本 義 弘 第8図 11 第9図 −−−0(1r) <d) 第1θ図 第11図 一一□・□Q(V’) −−−−−0(V)
Figure 1 is a diagram of the conventional V-taper one-type charging pattern;
The figure shows the specific circuit contingency of the conventional V-taper one-way type, Fig. 3 shows the charging pattern when batteries with different charging and discharging history are charged by the conventional V-taper dynamic type, and Fig. 4 shows detailed explanation of the present invention. Figure 5 is a diagram showing a charging pattern when a constant current charging method and a constant voltage charging method are used together. The WiG diagram is a charging pattern diagram according to the present invention, FIG. 7 is a charging pattern diagram when batteries with different charging and discharging histories are charged using the charging method according to the present invention, and FIG. Figure 10 is a circuit diagram showing the second embodiment for detecting the minimum value of the charging current, Figure 11 is a waveform diagram of each part of Figure 8 of Figure 9, It is a waveform diagram of each part. a) - battery, (2) constant current charging circuit, 13) - voltage detection circuit A s fi + - voltage detection circuit C, (6) -
・・Voltage detection circuit〆, (8) - Sump ~ Hode circuit,
191-・Voltage comparison circuit, -1 oscillation circuit, fi1+U-
Basis inverting circuit, 0η...inverting amplifier circuit, fist-one peak μhold circuit, wire...voltage comparison circuit agent Yoshihiro Morimoto Fig. 8 11 Fig. 9---0(1r) <d ) Figure 1θ Figure 11 □・□Q(V') ------0(V)

Claims (1)

【特許請求の範囲】 L 充電開始点より第1の電池電圧検出点までは大電流
で充電し、第1の電池電圧検出点を検出した後は定電圧
充電を行ない、該定電圧充電期間中の最小充電電流を検
出して、連続充電可能な低電流充電に切シ替えることを
特徴とするバッテリー充電方法。 2 定電圧充電期間中の充電電流に相当する第1の電圧
と、該第1の電圧を遅延させた第2の電圧とが一定の電
圧差になったことを検出して、充電電流の最小値を検出
することを特徴とする特許請求の範囲第1項記載のバッ
テリー充電方法。 a 定電圧充電期間中の充電電流変化に相当する電圧変
化を反転した第1の電圧波形と、該第1の電圧波形の最
大値を保持する最大値保持回路の出力電圧との差が一定
値以上になったことを検出して、充電電流の最小値を検
出することを特徴とする特許請求の範囲第1項記載のバ
ッテリー充電方法。
[Claims] L Charging is performed with a large current from the charging start point to the first battery voltage detection point, and after the first battery voltage detection point is detected, constant voltage charging is performed, and during the constant voltage charging period. A battery charging method characterized by detecting a minimum charging current and switching to low current charging that allows continuous charging. 2. Detecting that a first voltage corresponding to the charging current during the constant voltage charging period and a second voltage obtained by delaying the first voltage have become a certain voltage difference, and determining the minimum charging current. 2. The battery charging method according to claim 1, further comprising detecting a value. a The difference between the first voltage waveform obtained by inverting the voltage change corresponding to the charging current change during the constant voltage charging period and the output voltage of the maximum value holding circuit that holds the maximum value of the first voltage waveform is a constant value. 2. The battery charging method according to claim 1, wherein the minimum value of the charging current is detected by detecting that the charging current has reached the minimum value.
JP56159996A 1981-10-06 1981-10-06 Battery charging method Pending JPS5863040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56159996A JPS5863040A (en) 1981-10-06 1981-10-06 Battery charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159996A JPS5863040A (en) 1981-10-06 1981-10-06 Battery charging method

Publications (1)

Publication Number Publication Date
JPS5863040A true JPS5863040A (en) 1983-04-14

Family

ID=15705716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159996A Pending JPS5863040A (en) 1981-10-06 1981-10-06 Battery charging method

Country Status (1)

Country Link
JP (1) JPS5863040A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198577A (en) * 1985-02-26 1986-09-02 Yuasa Battery Co Ltd Charging method for square enclosed lead storage battery
JPS62165881A (en) * 1986-01-17 1987-07-22 Matsushita Electric Ind Co Ltd Control method for charging lead storage battery
JPH01161680A (en) * 1987-12-18 1989-06-26 Meidensha Corp Charging method for zinc bromine battery
JPH02119538A (en) * 1988-10-26 1990-05-07 Matsushita Electric Works Ltd Circuit for controlling charging of lead storage battery
JPH02254934A (en) * 1989-03-27 1990-10-15 G S Safuto Kk Charging apparatus for storage battery
JPH0630529A (en) * 1990-09-19 1994-02-04 Gold Star Co Ltd Charging control apparatus of storage battery
JPH0698475A (en) * 1992-09-10 1994-04-08 Rohm Co Ltd Storage-battery charging circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118835A (en) * 1974-06-26 1976-02-14 Puro Kasa G Rejisutaa Torasuto Chikudenchi aruiha chikudenchibatsuteriinojudenhoho
JPS5186732A (en) * 1975-01-27 1976-07-29 Japan Storage Battery Co Ltd JUDENKI
JPS54159640A (en) * 1978-05-31 1979-12-17 Black & Decker Inc Method of and apparatus for storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118835A (en) * 1974-06-26 1976-02-14 Puro Kasa G Rejisutaa Torasuto Chikudenchi aruiha chikudenchibatsuteriinojudenhoho
JPS5186732A (en) * 1975-01-27 1976-07-29 Japan Storage Battery Co Ltd JUDENKI
JPS54159640A (en) * 1978-05-31 1979-12-17 Black & Decker Inc Method of and apparatus for storage battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198577A (en) * 1985-02-26 1986-09-02 Yuasa Battery Co Ltd Charging method for square enclosed lead storage battery
JPH0544783B2 (en) * 1985-02-26 1993-07-07 Yuasa Battery Co Ltd
JPS62165881A (en) * 1986-01-17 1987-07-22 Matsushita Electric Ind Co Ltd Control method for charging lead storage battery
JPH01161680A (en) * 1987-12-18 1989-06-26 Meidensha Corp Charging method for zinc bromine battery
JPH02119538A (en) * 1988-10-26 1990-05-07 Matsushita Electric Works Ltd Circuit for controlling charging of lead storage battery
JPH02254934A (en) * 1989-03-27 1990-10-15 G S Safuto Kk Charging apparatus for storage battery
JPH0630529A (en) * 1990-09-19 1994-02-04 Gold Star Co Ltd Charging control apparatus of storage battery
JPH0698475A (en) * 1992-09-10 1994-04-08 Rohm Co Ltd Storage-battery charging circuit

Similar Documents

Publication Publication Date Title
JP3620118B2 (en) Constant current / constant voltage charger
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
JPH0583875A (en) Charging circuit of secondary battery
JPS5863040A (en) Battery charging method
JP3220797B2 (en) Rechargeable battery charging method
JP2001028841A (en) Method for controlling charging of battery and device for executing the same
JPH07123604A (en) Charger for secondary battery
JPH10223261A (en) Charging device
JP3238938B2 (en) Battery charger
JPS6336219B2 (en)
JPS58148633A (en) Automatic charger
JP3601032B2 (en) Charge control device, charger, and battery pack
JPH10136577A (en) Charger
JP3145734B2 (en) Charge control circuit
JP2647146B2 (en) Secondary battery charge control device
JP3151275B2 (en) Rechargeable battery charging circuit
JPH04261342A (en) Charging circuit for secondary cell
JPS5849048A (en) Charger
JP3951296B2 (en) Charger
JP3403916B2 (en) Method and device for charging secondary battery
JP2552328B2 (en) Battery charging circuit
JPH0789719B2 (en) Secondary battery charge control circuit
JPH10150731A (en) Charger for secondary battery
JPH1014123A (en) Charging circuit of secondary battery
JPH10150730A (en) Charger and charging method for secondary battery