JPH0544438B2 - - Google Patents

Info

Publication number
JPH0544438B2
JPH0544438B2 JP60235432A JP23543285A JPH0544438B2 JP H0544438 B2 JPH0544438 B2 JP H0544438B2 JP 60235432 A JP60235432 A JP 60235432A JP 23543285 A JP23543285 A JP 23543285A JP H0544438 B2 JPH0544438 B2 JP H0544438B2
Authority
JP
Japan
Prior art keywords
silicon single
impurities
crucible
content
single crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60235432A
Other languages
Japanese (ja)
Other versions
JPS6296388A (en
Inventor
Hiroyuki Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP23543285A priority Critical patent/JPS6296388A/en
Publication of JPS6296388A publication Critical patent/JPS6296388A/en
Publication of JPH0544438B2 publication Critical patent/JPH0544438B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明はシリコン単結晶引上用石英ガラスルツ
ボの改良に関し、特に高抵抗で良質のシリコン単
結晶を引上げるために用いられるものである。 〔発明の技術的背景とその問題点〕 半導体素子を製造するために用いられるシリコ
ン単結晶は主にチヨクラルスキー法により製造さ
れている。この方法は、チヤンバー内にルツボを
回転自在に支持し、このルツボ内に原料として多
結晶シリコン及び不純物のドープ剤を装填した
後、原料を溶融し、1450℃付近の温度で種結晶を
シリコン融液に浸してルツボ及び種結晶を逆方向
に回転しながら種結晶を引上げることによりシリ
コン単結晶を製造するものである。前記ルツボと
しては純度の観点から通常石英ガラス製のものが
用いられている。 ところで、半導体素子の製造にはシリコン単結
晶に5価の不純物をドープしたn型シリコン基板
と、シリコン単結晶に3価の不純物をドープした
p型シリコン基板とが用いられる。シリコン単結
晶の抵抗値はノンドープの状態では理論的には
20kΩ・cmにもなるが、不純物をごく少量ドープ
することによりその抵抗値は極端に低下する。一
方、上記のようにシリコン単結晶引上げに石英ガ
ラスルツボを用いると、石英ガラスがシリコン融
液に溶け込むため、石英ガラス中の不純物もシリ
コン単結晶の抵抗値を低下させてしまう。したが
つて、特に高抵抗かつ高品質のシリコン単結晶を
得ようとする場合、ドープ剤のみならず、石英ガ
ラスルツボを起源とする不純物も考慮しなけれ
ば、所定の特性を有するシリコン単結晶を得るこ
とができない。 従来、石英ガラスルツボを起源とする不純物が
シリコン単結晶に取り込まれる量を極力少なくす
る手段として、シリコン融液に磁場を印加しなが
らシリコン単結晶を引上げる方法(以下、MCZ
法と記す)あるいは石英ガラスルツボの粘性を高
くして浸食を抑制する方法が知られている。 しかし、MCZ法ではシリコン融液の量に応じ
て磁場の強さを変動させる必要がある等制御が複
雑であり、所定の特性を得るための条件を設定す
るのが困難である。 また、本発明者らの研究では石英ガラスの粘性
を高くすることは、当初の予想と異なり、浸蝕量
との相関は少ないことが判明した。しかも、浸蝕
量が減少したとしても、シリコン単結晶の特性に
はそれほど顕著な影響を及ぼさないことも判明し
た。 〔発明の目的〕 本発明は上記事情を考慮してなされたものであ
り、高抵抗で高品質のシリコン単結晶を引上げる
ことができるシリコン単結晶引上用石英ガラスル
ツボを提供しようとするものである。 〔発明の概要〕 本発明者らは、高抵抗かつ高品質のシリコン単
結晶を得るためには、MCZ法やルツボの粘性を
高くする方法のように石英ガラスルツボが溶け込
む量を減少させるという考え方にもとづく手段よ
りも、石英ガラスルツボ中に含まれる不純物(シ
リコン単結晶の抵抗を極端に低下させる元素、す
なわちB、P及びAs)の量自体を減少させる方
がより効果的であることを見出した。 半導体工業において、各種治具中の不純物が半
導体単結晶や半導体素子の特性に大きな影響を及
ぼすことは周知の事実であり、上記のように不純
物を極力減少させることはどのような治具でも行
なわれている。 ただし、シリコン単結晶の引上げに用いられる
石英ガラスルツボでは、不純物の含有量をかなり
の程度減少させなければ、シリコン単結晶の抵抗
値が異常に低下してしまうことがわかつた。この
理由を以下に説明する。 一般に、シリコン中のB、P及びAsの拡散係
数はそれぞれ次式のように表わされる。 DB=2.46exp(−3.59eV/kT) DAs=24exp(−4.08eV/kT) DP=3.85exp(−3.66eV/kT) つまり、上記各式は不純物の拡散係数が温度の
関数であることを示している。しかし、実際には
不純物濃度や不純物同士の相互作用により上記式
から逸脱した異常を示す。例えばB、P、Asの
ように浅い準位を有する不純物は高温下でイオン
化し、キヤリアを放出する。そして、キヤリアは
先に拡散しようとするが、電界が発生してこれを
抑制する方向に働く結果、不純物に濃度勾配があ
る場合には逆に不純物原子の拡散が加速されるこ
とになる。したがつて、石英ガラスルツボを起源
とする不純物が濃度勾配をもつた状態でシリコン
単結晶に溶け込むと、シリコン単結晶の抵抗が異
常な低下を示す。 本発明は上記知見に基づいてなされたものであ
り、高抵抗で高品質のシリコン単結晶を得るため
に、不純物の異常拡散の原因となる石英ガラスル
ツボ中の不純物の含有量を規定したものである。 すなわち本発明のシリコン単結晶引上用石英ガ
ラスルツボは、B含有量が0.05ppm以下、P含有
量が0.06ppm以下、かつAs含有量が0.02ppm以下
であることを特徴とするものである。 本発明において、石英ガラスルツボ中のB、P
及びAsの含有量を上記のように限定したのは、
これらの不純物の含有量が上記値を超えると、上
述した異常な挙動によりシリコン単結晶の抵抗値
が異常に低下してしまい、高抵抗かつ高品質のシ
リコン単結晶が得られないためである。 〔発明の実施例〕 以下、本発明の実施例を説明する。 Bの含有量に関する検討 まず、オーストラリア産の水晶を粉砕した後、
HF処理により精製した。HF処理の時間によつ
て、P及びAsの含有量はほぼ一定で低い値であ
るが、Bの含有量が異なるNo.1〜4の4種のもの
が得られた。これらの水晶をそれぞれアーク炎で
溶融して石英ガラスルツボを作製した。各ルツボ
を用いてシリコン単結晶を引上げ、これらをスラ
イスして得られたシリコンウエハについて、不純
物濃度と抵抗値を調べた。以上の結果を下記第1
表に示す。 Pの含有量に関する検討 上記と同様に、アメリカ産及びソ連産の水晶を
粉砕した後、HF処理により精製した。HF処理
の時間によりB及びAsの含有量は一定で低い値
であるが、Pの含有量が異なるNo.5〜8の4種の
ものが得られた。これらの水晶をそれぞれアーク
炎で溶融して石英ガラスルツボを作製した。各ル
ツボを用いてシリコン単結晶を引上げ、これらを
スライスして得られたシリコンウエハについて、
不純物濃度と抵抗値を調べた。以上の結果を下記
第2表に示す。 Asの含有量に関する検討 上記と同様に、台湾産の水晶を粉砕した後、
HF処理により精製した。HF処理の時間により
B及びPの含有量はほぼ一定で低い値であるが、
Asの含有量の異なるNo.9〜12の4種のものが得
られた。これらの水晶をそれぞれアーク炎で溶融
して石英ガラスルツボを作製した。各ルツボを用
いてシリコン単結晶を引上げ、これらをスライス
して得られたシリコンウエハについて、不純物濃
度と抵抗値を調べた。以上の結果を下記第3表に
示す。 また、上記〜で検討したB、P及びAsと
含有量とシリコンウエハ中心部での抵抗値との関
係を図に示す。 なお、抵抗分布が均一になるためには、不純物
が微量であり、拡散による影響がないことが条件
となる。このためには、ウエハの抵抗値が
400Ω・cm以上であることが最低条件となる。 第1表〜第3表及び図から、Bの含有量が
0.05ppm以下、Pの含有量が0.06ppm以下、Asの
含有量が0.02ppm以下であれば、400Ω・cm以上
の高抵抗で、かつ抵抗分布の均一な高品質のシリ
コン単結晶が得られることがわかる。 更に、上述の検討結果を考慮して不純物の少な
い原料を用いて石英ガラスルツボを製造した場合
の結果を以下に示す。 まず、北欧産水晶を粉砕し、浮遊選鉱を行なつ
た後、HF処理により精製した。この水晶のB、
P及びAsの含有量は第4表に示すように、いず
れも本発明の要件を満たすものであつた。次に、
この水晶をアーク炎により溶融して石英ガラスル
ツボ(No.13)を作製した。このルツボを用いてシ
リコン単結晶を引上げ、これらをスライスして得
られたシリコンウエハについて、抵抗値を調べた
結果を第4表に併記する。 第4表から明らかなように、このルツボを用い
た場合、高抵抗で、かつ抵抗分布の均一な高品質
のシリコン単結晶を得ることができる。また、こ
のようなシリコン単結晶では不純物の濃度勾配が
小さく、シリコン単結晶中の不純物の拡散係数は
温度のみの関数となり、不純物の異常拡散が起る
可能性を極めて少ない。
[Technical Field of the Invention] The present invention relates to improvement of a quartz glass crucible for pulling silicon single crystals, and is particularly used for pulling high-resistance, high-quality silicon single crystals. [Technical background of the invention and its problems] Silicon single crystals used for manufacturing semiconductor devices are mainly manufactured by the Czyochralski method. In this method, a crucible is rotatably supported in a chamber, polycrystalline silicon and an impurity dopant are loaded into the crucible as raw materials, the raw materials are melted, and a seed crystal is fused to silicon at a temperature of around 1450°C. A silicon single crystal is produced by immersing the crucible in a liquid and pulling up the seed crystal while rotating the crucible and the seed crystal in opposite directions. The crucible is usually made of quartz glass from the viewpoint of purity. Incidentally, in the manufacture of semiconductor devices, an n-type silicon substrate in which a silicon single crystal is doped with a pentavalent impurity and a p-type silicon substrate in which a silicon single crystal is doped with a trivalent impurity are used. Theoretically, the resistance value of a silicon single crystal in an undoped state is
The resistance value can be as high as 20 kΩ·cm, but by doping a very small amount of impurities, the resistance value is drastically reduced. On the other hand, when a quartz glass crucible is used to pull a silicon single crystal as described above, since the quartz glass dissolves in the silicon melt, impurities in the quartz glass also reduce the resistance value of the silicon single crystal. Therefore, when trying to obtain a silicon single crystal with particularly high resistance and high quality, it is necessary to take into consideration not only the dopant but also the impurities originating from the silica glass crucible. can't get it. Conventionally, as a means to minimize the amount of impurities originating from silica glass crucibles incorporated into silicon single crystals, a method of pulling silicon single crystals while applying a magnetic field to silicon melt (hereinafter referred to as MCZ) has been proposed.
A known method is to increase the viscosity of a silica glass crucible to suppress erosion. However, in the MCZ method, control is complicated, such as the need to vary the strength of the magnetic field depending on the amount of silicon melt, and it is difficult to set conditions to obtain predetermined characteristics. Further, in the research conducted by the present inventors, it was found that increasing the viscosity of quartz glass has little correlation with the amount of erosion, contrary to initial expectations. Furthermore, it has been found that even if the amount of corrosion is reduced, it does not significantly affect the properties of silicon single crystals. [Object of the Invention] The present invention has been made in consideration of the above circumstances, and aims to provide a quartz glass crucible for pulling silicon single crystals that can pull high-resistance, high-quality silicon single crystals. It is. [Summary of the Invention] The present inventors have developed the idea that in order to obtain high-resistivity and high-quality silicon single crystals, the amount of melting in a silica glass crucible should be reduced, such as the MCZ method or a method of increasing the viscosity of the crucible. found that it is more effective to reduce the amount of impurities (elements that extremely reduce the resistance of silicon single crystals, such as B, P, and As) contained in a silica glass crucible than the methods based on Ta. In the semiconductor industry, it is a well-known fact that impurities in various jigs greatly affect the characteristics of semiconductor single crystals and semiconductor elements, and it is important to reduce impurities as much as possible in any jig as described above. It is. However, it has been found that in silica glass crucibles used for pulling silicon single crystals, unless the content of impurities is significantly reduced, the resistance value of the silicon single crystals will drop abnormally. The reason for this will be explained below. Generally, the diffusion coefficients of B, P, and As in silicon are expressed by the following equations. D B = 2.46exp (-3.59eV/kT) D As = 24exp (-4.08eV/kT) D P = 3.85exp (-3.66eV/kT) In other words, each of the above equations shows that the impurity diffusion coefficient is a function of temperature. It shows that there is. However, in reality, abnormalities that deviate from the above equation occur due to impurity concentrations and interactions between impurities. For example, impurities having shallow levels such as B, P, and As are ionized at high temperatures and emit carriers. The carriers then try to diffuse first, but as a result of the generation of an electric field that acts to suppress this, the diffusion of impurity atoms is accelerated when there is a concentration gradient of impurities. Therefore, when impurities originating from a quartz glass crucible are dissolved into a silicon single crystal with a concentration gradient, the resistance of the silicon single crystal shows an abnormal decrease. The present invention has been made based on the above knowledge, and in order to obtain high-resistance, high-quality silicon single crystals, the content of impurities in a quartz glass crucible that causes abnormal diffusion of impurities is specified. be. That is, the quartz glass crucible for pulling silicon single crystals of the present invention is characterized in that the B content is 0.05 ppm or less, the P content is 0.06 ppm or less, and the As content is 0.02 ppm or less. In the present invention, B, P in a quartz glass crucible
The content of As and As was limited as above.
This is because if the content of these impurities exceeds the above value, the resistance value of the silicon single crystal will abnormally decrease due to the above-mentioned abnormal behavior, making it impossible to obtain a high-resistance, high-quality silicon single crystal. [Embodiments of the Invention] Examples of the present invention will be described below. Study on B content First, after crushing Australian crystal,
Purified by HF treatment. Depending on the time of the HF treatment, the contents of P and As were almost constant and low, but four types, Nos. 1 to 4, with different contents of B were obtained. Each of these crystals was melted with an arc flame to produce a quartz glass crucible. Silicon single crystals were pulled using each crucible, and silicon wafers obtained by slicing these were examined for impurity concentration and resistance value. The above results are shown below.
Shown in the table. Study on P content In the same manner as above, crystals from the United States and the Soviet Union were crushed and then purified by HF treatment. The B and As contents were constant and low depending on the HF treatment time, but four types, Nos. 5 to 8, with different P contents were obtained. Each of these crystals was melted with an arc flame to produce a quartz glass crucible. Regarding silicon wafers obtained by pulling silicon single crystals using each crucible and slicing them,
The impurity concentration and resistance value were investigated. The above results are shown in Table 2 below. Consideration of As content After crushing Taiwanese crystal in the same way as above,
Purified by HF treatment. The contents of B and P are almost constant and low depending on the time of HF treatment, but
Four types, Nos. 9 to 12, having different As contents were obtained. Each of these crystals was melted with an arc flame to produce a quartz glass crucible. Silicon single crystals were pulled using each crucible, and silicon wafers obtained by slicing these were examined for impurity concentration and resistance value. The above results are shown in Table 3 below. Further, the relationship between the contents of B, P, and As examined in ~ above and the resistance value at the center of the silicon wafer is shown in the figure. Note that in order for the resistance distribution to be uniform, it is necessary that the amount of impurities be small and that there be no influence due to diffusion. For this purpose, the resistance value of the wafer must be
The minimum requirement is 400Ω・cm or more. From Tables 1 to 3 and the figures, the content of B is
If the content of P is 0.05ppm or less, the content of P is 0.06ppm or less, and the content of As is 0.02ppm or less, a high quality silicon single crystal with a high resistance of 400Ω・cm or more and a uniform resistance distribution can be obtained. I understand. Furthermore, the results of manufacturing a silica glass crucible using raw materials with few impurities in consideration of the above study results are shown below. First, Scandinavian quartz was crushed, subjected to flotation, and then purified by HF treatment. This crystal B,
As shown in Table 4, the contents of P and As both met the requirements of the present invention. next,
This crystal was melted with an arc flame to produce a silica glass crucible (No. 13). Table 4 also shows the results of examining the resistance values of silicon wafers obtained by pulling silicon single crystals using this crucible and slicing them. As is clear from Table 4, when this crucible is used, a high quality silicon single crystal with high resistance and uniform resistance distribution can be obtained. Further, in such a silicon single crystal, the concentration gradient of impurities is small, and the diffusion coefficient of impurities in the silicon single crystal is a function only of temperature, so that the possibility of abnormal diffusion of impurities occurring is extremely small.

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明のシリコン単結晶引上
用石英ガラスルツボによれば、高抵抗かつ高品質
のシリコン単結晶を引上げることができ、ひいて
は半導体素子の特性を向上できる等顕著な効果を
奏するものである。
As detailed above, the quartz glass crucible for pulling silicon single crystals of the present invention can pull high-resistance and high-quality silicon single crystals, and has remarkable effects such as improving the characteristics of semiconductor devices. It is something to play.

【図面の簡単な説明】[Brief explanation of the drawing]

図はB、P及びAsについての不純物濃度とシ
リコン単結晶の抵抗値との関係を示す特性図であ
る。
The figure is a characteristic diagram showing the relationship between the impurity concentration of B, P, and As and the resistance value of a silicon single crystal.

Claims (1)

【特許請求の範囲】[Claims] 1 B含有量が0.05ppm以下、P含有量が
0.06ppm以下、かつAs含有量が0.02ppm以下であ
ることを特徴とするシリコン単結晶引上用石英ガ
ラスルツボ。
1 B content is 0.05ppm or less, P content is
A quartz glass crucible for pulling a silicon single crystal, characterized in that the As content is 0.06 ppm or less and the As content is 0.02 ppm or less.
JP23543285A 1985-10-23 1985-10-23 Quartz glass crucible for pulling up silicon single crystal Granted JPS6296388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23543285A JPS6296388A (en) 1985-10-23 1985-10-23 Quartz glass crucible for pulling up silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23543285A JPS6296388A (en) 1985-10-23 1985-10-23 Quartz glass crucible for pulling up silicon single crystal

Publications (2)

Publication Number Publication Date
JPS6296388A JPS6296388A (en) 1987-05-02
JPH0544438B2 true JPH0544438B2 (en) 1993-07-06

Family

ID=16986019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23543285A Granted JPS6296388A (en) 1985-10-23 1985-10-23 Quartz glass crucible for pulling up silicon single crystal

Country Status (1)

Country Link
JP (1) JPS6296388A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229735A (en) * 1989-02-28 1990-09-12 Shin Etsu Chem Co Ltd Quartz glass member
JPH07102999B2 (en) * 1989-10-27 1995-11-08 三菱マテリアル株式会社 Quartz crucible for pulling silicon single crystal
JP2533643Y2 (en) * 1989-12-06 1997-04-23 三菱マテリアル 株式会社 Quartz crucible for pulling silicon single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125290A (en) * 1977-04-08 1978-11-01 Toshiba Ceramics Co Carbon electrode for melting high purity stlica glass
JPS5849519A (en) * 1981-09-07 1983-03-23 Toyota Motor Corp Body floor structure of automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125290A (en) * 1977-04-08 1978-11-01 Toshiba Ceramics Co Carbon electrode for melting high purity stlica glass
JPS5849519A (en) * 1981-09-07 1983-03-23 Toyota Motor Corp Body floor structure of automobile

Also Published As

Publication number Publication date
JPS6296388A (en) 1987-05-02

Similar Documents

Publication Publication Date Title
US4417943A (en) Method for controlling the oxygen level of silicon rods pulled according to the Czochralski technique
KR20030031192A (en) Method of producing sisicon wafer and silicon wafer
JP2000044389A (en) Production of epitaxial silicon single crystal wafer and epitaxial silicon single crystal wafer
JP2003124219A (en) Silicon wafer and epitaxial silicon wafer
DE112014002781T5 (en) Oxygen precipitation in heavily doped silicon wafers cut from ingots grown by the Czochralski method
JPH0416435B2 (en)
JP2002226295A (en) Control method for manufacturing process of silicon single crystal by czochralski method, manufacturing method for high resistance-silicon single crystal by czochralski method, and silicon single crystal
JP4529416B2 (en) Manufacturing method of silicon single crystal wafer and silicon single crystal wafer
US10211066B2 (en) Silicon epitaxial wafer and method of producing same
US6056817A (en) Process for producing semi-insulating InP single crystal and semi-insulating InP single crystal substrate
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
KR101001981B1 (en) Silicon Wafer for Epitaxial Growth, Epitaxial Wafer, and Its Manufacturing Method
JPH0544438B2 (en)
JP2005206391A (en) Method for guaranteeing resistivity of silicon single crystal substrate, method for manufacturing silicon single crystal substrate, and silicon single crystal substrate
Pivac et al. Comparative studies of EFG poly-Si grown by different procedures
JPS6390141A (en) Manufacture of semiconductor substrate
JP2562579B2 (en) Single crystal manufacturing method
JP4126879B2 (en) Epitaxial wafer manufacturing method
JP2505222B2 (en) Method for manufacturing semi-insulating GaAs substrate
JP2004224582A (en) Method of manufacturing single crystal
JPH0474320B2 (en)
JP2000072593A (en) Single silicon crystal wafer doped with antimony and epitaxial silicon wafer and their production
JPH05121319A (en) Manufacture of semiconductor device
JP3793934B2 (en) Method for producing semi-insulating InP single crystal
JPS6270298A (en) Indium phosphide single crystal and production thereof