JPH0541911B2 - - Google Patents

Info

Publication number
JPH0541911B2
JPH0541911B2 JP60299541A JP29954185A JPH0541911B2 JP H0541911 B2 JPH0541911 B2 JP H0541911B2 JP 60299541 A JP60299541 A JP 60299541A JP 29954185 A JP29954185 A JP 29954185A JP H0541911 B2 JPH0541911 B2 JP H0541911B2
Authority
JP
Japan
Prior art keywords
valve
connecting pipe
electromagnet
box
valve box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60299541A
Other languages
Japanese (ja)
Other versions
JPS62158965A (en
Inventor
Katsuji Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60299541A priority Critical patent/JPS62158965A/en
Publication of JPS62158965A publication Critical patent/JPS62158965A/en
Publication of JPH0541911B2 publication Critical patent/JPH0541911B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明はルームエアコンデイシヨナー等の空気
調和機の切替弁装置に関する。
Detailed Description of the Invention <Technical Field> The present invention relates to a switching valve device for an air conditioner such as a room air conditioner.

<従来技術> 従来例を、種々の流路切替弁のうち、四方電磁
弁を例にとり説明する。従来使用の四方切替弁1
は、冷房サイクルにおける圧縮機からの冷媒の流
れの方向を、基本的には、室内側熱交換器2から
室外側交換器3へ切替え、また、暖房サイクルに
おいては室外側熱交換器3から室内側熱交換器2
へ切替え、室内を冷房または暖房するのに用いる
一般的に切替弁の構造は第8,9図に示すごと
く、密閉された円筒状弁本体4の周面の一端に圧
縮機5の吐出管に接続する高圧ガス用接続管Dを
設け、周面の他端に圧縮機5の吸入管に接続する
低圧冷媒用接続管Sを中央にしてその両側に室内
側熱交換器2に接続する接続管Eと、室外側熱交
換器3に接続する接続管Cとを並設し、前記接続
管D,S,E,Cはそれぞれ円筒形弁本体4内に
開口しており、並設した接続管S,E,Cの開口
端は弁本体4の長手軸方向に面一に弁シート6で
弁本体4に固定されている。
<Prior Art> A conventional example will be described using a four-way solenoid valve as an example of various flow path switching valves. Conventional four-way switching valve 1
Basically, the direction of the flow of refrigerant from the compressor in the cooling cycle is switched from the indoor heat exchanger 2 to the outdoor exchanger 3, and in the heating cycle, the direction of the refrigerant flow is changed from the outdoor heat exchanger 3 to the outdoor heat exchanger 3. Inner heat exchanger 2
Generally, the structure of a switching valve used to cool or heat a room is as shown in FIGS. A connecting pipe D for high-pressure gas is provided at the other end of the peripheral surface, and connecting pipes connecting to the indoor heat exchanger 2 are provided on both sides of the connecting pipe S for low-pressure refrigerant, which is connected to the suction pipe of the compressor 5, in the center. E and a connecting pipe C that connects to the outdoor heat exchanger 3 are installed in parallel, and each of the connecting pipes D, S, E, and C opens into the cylindrical valve body 4. The opening ends of S, E, and C are fixed to the valve body 4 by a valve seat 6 so as to be flush with each other in the longitudinal axis direction of the valve body 4.

また、弁本体4内部には前記弁シート6の開口
面上を長手軸方向に摺動し、接続管Sと接続管
E、または接続管Sと接続管Cとを択一的に連通
せしめる断面逆U字形状をした摺動弁7が内巻さ
れ、摺動弁7は、その両側に配設されたピストン
体8,9に連結板20で連結され、弁本体4の端
面を密閉する密閉部材10とピストン体8との空
間R1、および他側の密閉部材11とピストン体
9との間の空間R2にはそれぞれ高圧ガス、また
は低圧ガスを択一的に切替えて導入する毛細管1
2,13が接続され、また前記接続管Sに低圧ガ
ス用毛細管14が設けられており、各毛細管1
2,13,14は小さなニードルバルブ用空間R
3,R4およびその中間に連通されている。
Further, inside the valve body 4, there is provided a cross section that slides in the longitudinal direction on the opening surface of the valve seat 6 and selectively connects the connecting pipe S and the connecting pipe E, or the connecting pipe S and the connecting pipe C. A sliding valve 7 having an inverted U shape is wound inwardly, and the sliding valve 7 is connected to piston bodies 8 and 9 disposed on both sides thereof by a connecting plate 20, which seals the end face of the valve body 4. A capillary tube 1 selectively introduces high pressure gas or low pressure gas into the space R1 between the member 10 and the piston body 8 and the space R2 between the sealing member 11 on the other side and the piston body 9.
2 and 13 are connected, and the connecting pipe S is provided with a low pressure gas capillary 14, and each capillary 1
2, 13, 14 are spaces R for small needle valves
3, R4 and the middle thereof.

今、圧縮機5から吐出された高圧ガスは接続管
Dを通り、ピストン体8,9に設けられた小孔を
通り空間R1,R2に流れる。この時コイル15
が無通電の時はニードルバルブ16がスプリング
17により空間R4を密閉し、互いにピン18を
介して対向する反対側のニードルバルブ19が開
き、小空間R3は解放される。したがつて、空間
R1と小空間R4の圧力は高圧、空間R2は低圧
となり、この圧力差によつてピストン体8,9は
空間R2の方に移動する。この時、摺動弁7も連
結板20により同様に移動して接続管E,Sの流
路が連通する。この時の状態でサイクルは冷房状
態となつている。
Now, the high pressure gas discharged from the compressor 5 passes through the connecting pipe D, passes through the small holes provided in the piston bodies 8 and 9, and flows into the spaces R1 and R2. At this time coil 15
When the needle valve 16 is not energized, the spring 17 seals the space R4, and the opposite needle valves 19 facing each other via the pin 18 open, and the small space R3 is released. Therefore, the pressures in the space R1 and the small space R4 are high, and the pressure in the space R2 is low, and this pressure difference causes the piston bodies 8, 9 to move toward the space R2. At this time, the sliding valve 7 is similarly moved by the connecting plate 20, and the flow paths of the connecting pipes E and S are brought into communication. At this time, the cycle is in the cooling state.

コイル15に通電した時は、その励磁力でニー
ドルバルブ16,19を上記と逆に移動させる。
そのためピストン体8,9は空間R1方向へ移動
して摺動弁7により接続管C,Sの流路が連通し
て暖房サイクル状態となる。ただし、運転中はコ
イル15に連続通電が必要である。
When the coil 15 is energized, its excitation force moves the needle valves 16 and 19 in the opposite direction.
Therefore, the piston bodies 8 and 9 move toward the space R1, and the flow paths of the connecting pipes C and S are communicated with each other by the sliding valve 7, thereby entering a heating cycle state. However, during operation, the coil 15 must be continuously energized.

以上が従来例の四方切替電磁弁の動作原理であ
り、図に示すごとく、非常に複雑精巧な構造とな
つており、部品点数も約60〜70点にもおよび高価
な電磁弁となつている。
The above is the operating principle of the conventional four-way switching solenoid valve.As shown in the figure, it has a very complex and elaborate structure, and has about 60 to 70 parts, making it an expensive solenoid valve. .

また、高低圧力差を利用している原理から、暖
房運転中での除霜切替えに際し、動作中の異常音
を防止するために、ある程度回路内の圧力差を平
衡状態にさせた後に切替る方式がユーザーニーズ
とも相まつて一般的になつているが、外気が低温
状態になつた時に前記方式によれば圧力差が少量
になりすぎ切替えに必要な圧力差が保持できなく
て切替できないという欠点もでてきているのが現
状である。
In addition, due to the principle of using the difference between high and low pressures, when switching to defrosting during heating operation, the system switches after the pressure difference in the circuit is balanced to a certain extent in order to prevent abnormal noises during operation. However, when the outside air becomes cold, the pressure difference becomes too small and the pressure difference required for switching cannot be maintained, making it impossible to switch. This is what is happening now.

<目的> 本発明は、容易かつ正確に熱媒の流路切換が可
能で、大巾な部品点数の削減を図り得る切替弁装
置の提供を目的とする。
<Objective> An object of the present invention is to provide a switching valve device that can easily and accurately switch the flow path of a heat medium and can significantly reduce the number of parts.

<実施例> 以下、本発明の実施例を第1図ないし第7図に
示す空気調和機のロータリー式四方切替弁装置に
基づいて説明すると、これは、一側に単数の流体
流路が他側に複数の流体流路がそれぞれ形成され
た弁箱と、該弁箱内に回転自在に内装された弁子
と、該弁子に取付けられた永久磁石と、前記弁箱
の外部に配された磁極変換可能な電磁石とを具
え、前記永久磁石は一個または複数個とされ、前
記電磁石の電磁数は前記永久磁石の数よりも大に
設定され、前記弁子の回転角度は弁子の回転中心
と隣り合う前記電磁石とでなす角度よりも小に設
定されるとともに隣り合う電磁石の磁極は異極と
されたものである。
<Example> Hereinafter, an example of the present invention will be explained based on a rotary four-way switching valve device for an air conditioner shown in FIGS. 1 to 7. A valve box having a plurality of fluid flow paths formed on each side thereof, a valve element rotatably installed inside the valve box, a permanent magnet attached to the valve element, and a permanent magnet disposed outside the valve box. The number of permanent magnets is one or more, the number of electromagnets of the electromagnet is set to be larger than the number of permanent magnets, and the rotation angle of the valve element is set to be equal to the rotation angle of the valve element. The angle between the center and the adjacent electromagnets is set to be smaller than that, and the magnetic poles of the adjacent electromagnets are different.

圧縮機5の一側と非磁性体の中空円柱状弁箱A
とを連通する第一接続管Dと、前記圧縮機5の他
側と前記弁箱Aとを連通する第二接続管Sと、室
内側熱交換器2(蒸発器)と前記弁箱Aとを連通
する第三接続管Eと室外側熱交換器3(凝縮器)
と前記弁箱Aとを連通する第四接続管Cとを具
え、前記第一接続管Dまたは第二接続管Sと前記
第三接続管Eまたは第四接続管Cとを連通するた
めの弁子21が前記弁箱Aに回動自在に内装さ
れ、該弁子21に永久磁石22が取り付けられ、
前記弁箱Aに前記永久磁石22と互いに引き付け
または反発し合う二箇の前記電磁石23,24が
設けられている。
One side of the compressor 5 and a hollow cylindrical valve box A made of non-magnetic material
a first connecting pipe D that communicates with The third connecting pipe E that communicates with the outdoor heat exchanger 3 (condenser)
and a fourth connecting pipe C communicating with the valve box A, the valve for connecting the first connecting pipe D or the second connecting pipe S and the third connecting pipe E or the fourth connecting pipe C. A valve element 21 is rotatably installed inside the valve box A, a permanent magnet 22 is attached to the valve element 21,
The valve box A is provided with two electromagnets 23 and 24 that attract or repel the permanent magnet 22.

前記第一接続管Dは前記圧縮機5に取り付けら
れた吐出管と連通され、前記第二接続管Sは前記
圧縮機5に取り付けられた吸入管とそれぞれ連通
され、前記室内側熱交換器2の一側と室外熱交換
器3の一側とは毛細管24を介してそれぞれ連通
される。
The first connecting pipe D communicates with a discharge pipe attached to the compressor 5, the second connecting pipe S communicates with a suction pipe attached to the compressor 5, and the indoor heat exchanger 2 One side and one side of the outdoor heat exchanger 3 are communicated with each other via a capillary tube 24 .

そして、前記第二接続管S、第三接続管E、第
四接続管Cは前記弁箱Aの底壁A1に直角に取付
けられ、かつ第二接続管Sを狭んで並設されて、
前記弁箱A内に開口されている。また前記第一接
続管Dは前記弁箱Aの天壁A2の表面に直角に取
り付けられ、弁箱A内に開口されている。
The second connecting pipe S, the third connecting pipe E, and the fourth connecting pipe C are installed at right angles to the bottom wall A1 of the valve box A, and are arranged side by side with the second connecting pipe S narrowed,
It is opened into the valve box A. Further, the first connecting pipe D is attached at right angles to the surface of the top wall A2 of the valve box A, and is opened into the valve box A.

また、前記弁箱Aの下部外周に二箇の前記電磁
石23,24を内装した内側開放の断面コ字型の
外筒25が外嵌固着され、第4,5図で示すごと
く、前記両電磁石23,24は弁箱Aを中心とし
てその中心角度がβとなる方向に配設される。
Further, an outer cylinder 25 having a U-shaped cross section and open on the inside and housing the two electromagnets 23 and 24 is fitted and fixed on the lower outer periphery of the valve box A, and as shown in FIGS. , 24 are arranged in a direction with the center angle of the valve box A being β.

また、前記弁箱Aの内周下部に該弁箱Aの内部
に突出する平面視小長方形の案内突子27が形成
され、該案内突子27は互いに対向位置(180°間
隔)に配される。
Furthermore, guide protrusions 27 having a small rectangular shape in plan view are formed at the lower part of the inner circumference of the valve box A, and the guide protrusions 27 are arranged at mutually opposing positions (180° intervals). Ru.

また、前記弁子21は前記弁箱Aの内径と略同
径に形成されるとともに前記弁箱Aの内空の略半
分の高さを有せしめられ、前記弁子21の外周に
は前記案内突子27に嵌合する一対の被案内溝2
1a,21aが形成され、該両被案内溝21a,
21aはそれぞれ前記弁箱Aの周長の1/4程度の
長さを有せしめられている。そして各被案内溝2
1a,21aの両端と前記弁子21の中心とを結
ぶ角度は前記角度βよりも小とされる(図中、α
1)。そして、前記弁子21の下面は前記底壁A
1の裏面に当接され、このことによつて前記弁子
21の上側には連通用空間R5が形成される。
Further, the valve element 21 is formed to have approximately the same diameter as the inner diameter of the valve case A, and has a height approximately half of the inner space of the valve case A, and the outer periphery of the valve element 21 is provided with the guide. A pair of guided grooves 2 that fit into the projections 27
1a, 21a are formed, both guided grooves 21a,
21a each has a length of about 1/4 of the circumferential length of the valve box A. and each guided groove 2
The angle connecting both ends of 1a and 21a and the center of the valve element 21 is smaller than the angle β (in the figure, α
1). The lower surface of the valve 21 is connected to the bottom wall A.
1, thereby forming a communication space R5 above the valve element 21.

また、前記弁子21の下面で、前記両被案内溝
21a,21aの内側に前記第一接続管Dを、前
記第三接続管Eまたは第四接続管Cに連通するた
めの弧状の第一連通凹部26Aと、前記第二接続
管Sを前記第三接続管Eまたは第四接続管Cに連
通する弧状の第二連通凹部26Bとが形成され、
該第一連通凹部26Aは、その一端に前記弁子2
1を貫通する貫通孔21bが形成されている。
Further, on the lower surface of the valve 21, an arc-shaped first connecting pipe D is connected to the third connecting pipe E or the fourth connecting pipe C inside the guided grooves 21a, 21a. A communication recess 26A and an arcuate second communication recess 26B that communicates the second connection pipe S with the third connection pipe E or the fourth connection pipe C are formed,
The first communicating recess 26A has the valve 2 at one end thereof.
A through hole 21b penetrating through 1 is formed.

そして、前記永久磁石22はその外面が前記弁
子21の外周の曲率と一致せしめられるととも
に、該弁子21の外周面と同一曲面上で前記両連
通部26A,26Bの中間に位置するように前記
弁子21に埋設されている。
The outer surface of the permanent magnet 22 is made to match the curvature of the outer periphery of the valve element 21, and is positioned on the same curved surface as the outer periphery of the valve element 21, midway between the communicating parts 26A and 26B. It is embedded in the valve 21.

図中、23a,24aは前記電磁石23の磁極
発生部である。
In the figure, 23a and 24a are magnetic pole generating parts of the electromagnet 23.

次に作用を説明すると、今、圧縮機5から吐出
された高圧ガス(熱媒)は第一接続管Dを通り連
通用空間R5内に流れ、弁子21に形成された貫
通孔21bを経て第四接続管Cから室外側熱交換
器3→毛細管24→室内側熱交換器2→第三接続
管Eから、弁箱A内に入り込み、弁子21に形成
された第二連通凹部26Bを経て第二接続管Sか
ら圧縮機5に吸入される。このとき、弁子21の
下面は第一接続管Dからの高圧ガスにより、並設
する第二、三、四接続管S,E,Cの開口端と押
圧されている。
Next, to explain the operation, the high pressure gas (thermal medium) discharged from the compressor 5 now flows into the communication space R5 through the first connecting pipe D, and passes through the through hole 21b formed in the valve element 21. From the fourth connecting pipe C, the outdoor heat exchanger 3 → the capillary tube 24 → the indoor heat exchanger 2 → enter the valve box A from the third connecting pipe E, and connect the second communication recess 26B formed in the valve element 21. Then, it is sucked into the compressor 5 through the second connecting pipe S. At this time, the lower surface of the valve element 21 is pressed by the high pressure gas from the first connecting pipe D against the open ends of the second, third, and fourth connecting pipes S, E, and C arranged in parallel.

この状態が冷房サイクルであり、弁箱A内の弁
子21の状態は第6図のようになる。なお、図中
に示す電磁石23の磁極発生部23a,24aは
電磁石23に無通電状態で単に永久磁石22と吸
引状態にあるだけである。また微少電流等を電磁
石23に通電しても良いことはもちろんである。
This state is the cooling cycle, and the state of the valve 21 in the valve box A is as shown in FIG. Note that the magnetic pole generating portions 23a and 24a of the electromagnet 23 shown in the figure are simply in an attractive state with the permanent magnet 22 when the electromagnet 23 is not energized. It goes without saying that a minute current or the like may be applied to the electromagnet 23.

次に、第5図により暖房サイクルへの切替につ
いて説明する。電磁石23に瞬時(0.5秒程度)
通電(冷房時と逆方向へ電流を流す)して磁極の
変換を行なうと、たとえば、永久磁石22に対向
する電磁石23の内側磁極発生部23aは永久磁
石22の外側極(N極)と同じN極となつて反発
状態となる。また、電磁石23と隣り合う電磁石
24の内側磁極発生部24aはS極となるのでこ
れによつて発生するトルクにより弁子21は瞬間
的に角度αだけ時計方向に回転する。この時、α
<βであり、βを弁子21の周縁上の長さに変換
すると、被案内溝21a,21aの長さとなるの
で(α≒α1)、案内突子27が各被案内溝21
a,21aの片端面に当たつて弁子21の回転の
ストツパー機能を果たす。そして、圧縮機5から
吐出された高圧ガスは第一接続管Dより空間R5
に入り込み、第一連通凹部26Aの貫通孔21b
→第三接続管E→室内側熱交換器2→毛細管24
→室外側熱交換器3→第四接続管Cを経て第二連
通凹部26Bを通り圧縮機5に吸入される。
Next, switching to the heating cycle will be explained with reference to FIG. Instantaneous (about 0.5 seconds) on electromagnet 23
When the magnetic poles are changed by applying current (current is passed in the opposite direction to that during cooling), for example, the inner magnetic pole generating portion 23a of the electromagnet 23 facing the permanent magnet 22 is the same as the outer pole (N pole) of the permanent magnet 22. It becomes the north pole and enters a repulsive state. Furthermore, since the inner magnetic pole generating portion 24a of the electromagnet 24 adjacent to the electromagnet 23 becomes an S pole, the valve element 21 momentarily rotates clockwise by an angle α due to the torque generated thereby. At this time, α
<β, and when β is converted to the length on the circumference of the valve 21, it becomes the length of the guided grooves 21a, 21a (α≒α1), so the guide projection 27 is connected to each guided groove 21.
a, 21a serves as a stopper for the rotation of the valve element 21. Then, the high pressure gas discharged from the compressor 5 is passed through the space R5 through the first connecting pipe D.
into the through hole 21b of the first communicating recess 26A.
→Third connecting pipe E→Indoor heat exchanger 2→Capillary tube 24
->Outdoor heat exchanger 3 -> Fourth connection pipe C, and then passed through the second communication recess 26B and sucked into the compressor 5.

以上述べたごとく、容易かつ正確に熱媒の流路
の切替ができ、従来のごとく圧力差や暖房運転中
の連続通電等も必要とせず、切替弁の構造も極シ
ンプルであり、従来例の60〜70点の部品を10点程
度に減少するとともに製造が簡単で、かつ大巾に
安価なロータリー電磁弁としての切替え弁装置が
提供できる。
As mentioned above, the heat medium flow path can be easily and accurately switched, there is no need for pressure differences or continuous energization during heating operation, etc., and the structure of the switching valve is extremely simple. It is possible to provide a switching valve device as a rotary solenoid valve that is easy to manufacture and extremely inexpensive, reducing the number of parts from 60 to 70 to about 10.

また、他の実施例として第7図のように上記実
施例の電磁石23,24に対向して二箇の電磁石
28,29を設けて合計四個の該電磁石23,2
4,28,29の磁極変換を行なつて冷、暖房サ
イクルの切替を行なつてもよい。この場合は強い
トルクの発生いより、より確実に冷、暖房サイク
ルの切替が可能となる。他の構成は上記実施例と
同様である。
In addition, as another embodiment, as shown in FIG. 7, two electromagnets 28 and 29 are provided opposite the electromagnets 23 and 24 of the above embodiment, resulting in a total of four electromagnets 23 and 2.
4, 28, and 29 may be performed to switch between cooling and heating cycles. In this case, the generation of strong torque makes it possible to switch between cooling and heating cycles more reliably. The other configurations are the same as those of the above embodiment.

<効果> 以上の説明から明らかな通り、本発明は、一側
に単数の流体流路が他側に複数の流体流路がそれ
ぞれ形成された弁箱と、該弁箱内に回転自在に内
装された弁子と、該弁子に取付けられた永久磁石
と、前記弁箱の外部に配された磁極変換可能な電
磁石とを具え、前記永久磁石は一個または複数個
とされ、前記電磁石の電磁数は前記永久磁石の数
よりも大に設定され、前記弁子の回転角度は弁子
の回転中心と隣り合う前記電磁石とでなす角度よ
りも小に設定されたことを特徴とする切替弁装置
に関するものである。
<Effects> As is clear from the above description, the present invention provides a valve box in which a single fluid flow path is formed on one side and a plurality of fluid flow paths are formed on the other side, and a rotatable internal structure inside the valve box. the valve body, a permanent magnet attached to the valve body, and an electromagnet whose magnetic pole is changeable arranged outside the valve body, the permanent magnet being one or more, and the electromagnet of the electromagnet being The number of permanent magnets is set to be larger than the number of permanent magnets, and the rotation angle of the valve element is set to be smaller than the angle formed between the rotation center of the valve element and the adjacent electromagnet. It is related to.

したがつて、本発明によれば、電磁石に通電し
て、弁箱内に取り付けられた永久磁石と引き付け
または反発する際のトルクを利用するという簡単
な構成で、容易かつ正確に熱媒の流路切換が可能
で、大巾な部品点数の削減を図り得るといつた優
れた効果がある。
Therefore, according to the present invention, the flow of the heat medium can be easily and accurately achieved with a simple configuration in which the electromagnet is energized and the torque generated when it attracts or repels the permanent magnet installed in the valve box is used. It has excellent effects such as being able to switch paths and greatly reducing the number of parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の切替弁装置の平面図、第2図
は同じくその側面図、第3図は同じくその横断面
図、第4図は同じくその冷房サイクルを示す一部
断面図、第5図は同じくその暖房サイクルを示す
一部断面図、第6図は同じく空気調和機全体の回
路図、第7図は他の実施例を示す切替弁装置の一
部断面図、第8図は従来の空気調和機の電磁弁の
一部断面を示す側面図、第9図は同じく回路図で
ある。 A:弁箱、C:第四接続管、D:第一接続管、
E:第三接続管、S:第二接続管、2:室内熱交
換器、3:室外熱交換器、5:圧縮機、21:弁
子、21a:被案内溝、22,22a:永久磁
石、23,24:電磁石。25:外筒。
FIG. 1 is a plan view of the switching valve device of the present invention, FIG. 2 is a side view thereof, FIG. 3 is a cross-sectional view thereof, FIG. 4 is a partial sectional view showing the cooling cycle, and FIG. The figure is a partial sectional view showing the heating cycle, FIG. 6 is a circuit diagram of the entire air conditioner, FIG. 7 is a partial sectional view of a switching valve device showing another embodiment, and FIG. 8 is a conventional one. FIG. 9 is a side view showing a partial cross section of the solenoid valve of the air conditioner, and FIG. 9 is a circuit diagram as well. A: Valve box, C: Fourth connecting pipe, D: First connecting pipe,
E: Third connecting pipe, S: Second connecting pipe, 2: Indoor heat exchanger, 3: Outdoor heat exchanger, 5: Compressor, 21: Valve, 21a: Guided groove, 22, 22a: Permanent magnet , 23, 24: Electromagnet. 25: Outer cylinder.

Claims (1)

【特許請求の範囲】[Claims] 1 一側に単数の流体流路が他側に複数の流体流
路がそれぞれ形成された弁箱と、該弁箱内に回転
自在に内装された弁子と、該弁子に取付けられた
永久磁石と、前記弁箱の外部に配された磁極変換
可能な電磁石とを具え、前記永久磁石は一個また
は複数個とされ、前記電磁石の電磁数は前記永久
磁石の数よりも大に設定され、前記弁子の回転角
度は弁子の回転中心と隣り合う前記電磁石とでな
す角度よりも小に設定されたことを特徴とする切
替弁装置。
1. A valve box in which a single fluid passage is formed on one side and a plurality of fluid passages on the other side, a valve rotatably installed inside the valve box, and a permanent valve attached to the valve housing. comprising a magnet and an electromagnet whose magnetic poles are changeable and arranged outside the valve box, the number of the permanent magnets being one or more, and the number of electromagnets of the electromagnet being set to be larger than the number of the permanent magnets; The switching valve device is characterized in that the rotation angle of the valve element is set to be smaller than the angle formed between the rotation center of the valve element and the adjacent electromagnet.
JP60299541A 1985-12-28 1985-12-28 Changeover valve gear Granted JPS62158965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60299541A JPS62158965A (en) 1985-12-28 1985-12-28 Changeover valve gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60299541A JPS62158965A (en) 1985-12-28 1985-12-28 Changeover valve gear

Publications (2)

Publication Number Publication Date
JPS62158965A JPS62158965A (en) 1987-07-14
JPH0541911B2 true JPH0541911B2 (en) 1993-06-24

Family

ID=17873944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60299541A Granted JPS62158965A (en) 1985-12-28 1985-12-28 Changeover valve gear

Country Status (1)

Country Link
JP (1) JPS62158965A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254085A (en) * 1991-02-01 1992-09-09 Sharp Corp Rotary solenoid valve
JP2761200B2 (en) * 1995-06-06 1998-06-04 富士インジェクタ株式会社 High / low pressure path reversal switching device for air conditioner
KR100309455B1 (en) * 1998-09-18 2001-12-17 권태웅 Refrigerant Switching Device for Heat Pump

Also Published As

Publication number Publication date
JPS62158965A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
JP3383442B2 (en) Four-way valve
CN106369193B (en) Direct-acting solenoid valve and four-way selector valve provided with same as pilot valve
JP2017057977A (en) Direct-acting type solenoid valve and four-way selector valve provided with this solenoid valve as pilot valve
JPS63203977A (en) Four way type valve for refrigerating cycle
JP3465095B2 (en) Four-way valve for air conditioner
JPH0541911B2 (en)
JP2001343076A (en) Control valve
JP2001343077A (en) Control valve
JP2001004052A (en) Solenoid controlled pilot type four-way valve
JPH0372870B2 (en)
JPH0550633B2 (en)
JP2000065221A (en) Change-over valve, fluid compressor and heat pump type refrigeration cycle
JPS62171577A (en) Rotary solenoid valve
JP3123901B2 (en) Composite valve for refrigeration cycle
JP2532497B2 (en) Four-way valve for refrigeration cycle
JPH11153252A (en) Solenoid pilot four-way valve
JPH1137332A (en) Electromagnetic pilot type four-way valve
JPH04254085A (en) Rotary solenoid valve
JPS62196477A (en) Four-way valve for refrigerating cycle
JPS58152988A (en) Reversible magnet valve
JP3634570B2 (en) Rotary flow path switching valve
KR100309455B1 (en) Refrigerant Switching Device for Heat Pump
JPS61192974A (en) Four way type valve for refrigerating cycle
JPS62101977A (en) Four way type valve for refrigerating cycle
JPH11118050A (en) Sealed direction control valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees