JPS62101977A - Four way type valve for refrigerating cycle - Google Patents

Four way type valve for refrigerating cycle

Info

Publication number
JPS62101977A
JPS62101977A JP60241083A JP24108385A JPS62101977A JP S62101977 A JPS62101977 A JP S62101977A JP 60241083 A JP60241083 A JP 60241083A JP 24108385 A JP24108385 A JP 24108385A JP S62101977 A JPS62101977 A JP S62101977A
Authority
JP
Japan
Prior art keywords
valve
slider
cylinder
port
seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60241083A
Other languages
Japanese (ja)
Inventor
Tokinori Araki
荒木 時則
Masaharu Asada
朝田 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP60241083A priority Critical patent/JPS62101977A/en
Publication of JPS62101977A publication Critical patent/JPS62101977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)

Abstract

PURPOSE:To simplify construction of a valve so as to improve its assembly workability, by providing a cylindrical slider, which provides slide seat rings of the same bore sealing the inside and outside, to be arranged between valve seats. CONSTITUTION:Slide seat rings 42, 43 of the same bore are contained in stepped pats 41a, 41b outside a cylindrical slider 41. The slider 41 is slided in the axial direction in a cylinder 33 by energizing a solenoid coil 47 to be controlled. The slide seat rings 42, 43, provided in both ends of the slider 41, are positioned such that a flow outlet 36b communicates with the first flow port 37b, when the solenoid coil 47 is not energized, while with the second flow port 37c by attracting a plunger 49 and the slider 41 when the solenoid coil 47 is energized.

Description

【発明の詳細な説明】 産業上の利用分野 本発BA/fi冷凍サイクル、特にヒートポンプ型の空
調機の冷暖房の切換を行うために用いる冷凍サイクル用
四方弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a BA/fi refrigeration cycle, particularly a four-way valve for a refrigeration cycle used to switch between heating and cooling in a heat pump type air conditioner.

従来の技術 導出口17a、第一通口18a、第二通口19aを形成
している。
A conventional technique outlet 17a, a first port 18a, and a second port 19a are formed.

圧縮機1の吐出パイプ16は、導入口16aを介し弁室
12に常に連通し、圧縮機の吸入パイプ17の導出口1
7aはスライド弁15とバルブシート2oにて形成され
る流路21に常に連通している。又パイプ18の第一通
口18a、パイプ19の第二通口19aはそれぞれ室内
熱交換器4及び室外熱交換器6.に接続されており、ス
ライド弁15の位置によシ弁室12又は流路21と連通
する。
The discharge pipe 16 of the compressor 1 is always in communication with the valve chamber 12 via the inlet 16a, and the outlet 1 of the suction pipe 17 of the compressor is connected to the valve chamber 12 through the inlet 16a.
7a is always in communication with a flow path 21 formed by the slide valve 15 and the valve seat 2o. Also, the first port 18a of the pipe 18 and the second port 19a of the pipe 19 are connected to the indoor heat exchanger 4 and the outdoor heat exchanger 6, respectively. and communicates with the valve chamber 12 or the flow path 21 depending on the position of the slide valve 15.

ピストン9,10には圧力バランス孔22,23が開け
られている。
The pistons 9, 10 are provided with pressure balance holes 22, 23.

次にパイロットバルブ装置8の構造について説明する。Next, the structure of the pilot valve device 8 will be explained.

パイロット装置8内には2つの弁室24,25が設けら
れ、ソレノイドコイル26により作動するニードル弁2
7.28にて交互に閉塞される連通孔29を有している
Two valve chambers 24 and 25 are provided in the pilot device 8, and a needle valve 2 is operated by a solenoid coil 26.
It has communication holes 29 which are alternately closed at 7.28.

第6図のニードル弁27.28はソレノイドコイルが通
電された状態、すなわち暖房の状態を示す0 30は前記連通孔29と吸入パイプ17とを連通ずる細
管、31は弁室11と弁室24を連通する細管、32は
弁室13と弁室26を連通する細管である。
Needle valves 27 and 28 in FIG. 6 indicate a state in which the solenoid coil is energized, that is, a heating state. 30 is a thin tube that communicates the communication hole 29 with the suction pipe 17, and 31 is a thin tube between the valve chamber 11 and the valve chamber 24. A thin tube 32 communicates the valve chamber 13 and the valve chamber 26.

以上のように構成された冷凍サイクル用四方弁について
、以下その作動状態を説明する。
The operating state of the refrigeration cycle four-way valve configured as above will be described below.

第5図は暖房運転の状態を示しておυ、各弁室11.1
2,13,24.25の圧力は次のようになっている。
Figure 5 shows the state of heating operation υ, each valve chamber 11.1.
The pressures at 2, 13, and 24.25 are as follows.

圧縮機1の吐出ガスにより弁室12は高圧となり、ピス
トン9,10に設けられた圧縮バランス孔22.23を
通じて弁室11および弁室13を高圧圧力に保とうとす
る、ところがパイロットバルブ装置8内のニードル弁2
7が連通孔29を閉じているため、弁室13は細管32
.弁室25゜連通孔29および細管3oを介して吸入パ
イプ17と連通して低圧圧力となっている。したがって
弁室11と13の0間にはピストン9,10を介して圧
力差が生じ、ピストン9,10、およびスライド弁15
が図面上の右方向に押し付けられ、所定の暖房運転状態
を維持する。
The valve chamber 12 becomes high pressure due to the discharge gas of the compressor 1, and an attempt is made to maintain the valve chamber 11 and the valve chamber 13 at a high pressure through the compression balance holes 22 and 23 provided in the pistons 9 and 10. However, the inside of the pilot valve device 8 needle valve 2
7 closes the communication hole 29, the valve chamber 13 is connected to the thin tube 32.
.. The valve chamber 25 communicates with the suction pipe 17 via the communication hole 29 and the thin tube 3o, and is under low pressure. Therefore, a pressure difference is generated between the valve chambers 11 and 13 via the pistons 9 and 10, and the pistons 9 and 10 and the slide valve 15
is pushed to the right in the drawing to maintain a predetermined heating operation state.

次に暖房運転が停止され、除霜運転が開始されるか、ま
たは冷房運転開始時における四方弁3の動作を説明する
Next, the operation of the four-way valve 3 when the heating operation is stopped and the defrosting operation is started or when the cooling operation is started will be explained.

第4図において、ソレノイドコイル26は通電が停止さ
れている。そのためニードル弁27.28は図面上左方
向に移動し、ニードル弁28は連通口29を閉じ、細1
30は弁室24と連通ずるようになる。したがって暖房
時高圧となっていた弁室11は、細管31.弁室24.
細管30を介して吸入パイプ17と連通し急激に低圧圧
力となる。
In FIG. 4, the solenoid coil 26 is de-energized. Therefore, the needle valves 27 and 28 move to the left in the drawing, and the needle valve 28 closes the communication port 29, and the needle valve 28 closes the communication port 29.
30 comes into communication with the valve chamber 24. Therefore, the valve chamber 11, which is under high pressure during heating, is replaced by the thin tube 31. Valve chamber 24.
It communicates with the suction pipe 17 through the thin tube 30, and the pressure suddenly becomes low.

そのためピストン9を隔てて弁室12と弁室11間に圧
力差か生じ、この圧力差によりピストン9゜1oおよび
スライド弁16が図面上左方向へ押し付けられ、吐出パ
イプ16とパイプ19は、導入口16a、弁室12.第
二通口19aを介して連通し、パイプ18は第一通口1
8a、流路21゜導出口17aを介して吸入パイプ17
と連通し、除霜運転または冷房運転の状態となる。
Therefore, a pressure difference is created between the valve chamber 12 and the valve chamber 11 across the piston 9, and this pressure difference pushes the piston 9゜1o and the slide valve 16 to the left in the drawing, and the discharge pipe 16 and the pipe 19 are Port 16a, valve chamber 12. The pipe 18 communicates with the first port 19a through the second port 19a.
8a, the suction pipe 17 via the flow path 21° outlet 17a
It communicates with the air conditioner and enters defrosting or cooling mode.

発明が解決しようとする問題点 しかしながら上記の構成では、暖房運転、冷房運転、お
よび除霜運転の各状態において、スライド弁16は、弁
室12の高圧冷媒圧力と流路21の低圧冷媒圧力の圧力
差により、バルブシート2゜に過大な力で押し付けられ
ているため、例えば暖房運転から冷房運転又は除霜運転
もしくはその逆に切換え作動させる場合、スライド弁1
5の駆動は冷媒ガスの高低圧力差を利用して行なうパイ
ロット方式となっている。したがって非常に多くの部品
か必要となシ、又構造も複雑であるなど、組立工程も複
雑となる。問題点を有していた。更に切換作動を行うた
めの、細管30,31.32゜や圧力バランス孔22,
23.パイロツトバルブ8の連通孔29等が冷媒回路中
の異物等により閉塞され、切換作動となるおそれがある
等、信頼性の面図も不安定であるという問題点を有して
いた。
Problems to be Solved by the Invention However, in the above configuration, in each state of heating operation, cooling operation, and defrosting operation, the slide valve 16 is able to balance the high-pressure refrigerant pressure in the valve chamber 12 and the low-pressure refrigerant pressure in the flow path 21. Due to the pressure difference, the valve seat 2 is pressed with excessive force, so when switching from heating operation to cooling operation or defrosting operation or vice versa, slide valve 1
5 is driven by a pilot method that utilizes the difference between high and low pressures of refrigerant gas. Therefore, a very large number of parts are required, and the structure is complicated, making the assembly process complicated. It had some problems. Furthermore, thin tubes 30, 31.32° and pressure balance holes 22,
23. There are also problems in terms of reliability, such as the possibility that the communication hole 29 of the pilot valve 8 may be blocked by foreign matter in the refrigerant circuit, resulting in a switching operation.

本発明は上記問題点に鑑み、構造を簡素化し、組立作業
性を向上させ、低コスト化を行うとともに切換作動の信
頼性を向上させた冷凍サイクル用四方弁を提供するもの
である。
In view of the above-mentioned problems, the present invention provides a four-way valve for a refrigeration cycle that has a simplified structure, improved assembly workability, reduced cost, and improved reliability of switching operation.

問題点を解決するための手段 上記問題点を解決するために本発明の冷凍サイクル用四
方弁は、シリンダ内にそのシート面を平行に固定し、各
々導出口及び第一、第二の通口を有する一対のバルブシ
ートを有し、前記バルブシート間にその内外をシールす
る同一口径のスライドシートリングを設けた円筒状のス
ライダを配設し、そのスライダをシリンダ軸方向に移動
することにより導出口と連通される通口全選択し冷媒通
路を切換える様構成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the four-way valve for refrigeration cycle of the present invention has its seat surface fixed in parallel within the cylinder, and has an outlet port and first and second ports respectively. A cylindrical slider is disposed between the valve seats and has a slide seat ring of the same diameter that seals the inside and outside of the valve seats, and the slider is moved in the cylinder axial direction. It is constructed so that all the vents communicating with the outlet are selected and the refrigerant passages are switched.

作  用 本発明は上記した構成によってシステムの高低差圧が円
筒状スライダ内外に加わってもスライダは圧力差を受け
ずに中立点に保持されるためシリンダ軸方向に移動する
だめの切換力が大巾に低減できることから、弁切換を従
来の如くパイロットパルプ機構を用いなくても可能とを
シ大巾な低コスト化、小型化、信頼性向上が図れるもの
である。
Function: Due to the above-described configuration, the slider is not affected by the pressure difference and is held at a neutral point even if a pressure difference between the height and the low side of the system is applied to the inside and outside of the cylindrical slider. Since the width can be reduced to a large extent, valve switching can be performed without using a pilot pulp mechanism as in the conventional case, and it is possible to significantly reduce costs, reduce size, and improve reliability.

実施例 以下本発明の一実施例の冷凍サイクル用四方弁について
図面を参照しなから説明する。第1図は本発明の一実施
例における冷凍サイクル用四方弁の非通電時の断面図を
示すものである。33は弁本体を形成するシリンダで側
面に圧縮機の吐出側に接続される吐出パイプ34の導入
口34aが開口している。35は前記シリンダ33の一
端33aに嵌合溶接された蓋である。36.37は前記
シリンダ33の内壁にシート面36a 、37aを互い
に平行に対向させて固定した第一、第二のバルブシート
であり、第一のバルブシート36には圧縮機の吸入側に
接続される吸入パイプ38への導出口36bが開口して
いる。又、第二のバルブシート37には、各々凝縮器又
は蒸発器として可逆的に機能する室外コイル、室内コイ
ルに接続される第一、第二の接続パイプ39.40が開
口される第一、第二の通口s7b 、370がシリンダ
33の軸方向に並設開口されている。41は前記シリン
ダ33内にあって軸方向へ摺動可能な円筒状のスライダ
であって、その両端の外側に段部41a。
EXAMPLE A four-way valve for a refrigeration cycle according to an example of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross-sectional view of a four-way valve for a refrigeration cycle in an embodiment of the present invention when no current is applied. Reference numeral 33 denotes a cylinder forming a valve body, and an inlet 34a of a discharge pipe 34 connected to the discharge side of the compressor is opened on the side surface. Reference numeral 35 designates a lid that is fitted and welded to one end 33a of the cylinder 33. Reference numerals 36 and 37 denote first and second valve seats fixed to the inner wall of the cylinder 33 with seat surfaces 36a and 37a facing each other in parallel, and the first valve seat 36 has a valve seat connected to the suction side of the compressor. The outlet 36b to the suction pipe 38 is open. In addition, the second valve seat 37 has first and second connecting pipes 39 and 40 opened therein, which are connected to the outdoor coil and the indoor coil, respectively, which function reversibly as a condenser or an evaporator. Second ports s7b, 370 are opened in parallel in the axial direction of the cylinder 33. Reference numeral 41 denotes a cylindrical slider that is located inside the cylinder 33 and is slidable in the axial direction, and has stepped portions 41a on the outside of both ends thereof.

41bには同一口径のスライドシートリング42゜43
が収納されておシ、前記スライダ41内外にシステム圧
力差が加わった時にその内側及び前記パルプシー)36
,37のシート面側に附勢されて密着し、スライダ41
内外をシールする。44は前記シリンダ33の他端を閉
塞する蓋である。
41b has the same diameter slide seat ring 42°43
is stored inside the slider 41 and when a system pressure difference is applied between the inside and outside of the slider 41 and the pulp seat) 36.
, 37 and come into close contact with the sheet surfaces of the sliders 41
Seal inside and out. 44 is a lid that closes the other end of the cylinder 33.

46は前記蓋44の中央に固定的に取り付けられた操作
用ソレノイドからなる駆動源であシ、固定鉄心46、電
磁コイル47、復帰バネ48、そして前記スライダ41
と連結されたプランジャ49よ多構成されておシ、電磁
コイル47への通電制御により前記スライダ41が前記
シリンダ33内を軸方向に摺動する。そしてスライダ4
1の両端に設けられたスライドシートリング42.43
の位置は、第1図図示のスライダ41第一の位置(電磁
コイル47無通電)において前記導出口3ebと第一の
通日3フbi連 ル47の通電によりプランジャ49及びスライダ41を
吸引した第二の位置(第3図)において前記導出口5c
sbと第二の通口38bを連通させる如く設計されてい
る。
Reference numeral 46 denotes a drive source consisting of an operating solenoid fixedly attached to the center of the lid 44, a fixed iron core 46, an electromagnetic coil 47, a return spring 48, and the slider 41.
The slider 41 is configured to include a plunger 49 connected to the cylinder 33, and the slider 41 slides in the axial direction within the cylinder 33 by controlling the energization of the electromagnetic coil 47. and slider 4
Slide seat rings 42 and 43 provided at both ends of 1
In the position shown in FIG. 1, the plunger 49 and the slider 41 are attracted by energizing the outlet port 3eb and the first 3-way valve 47 when the slider 41 is in the first position (the electromagnetic coil 47 is not energized). In the second position (Fig. 3), the outlet 5c
sb and the second port 38b are designed to communicate with each other.

以上のように構成された冷凍サイクル用四方弁について
以下第1図〜第3図を用いてその動作を説明する。第1
図,第2図は電磁コイル47に非通電時の態様を示した
ものでプランジャ49は復帰バネ48の作用によシ図の
左方に附勢されてスライダ41が蓋35に当接して止ま
る。この結果、スライダ41により導出口s6bと第一
の通口37bが連通され、一方、導入口34aと第二の
通口38bもシリンダ33の内部を通して連通される。
The operation of the four-way valve for the refrigeration cycle constructed as described above will be explained below with reference to FIGS. 1 to 3. 1st
Figure 2 shows the condition when the electromagnetic coil 47 is not energized, and the plunger 49 is biased to the left in the figure by the action of the return spring 48, and the slider 41 comes into contact with the lid 35 and stops. . As a result, the slider 41 allows the outlet port s6b to communicate with the first port 37b, while the inlet port 34a and the second port 38b also communicate through the inside of the cylinder 33.

従って冷媒ガスは圧縮機→吐出パイプ34→第一の接続
パイプ39→室外コイル→膨張弁→室内コイル→第二の
接続パイプ40→吸入パイプ38→圧縮器の冷房サイク
ル回路となる。
Therefore, the refrigerant gas goes through the cooling cycle circuit of the compressor → discharge pipe 34 → first connection pipe 39 → outdoor coil → expansion valve → indoor coil → second connection pipe 40 → suction pipe 38 → compressor.

次に電磁コイル47を通電状態にすると(第3図)プラ
ンジャ49は固定鉄心46に吸着され、スライダ41が
蓋45に当接して止まる。この結果スライダ41によシ
導出口3ebと第二の通口ssbが連通され、一方、導
入口34aと第一の通口37bもシリンダ33の内部を
通して連通される。従って冷媒ガスは圧縮機→吐出パイ
プ34→第二の接続パイプ40−+室内コイル→膨張弁
→室外コイル→第一の接続パイプ39→吸入パイプ38
→圧縮器の暖房サイクル回路となる。
Next, when the electromagnetic coil 47 is energized (FIG. 3), the plunger 49 is attracted to the fixed iron core 46, and the slider 41 comes into contact with the lid 45 and stops. As a result, the slider 41 allows the outlet port 3eb and the second port ssb to communicate with each other, while the inlet port 34a and the first port 37b also communicate through the inside of the cylinder 33. Therefore, the refrigerant gas is transferred from the compressor to the discharge pipe 34 to the second connecting pipe 40-+indoor coil to the expansion valve to the outdoor coil to the first connecting pipe 39 to the suction pipe 38.
→This becomes the heating cycle circuit for the compressor.

以上あように本実施例によれば、シリンダ内にそのシー
ト面を平行に固定し、各々導出口及び第一,第二の通口
を有する一対のバルブシートを有し、前記バルブシート
間にその内外をシールする同一口径で、差圧シール型ス
ライドシートリングをその両端に挿入した円筒状のスラ
イダを配設し、そのスライダをシリンダ軸方向に摺動す
ることにより、導出口と連通される通口を選択し冷媒回
路を切換える構成としたことにより、スライダは圧力差
を受けずに中立点に保持されるためスライドシートリン
グがシールを行うために必要な面圧に抗するだけのわず
かな力でスライダを摺動できるも可能となり大巾な低コ
スト化,小型化,信頼性向上が図れるものである。
As described above, according to this embodiment, there is a pair of valve seats whose seat surfaces are fixed in parallel in a cylinder, each having an outlet and a first and second port, and between the valve seats. A cylindrical slider with the same diameter and a differential pressure seal type slide seat ring inserted at both ends is installed to seal the inside and outside of the slider, and by sliding the slider in the cylinder axial direction, it communicates with the outlet. By selecting the vent and switching the refrigerant circuit, the slider is held at a neutral point without receiving a pressure difference, so the slide seat ring has a slight pressure that is sufficient to withstand the surface pressure necessary for sealing. It is possible to slide the slider by applying force, resulting in significant cost reduction, miniaturization, and improved reliability.

発明の効果 以上のように本発明は、シリンダ内にそのシート面を平
行に固定し、各々導出口及び第一、第二の通口を有する
一対のバルブシートを有し、前記バルブシート間にその
内外をシールする同一口径のスライドシートリングを設
けた円筒状のスライダを配設し、そのスライダをシリン
ダ軸方向に摺動することにより導出口と連通される通口
を択一的に選択し冷媒回路を切換える構成としたことに
より、スライダを摺動するために必要な切換力はきわめ
て小さくできることから、弁切換を従来の如くパイロッ
トパルプ機構を用いなくても可能となり大巾な低コスト
化、小型化、信頼性向上が図れるものである。
Effects of the Invention As described above, the present invention has a pair of valve seats whose seat surfaces are fixed in parallel in a cylinder, each having an outlet and a first and second port, and a space between the valve seats. A cylindrical slider is provided with a slide seat ring of the same diameter to seal the inside and outside of the slider, and by sliding the slider in the axial direction of the cylinder, a port communicating with the outlet is selectively selected. By adopting a configuration that switches the refrigerant circuit, the switching force required to slide the slider can be made extremely small, making it possible to switch the valve without using a pilot pulp mechanism as in the past, resulting in significant cost reductions. This allows for miniaturization and improved reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における冷凍サイクル用四方
弁の冷房状態を示す断面図、第2図は第1図のx−x’
 線の中央断面図、第3図は第1図の暖房状態を示す断
面図、第4図は従来の冷凍サイクル用四方弁の冷房状態
を示す断面図、第5図は第4図の暖房状態を示す断面図
である。 33・・・・・・シリンダ、36.37・・・・・・バ
ルブシート、41・・・・・・スライダ、42.43・
・・・・・スライドシートリング、45・・・・・・駆
動源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 匂−JtvI床 t5.3−−− シリンダ J6−−−χ−のハ“ルデシート J6j−導戯口 37−−−菊二っバルブシート JムJ7c・・・第一、Tにの通−口 41−一一 人ライブ 第 3 図                  42
.4J・−スライドシートリング姿・−JL勢:象 第4図 第5図
FIG. 1 is a sectional view showing the cooling state of a four-way valve for a refrigeration cycle in an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line xx' in FIG.
3 is a sectional view showing the heating state shown in Fig. 1, Fig. 4 is a sectional view showing the cooling state of a conventional four-way valve for a refrigeration cycle, and Fig. 5 is a sectional view showing the heating state shown in Fig. 4. FIG. 33...Cylinder, 36.37...Valve seat, 41...Slider, 42.43.
...Slide seat ring, 45... Drive source. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Diagram - JtvI floor t5.3 --- Cylinder J6 --- χ- Halde seat J6j - Guiding port 37 --- Kikuji Valve seat Jmu J7c... First, passage to T. Mouth 41-11 Person Live Figure 3 42
.. 4J・-Slide seat ring appearance・-JL group: Elephant 4th figure 5th figure

Claims (1)

【特許請求の範囲】[Claims]  弁本体を形成し導入口を有するシリンダと、前記シリ
ンダ内壁にシート面を平行に対向させて固定した導出口
及び軸方向に並設した第一、第二の通口を有する一対の
バルブシートと、両端に前記バルブシートに当接してシ
ールする同一口径のスライドシートリングを有し前記シ
リンダ内を軸方向に移動して前記導出口と第一あるいは
第二通口を択一的に連通させる円筒状のスライダと、前
記スライダを往復動させる駆動源とを備えたことを特徴
とする冷凍サイクル用四方弁。
a cylinder forming a valve body and having an inlet; a pair of valve seats having an outlet fixed to the inner wall of the cylinder with their seat surfaces parallel to each other and first and second ports arranged in parallel in the axial direction; , a cylinder having slide seat rings of the same diameter at both ends that abut and seal the valve seat, and moves in the axial direction within the cylinder to selectively communicate the outlet port with the first or second communication port; 1. A four-way valve for a refrigeration cycle, comprising: a shaped slider; and a drive source for reciprocating the slider.
JP60241083A 1985-10-28 1985-10-28 Four way type valve for refrigerating cycle Pending JPS62101977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60241083A JPS62101977A (en) 1985-10-28 1985-10-28 Four way type valve for refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60241083A JPS62101977A (en) 1985-10-28 1985-10-28 Four way type valve for refrigerating cycle

Publications (1)

Publication Number Publication Date
JPS62101977A true JPS62101977A (en) 1987-05-12

Family

ID=17069035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60241083A Pending JPS62101977A (en) 1985-10-28 1985-10-28 Four way type valve for refrigerating cycle

Country Status (1)

Country Link
JP (1) JPS62101977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209323A (en) * 1992-07-23 1993-05-11 Sherlene Hopkins Interior fire escape chute for a building
CN100404930C (en) * 2005-01-21 2008-07-23 三菱电机株式会社 Four-way solenoid valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209323A (en) * 1992-07-23 1993-05-11 Sherlene Hopkins Interior fire escape chute for a building
CN100404930C (en) * 2005-01-21 2008-07-23 三菱电机株式会社 Four-way solenoid valve

Similar Documents

Publication Publication Date Title
KR920008025B1 (en) Slide valve
JP2017025986A (en) Linear motion type solenoid valve and four-way selector with linear motion type solenoid valve acting as pilot valve
EP1061314B1 (en) Four-way directional control valve
JPS62101977A (en) Four way type valve for refrigerating cycle
JPH0718494B2 (en) Four-way valve for refrigeration cycle
JP2694032B2 (en) Air conditioner for both heating and cooling
JP2001208224A (en) Four-way control valve
JPS62124368A (en) Four-way valve for refrigerating cycle
JP2532497B2 (en) Four-way valve for refrigeration cycle
JPS6367472A (en) Four-way valve for refrigerating cycle
JPS62196477A (en) Four-way valve for refrigerating cycle
JPS63210478A (en) Four-way valve for refrigeration cycle
JPS63145879A (en) Four-way valve for refrigeration cycle
JPH1163738A (en) Freezer device
JPS63180779A (en) Four-way valve for refrigerating cycle
JPS63180780A (en) Four-way valve for refrigerating cycle
JPS62177374A (en) Four-way valve for regrigerating cycle
JPH02199377A (en) Four-way valve for refrigeration cycle
JPS62137478A (en) 4-way valve for refrigeration cycle
JPH0715313B2 (en) Four-way valve for refrigeration cycle
JPH0799296B2 (en) Air conditioning switching device
JPS63203978A (en) Four way type valve for refrigerating cycle
JPS61192974A (en) Four way type valve for refrigerating cycle
JPS62180184A (en) Four-way valve for refrigerating cycle
JPS63285380A (en) Four-way valve for refrigerating cycle