JPH11118050A - Sealed direction control valve - Google Patents

Sealed direction control valve

Info

Publication number
JPH11118050A
JPH11118050A JP28392397A JP28392397A JPH11118050A JP H11118050 A JPH11118050 A JP H11118050A JP 28392397 A JP28392397 A JP 28392397A JP 28392397 A JP28392397 A JP 28392397A JP H11118050 A JPH11118050 A JP H11118050A
Authority
JP
Japan
Prior art keywords
valve
sealed
permanent magnet
case
main valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28392397A
Other languages
Japanese (ja)
Inventor
Tetsuo Takano
哲郎 高野
Akira Miyashita
暁 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Hydex Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Hydex Co filed Critical Yokohama Hydex Co
Priority to JP28392397A priority Critical patent/JPH11118050A/en
Publication of JPH11118050A publication Critical patent/JPH11118050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealed direction control valve that can miniaturize permanent magnets and electromagnetic coils and is compact and can be manufactured at low cost and shorten the time required for restoring to heating operation from defrosting an external heat exchanger where it is employed to an air conditioner. SOLUTION: This sealed direction control valve comprises a sealed valve case 1 fixedly provided with a valve seat 5 at the lower end, a permanent magnet 6 rotatably arranged in the sealed valve case 1, a main valve 7 rotatably arranged in the sealed valve case 1 and generating force to press the valve seat 5 by the pressure of the fluid passing through a plurality of flow passages 27, 28 and 29 communicated in the sealed valve case 1, and an electromagnetic coil 9 positioned inside the permanent magnet 6 and giving torque to the permanent magnet 6. By connecting a valve chamber 14 formed by the main valve 7 and the valve seat 5 and a valve chamber 13 in the sealed valve case 1, providing a communication hole 15 reducing the force generated by the main valve 7 to press the valve seat 5 and the rotation of the electromagnetic coil 9, the communication hole is opened and closed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として空気調和
機や、冷凍機等の方向制御用の四方弁として使用されう
る密閉式方向制御弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hermetic directional control valve which can be used mainly as a four-way valve for controlling the direction of an air conditioner or a refrigerator.

【0002】[0002]

【従来の技術】従来、空気調和機等の冷暖房サイクルに
は、その冷房運転時と、暖房運転時に、封入されている
冷媒の流れ方向を切換えるために方向制御用の四方弁が
使用されている。そこで,この種の四方弁としては、特
開平8−42737号の四方弁に関する発明に開示され
ているごとく、従来、実開昭54−165324号また
は、特開昭61−6486号、さらに特公平3−307
49号などの考案や発明が知られている。
2. Description of the Related Art Conventionally, in a cooling / heating cycle of an air conditioner or the like, a four-way valve for directional control has been used to switch the flow direction of a sealed refrigerant during a cooling operation and a heating operation. . Therefore, as this kind of four-way valve, as disclosed in the invention relating to a four-way valve in Japanese Patent Application Laid-Open No. 8-42737, conventionally, Japanese Utility Model Application Laid-Open No. 54-165324, Japanese Patent Application Laid-Open No. 61-6486, and 3-307
Inventions and inventions such as No. 49 are known.

【0003】しかしながら、これら従来の四方弁は、回
路を切り替えるためのメインの弁体と、その弁体を作動
するためのパイロット弁とで構成され、両者を結ぶ配管
が必要で、部品点数が多く、構成が複雑で組立に手間が
かかるため、コスト高となり、又暖房運転時にはパイロ
ット弁のために連続通電が必要で、多くの電力消費を伴
い不経済である問題があった。
[0003] However, these conventional four-way valves are composed of a main valve element for switching the circuit and a pilot valve for operating the valve element, and a pipe for connecting the two is required, and the number of parts is large. However, since the construction is complicated and the assembly is troublesome, the cost is high. In addition, continuous heating is required for the pilot valve during the heating operation.

【0004】また、他の方向制御弁として、特開平8−
152075号の発明に示すように、直動式の四方弁が
知られている。これは、弁本体とこの弁本体の上部に着
脱可能に配設された電磁コイルからなり、その弁本体は
円筒状のボディの下端に取り付けられた弁座と、そのボ
ディの内面に回転可能に配設された永久磁石及び樹脂製
弁から構成され、コンパクトで前記した四方弁と比較し
て製造コストが安いという特徴を有している。
Another directional control valve is disclosed in Japanese Unexamined Patent Publication No.
As shown in the invention of No. 152075, a direct acting four-way valve is known. It consists of a valve body and an electromagnetic coil detachably mounted on the top of the valve body, the valve body being rotatable on the valve seat attached to the lower end of the cylindrical body and the inner surface of the body. It is composed of a permanent magnet and a resin valve provided, and is characterized in that it is compact and its manufacturing cost is lower than that of the above-described four-way valve.

【0005】しかしながら、この方向制御弁は、永久磁
石と電磁コイルの吸引及び反発力で、弁を直接動かす構
造のため、駆動力を発生するために永久磁石及び電磁コ
イルが大型化し、前記の四方弁と比較すれば、製造コス
トが低いものの依然として製造コストを十分低くできな
いという問題があった。さらに、この方向制御弁は、永
久磁石と電磁コイルの吸引及び反発力で弁を直接動かす
構造のため、弁作動力が弱く、差圧作動性能が低いとい
う欠点があった。
However, the directional control valve has a structure in which the valve is directly moved by the attraction and repulsion of the permanent magnet and the electromagnetic coil. Therefore, the permanent magnet and the electromagnetic coil are enlarged in order to generate a driving force. As compared with the valve, there is a problem that although the manufacturing cost is low, the manufacturing cost still cannot be sufficiently reduced. Furthermore, since the direction control valve has a structure in which the valve is directly moved by the attraction and repulsion of the permanent magnet and the electromagnetic coil, the valve operation force is weak and the differential pressure operation performance is low.

【0006】一方、空気調和機の暖房運転時には、定期
的に室外機熱交換機の霜取りを行うが、これは圧縮機か
ら吐出される高温の冷媒を室外機熱交換機へ流し込み、
付着した霜を除去するものである。また空気調和機に
は、この霜取りの操作を専用回路のバイパスで行う機種
と、四方弁の回路を切換えて行なうものとがあるが、前
記のごとく四方弁で切換えるものでは霜取り中は冷房運
転になるが、室内機ファンを停止させ、室内へは冷風は
吹き込まない。
On the other hand, during the heating operation of the air conditioner, the outdoor unit heat exchanger is periodically defrosted. In this operation, high-temperature refrigerant discharged from the compressor flows into the outdoor unit heat exchanger.
This is to remove the adhering frost. In addition, some air conditioners perform this defrosting operation by a bypass of a dedicated circuit, and others perform the operation by switching the circuit of a four-way valve. However, the indoor unit fan is stopped, and no cool air is blown into the room.

【0007】さらに、電磁石と永久磁石との反発力を利
用して回路切換を行なう回転式の四方弁を、回路切換え
により霜取り操作を行なう機種に採用した場合は、直線
往復動の四方弁により回路を切換えるものに比べ、霜取
りから再度暖房運転に至るまでの時間が2倍以上必要で
あり、例えば直線往復動のものが1から1.5 分であるの
に対し、回転式四方弁のものでは約3分必要である。
Further, when a rotary four-way valve that switches circuits by utilizing the repulsive force of an electromagnet and a permanent magnet is employed in a model that performs a defrosting operation by switching circuits, the circuit is controlled by a linear reciprocating four-way valve. The time required from defrosting to heating operation again needs to be at least twice as long as that switching from one to another. For example, the linear reciprocating type requires 1 to 1.5 minutes, whereas the rotary four-way valve requires about 3 minutes. Need a minute.

【0008】その理由として、空気調和機運転中は、弁
座の導入口は圧縮機の吐出口に接続され、本体内部も高
圧となっており、導出口は圧縮機の吸引口に接続され弁
の連絡溝ともども低圧になっているため、この圧力の差
のあるために、弁は弁座に押しつけられ、導入口側から
導出口側への冷媒の流出が規制されるからである。
For the reason, during operation of the air conditioner, the inlet of the valve seat is connected to the discharge port of the compressor, the inside of the main body is also at a high pressure, and the outlet is connected to the suction port of the compressor. This is because the pressure is low in both of the communication grooves and the pressure difference causes the valve to be pressed against the valve seat, and the outflow of the refrigerant from the inlet side to the outlet side is regulated.

【0009】[0009]

【発明が解決しようとする課題】本発明は、永久磁石及
び電磁コイルの小型化が可能で、コンパクトで、かつ低
コストで生産することが可能であり、しかも空気調和機
への採用時に、その暖房運転時の室外機熱交換機の霜取
りから暖房運転への復帰までの待ち時間を短くできる密
閉式方向制御弁を提供する。
DISCLOSURE OF THE INVENTION The present invention can reduce the size of a permanent magnet and an electromagnetic coil, can be produced compactly and at low cost, and when used in an air conditioner. Provided is a closed-type directional control valve capable of shortening a waiting time from defrosting of an outdoor heat exchanger to return to a heating operation during a heating operation.

【0010】[0010]

【課題を解決するための手段】本発明は、下端部に弁座
を固設した密閉弁ケースと、密閉弁ケースの内部に回転
可能に配設した永久磁石と、密閉弁ケースの内部に回転
可能に配設し、かつ密閉弁ケース内に連通する複数の流
路を通る流体の圧力により弁座に押しつける力が発生す
る主弁と、上記永久磁石の内側に位置して永久磁石に回
転力を与える電磁コイルとからなり、上記主弁と弁座と
により形成された弁室と密閉弁ケース内の弁室とを導通
することにより、主弁の弁座に対する押しつけ力を低減
する連通孔を主弁に設け、かつ電磁コイルの回転により
連通孔の開閉操作を行なうようにした密閉式方向制御弁
からなり、さらにまたロータヨークと主弁との間に、連
通孔を閉じる方向に付勢するスプリングを配設した密閉
式方向制御弁からなる。
SUMMARY OF THE INVENTION The present invention provides a sealed valve case having a valve seat fixedly provided at a lower end portion, a permanent magnet rotatably disposed inside the sealed valve case, and a rotatable inside the sealed valve case. A main valve, which is arranged so as to be able to press against a valve seat by the pressure of a fluid passing through a plurality of flow paths communicating with the closed valve case, and a rotational force applied to the permanent magnet located inside the permanent magnet. A communication hole that reduces the pressing force of the main valve against the valve seat by conducting between the valve chamber formed by the main valve and the valve seat and the valve chamber in the closed valve case. A spring provided on the main valve and configured to open and close the communication hole by rotating an electromagnetic coil, and a spring for urging the rotor yoke and the main valve in a direction to close the communication hole. From the sealed directional control valve That.

【0011】[0011]

【発明の実施の形態】以下図面を参照して本発明の密閉
式方向制御弁の一実施形態を説明するが、図1は、その
側断面図、図2は図1のA−A方向の平断面図、図3は
図1のB−B方向の平断面図、図4は図3のC−C方向
の側断面図であり、図5は図1の密閉式方向制御弁の組
立前の部品展開側断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side sectional view of a closed type directional control valve according to the present invention, and FIG. FIG. 3 is a cross-sectional plan view taken along the line BB in FIG. 1, FIG. 4 is a side cross-sectional view taken along the line CC in FIG. 3, and FIG. FIG. 4 is a sectional side view of a component development.

【0012】まず、この密閉式方向制御弁は、それぞれ
円筒状の外側ケース2内に内側ケース3を上部から挿入
して各上周部を溶接し、かつ外側ケース2の下部開放端
部に弁座5を溶接等で固設した密閉弁ケース1と、密閉
弁ケース1の内部にロータヨーク17と共に回転可能に
配設したドーナツ状のマグネットからなる永久磁石6
を、密閉弁ケース1の内部に回転可能に配設し、かつ弁
座5を介して密閉弁ケース1内に接続する図1、図5及
び図16で27,28,29,30のごとく示した複数
の各流路を通る流体の圧力差により弁座5に押しつける
力が発生する主弁7と、上記密閉弁ケース1の内側ケー
ス3を介しながら永久磁石6に回転力を与える電磁コイ
ル9とから構成されており、上記電磁コイル9は内側ケ
ース3の内側に設けることにより永久磁石6の内側に配
設されている。
First, in the sealed type directional control valve, an inner case 3 is inserted from above into a cylindrical outer case 2 to weld each upper peripheral portion, and a valve is attached to a lower open end of the outer case 2. A sealed valve case 1 in which the seat 5 is fixed by welding or the like, and a permanent magnet 6 made of a donut-shaped magnet rotatably disposed inside the sealed valve case 1 together with a rotor yoke 17.
Is rotatably disposed inside the closed valve case 1 and connected to the closed valve case 1 via the valve seat 5 as shown in FIGS. A main valve 7 that generates a force pressing against the valve seat 5 due to a pressure difference between the fluids passing through the plurality of flow paths, and an electromagnetic coil 9 that applies a rotational force to the permanent magnet 6 via the inner case 3 of the closed valve case 1. The electromagnetic coil 9 is disposed inside the permanent magnet 6 by being provided inside the inner case 3.

【0013】次に、密閉弁ケース1内に連通する図16
の平面図に示した複数の流路27,28,29及び30
のうち、流路27はコンプレッサーの吐出口にロー付接
合され、弁位置に無関係に、高圧の冷媒流体はこの流路
27を通り、弁室13に導入される。また、流路28
は、コンプレッサーの吸入口にロー付接合され、弁位置
に無関係に、低圧の冷媒流体は流路29を通り、弁室1
4から排出される。
Next, FIG.
The plurality of flow paths 27, 28, 29 and 30 shown in the plan view of FIG.
Among them, the flow path 27 is brazed to the discharge port of the compressor, and the high-pressure refrigerant fluid is introduced into the valve chamber 13 through the flow path 27 regardless of the valve position. The flow path 28
Is brazed to the suction port of the compressor, and low-pressure refrigerant fluid passes through the flow passage 29 regardless of the valve position,
It is discharged from 4.

【0014】さらに、流路29は、室内機熱交換機にロ
ー付接合され、流路30は室外機熱交換機にロー付接合
され、弁位置によって、流路27と導通するか、または
流路28と導通するかが選択される。即ち、流路27と
流路29が導通し、かつ流路28と流路30が導通する
弁位置の時、暖房運転となり、流路27と流路30が導
通し、かつ流路28と流路29が導通する弁位置の時、
冷房運転となる。
Further, the flow path 29 is brazed to the indoor unit heat exchanger, and the flow path 30 is brazed to the outdoor unit heat exchanger. The flow path 29 is electrically connected to the flow path 27 or the flow path 28 depending on the valve position. Is selected. That is, when the valve is in a valve position where the flow path 27 and the flow path 29 are conductive and the flow path 28 and the flow path 30 are conductive, the heating operation is performed, and the flow path 27 and the flow path 30 are conductive and the flow path 28 is When the passage 29 is in the conducting valve position,
It becomes a cooling operation.

【0015】このような構成により、弁室13に入った
流体により主弁13を弁座5方向に強く押し付けること
になり、その押し付け力により主弁が回動しにくいとい
う現象を呈する。そこでその押し付け力を低減する連通
孔15を、図6の側断面図、図6の上面図の平面図であ
る図7及び図6の底面の平面図である図8に示す主弁7
の一部に設け、さらに上記電磁コイル9の回転により、
上記の連通孔15を、図9に示す側断面図及び図9のD
−D方向の底面の平面図である図10に示すロータヨー
ク17の下面に設けた副弁21をパイロット弁として開
閉操作を行なうようにしている。
With such a configuration, the main valve 13 is strongly pressed in the direction of the valve seat 5 by the fluid that has entered the valve chamber 13, and the pressing force exerts a phenomenon that the main valve is hard to rotate. Therefore, the communication hole 15 for reducing the pressing force is provided with the main valve 7 shown in the side sectional view of FIG. 6, the plan view of the top view of FIG. 6, FIG. 7 and the plan view of the bottom face of FIG.
And a rotation of the electromagnetic coil 9,
The above-mentioned communication hole 15 is shown in a side sectional view shown in FIG.
The sub valve 21 provided on the lower surface of the rotor yoke 17 shown in FIG. 10 which is a plan view of the bottom surface in the −D direction is used as a pilot valve to perform opening and closing operations.

【0016】電磁コイル9に通電することで回転力を与
えられる永久磁石6は、図5に示すスライドリング25
を介してロータヨーク17に挿入されるので、回転が可
能になっており、永久磁石6はロータヨーク17と共に
固定軸22を介して主弁7を回転するようになってい
る。また、この永久磁石6と一体に回転するロータヨー
ク17と主弁7との間には図11に示す8の字状のスプ
リング24が配設されている。ここで8の字状のスプリ
ング24の中心部の丸い部分は固定軸22に嵌合し、他
端は主弁7の突起8を挟持するようになっている。この
スプリング24は上記連通孔15を副弁21で閉じる方
向に付勢するように取付けられている。
The permanent magnet 6, which is given a rotational force by energizing the electromagnetic coil 9, is provided with a slide ring 25 shown in FIG.
Therefore, the permanent magnet 6 rotates with the rotor yoke 17 via the fixed shaft 22 so that the main valve 7 rotates together with the rotor yoke 17. Further, between the rotor yoke 17 rotating integrally with the permanent magnet 6 and the main valve 7, an 8-shaped spring 24 shown in FIG. 11 is provided. Here, a round portion at the center of the figure-shaped spring 24 is fitted to the fixed shaft 22, and the other end is configured to hold the projection 8 of the main valve 7. The spring 24 is attached so as to bias the communication hole 15 in a direction in which the communication valve 15 is closed by the sub-valve 21.

【0017】なお、このスプリング24の種類や形状は
特に限定されるものではない。次に、上記の動作を、図
11及び図12から図15までの一連の動作説明図によ
り説明すると、まず図12は動作前の状態、即ち電磁コ
イル9のコイル11に通電していない状態であり、永久
磁石6が固定されたロータヨーク17は、永久磁石6と
コイル11の鉄コア10との吸引力によって、図11に
示すロータヨーク17の孔19が内側ケース3のストッ
パー4と接触する方向に吸引されている。また、図6の
主弁7の突起8の幅は、図11に示すごとく、ロータヨ
ーク17の突起16の幅よりも若干小さく設定されてい
るため、スプリング24の力を受けずに静止している。
The type and shape of the spring 24 are not particularly limited. Next, the above operation will be described with reference to FIGS. 11 and a series of operation explanatory diagrams from FIG. 12 to FIG. 15. First, FIG. 12 shows a state before operation, that is, a state in which the coil 11 of the electromagnetic coil 9 is not energized. The rotor yoke 17 to which the permanent magnet 6 is fixed is moved in the direction in which the hole 19 of the rotor yoke 17 shown in FIG. 11 contacts the stopper 4 of the inner case 3 due to the attraction between the permanent magnet 6 and the iron core 10 of the coil 11. Has been sucked. The width of the projection 8 of the main valve 7 in FIG. 6 is set slightly smaller than the width of the projection 16 of the rotor yoke 17 as shown in FIG. .

【0018】次に、図12の状態から図13の動作1の
状態のごとくコイル11に通電すると、その磁力により
永久磁石6を固定したロータヨーク17が回転を開始
し、主弁7の突起8とロータヨーク17の孔18が係合
されている部分の回転方向の隙間20が無くなる位置ま
で、スプリング24を撓ませながら回転する。この位置
では、ロータヨーク17と同時に回転する副弁21が、
連通孔15から外れ、主弁7の外側から内側への流体が
流れることにより、主弁7の外側の弁室13と内側の弁
室14との圧力が平衡する。
Next, when the coil 11 is energized from the state of FIG. 12 to the state of the operation 1 of FIG. 13, the rotor yoke 17 to which the permanent magnet 6 is fixed starts to rotate by the magnetic force, and the protrusion 8 of the main valve 7 The spring 24 is rotated while being bent until the gap 20 in the rotational direction at the portion where the hole 18 of the rotor yoke 17 is engaged disappears. In this position, the auxiliary valve 21 that rotates simultaneously with the rotor yoke 17
When the fluid flows from the outside to the inside of the main valve 7 and comes off from the communication hole 15, the pressures of the valve chamber 13 outside the main valve 7 and the valve chamber 14 inside the main valve 7 are balanced.

【0019】次に、上記のごとく圧力が平衡することに
より、主弁7と弁座5との摩擦力が、電磁力による回転
力より小さくなると、図14の動作2の状態のごとく、
ロータヨーク17の孔18が主弁7の突起8を押し、ロ
ータヨーク17の孔19が内側ケース3のストッパー4
と接触する位置まで、主弁7が回転する。さらに、図1
5は動作完了の状態を示し、主弁7は、スプリング24
によってロータヨーク17の孔19の中央部まで回転
し、同時に副弁21が連通孔15を閉じる。
Next, if the frictional force between the main valve 7 and the valve seat 5 becomes smaller than the rotational force due to the electromagnetic force due to the pressure equilibrium as described above, as shown in the operation 2 in FIG.
The hole 18 of the rotor yoke 17 presses the projection 8 of the main valve 7, and the hole 19 of the rotor yoke 17
The main valve 7 rotates to a position where the main valve 7 contacts. Further, FIG.
5 shows a state in which the operation is completed, and the main valve 7
As a result, the rotor yoke 17 rotates to the center of the hole 19, and at the same time, the auxiliary valve 21 closes the communication hole 15.

【0020】なお、逆回転においても、上記図12から
図15までの動作を同様に行なう。即ち、上記のスプリ
ング24は主弁7と副弁21との回転に位相のずれをつ
くりだすために機能し、特に、主弁7を正規の位置に引
きもどして、副弁21と連通孔15とを正確に合致させ
て連通孔15を閉じる機能をするものである。なお、上
記の電磁コイル9によれば、溶接で溶着された外側ケー
ス2と内側ケース3とからなる密閉弁ケース1の外部に
形成された凹状部内に配設した鉄コア10とコイル11
に対して絶縁のためのエポキシ樹脂12を流し込んで固
化させたものを使用することができる。
The operations shown in FIGS. 12 to 15 are performed in the same manner in the reverse rotation. That is, the above-mentioned spring 24 functions to create a phase shift in the rotation of the main valve 7 and the sub-valve 21, and in particular, the main valve 7 is returned to the normal position, and the sub-valve 21 and the communication hole 15 are And the function of closing the communication hole 15 is achieved. According to the above-described electromagnetic coil 9, the iron core 10 and the coil 11 disposed in a concave portion formed outside the sealed valve case 1 composed of the outer case 2 and the inner case 3 welded by welding.
However, it is possible to use an epoxy resin 12 that has been poured and solidified for insulation.

【0021】また、図5において、主弁7が弁動作以外
の時に、弁座5以外に接触する箇所は、固定軸22のみ
であり、固定軸22と主弁7には適宜なクリアランスを
設けることにより、他の部位に拘束を受けずに弁座5と
接触するので、シール性は良好になる。なお、図5にお
いて、23で示すのは主弁7とスプリング24との間に
介設されるワッシャーである。
In FIG. 5, when the main valve 7 is not in the valve operation, only the fixed shaft 22 is in contact with portions other than the valve seat 5, and an appropriate clearance is provided between the fixed shaft 22 and the main valve 7. Thereby, since it comes into contact with the valve seat 5 without being restricted by other parts, the sealing performance is improved. In FIG. 5, reference numeral 23 denotes a washer provided between the main valve 7 and the spring 24.

【0022】[0022]

【発明の効果】以上に説明した本発明の密閉式方向制御
弁によれば、流路を切り替えるためのメインの主弁と、
その主弁を弁座に押しつける力の源となる複数の流路に
より導入された流体による圧力差を低減するためのパイ
ロット弁である副弁とをこの圧力制御弁が有しているの
で、部品点数が少なく、しかも構造が簡単で、組立も容
易である。
According to the above-described closed type directional control valve of the present invention, the main main valve for switching the flow path,
Since this pressure control valve has a sub-valve which is a pilot valve for reducing a pressure difference due to the fluid introduced by the plurality of flow paths serving as a source of a force for pressing the main valve against the valve seat, The number of points is small, the structure is simple, and the assembly is easy.

【0023】また、電磁コイルに通電するのは流路の切
り替え時の数秒間だけであるため、電力消費を極めて小
さくできる。さらに、主弁と弁座により隔てられた圧力
差のある2つの弁室間を導通させることにより、複数の
流路からの流体による圧力差を殆ど無くし、主弁の弁座
への押しつけ力を大幅に低減できるので、メインの主弁
を作動させるための回転トルクを小さくでき、駆動力を
発生する永久磁石及び電磁コイルを小型化可能であり、
製造コストを低減でき、作動の際の電力消費も極めて小
さくできて経済的である。
Further, since power is supplied to the electromagnetic coil only for a few seconds when the flow path is switched, power consumption can be extremely reduced. Furthermore, by conducting between the two valve chambers having a pressure difference separated by the main valve and the valve seat, the pressure difference due to the fluid from the plurality of flow paths is almost eliminated, and the pressing force of the main valve against the valve seat is reduced. Because it can be greatly reduced, the rotational torque for operating the main main valve can be reduced, and the permanent magnets and electromagnetic coils that generate the driving force can be reduced in size.
The manufacturing cost can be reduced, and the power consumption during operation can be extremely reduced, which is economical.

【0024】一方、本発明においては、従来のごとく永
久磁石と電磁コイルの吸引及び反発力で弁体を直接動か
す構造とは異なり、副弁のパイロット弁の操作により、
主弁と弁座により隔てられた圧力差のある2つの弁室を
導通させることにより複数の流路の圧力差を殆ど無く
し、主弁の弁座への押し付け力を大幅に低減した後にメ
インの主弁が動くため、電磁コイル操作前に主弁と弁座
により隔てられた2つの弁室の圧力差が大きい場合にお
いても作動が可能で、差圧作動性能を十分大きくするこ
とが可能である。
On the other hand, in the present invention, unlike the conventional structure in which the valve element is directly moved by the attraction and repulsion of the permanent magnet and the electromagnetic coil, the operation of the pilot valve of the auxiliary valve causes
By making the two valve chambers having a pressure difference separated by the main valve and the valve seat conductive, the pressure difference in the plurality of flow paths is almost eliminated, and the pressing force of the main valve against the valve seat is greatly reduced. Since the main valve moves, it can be operated even when the pressure difference between the two valve chambers separated by the main valve and the valve seat is large before the operation of the electromagnetic coil, and the differential pressure operation performance can be sufficiently increased. .

【0025】さらに本発明では、電磁コイルを永久磁石
の内側に配設しているので、電磁コイルの絶縁のための
樹脂封止に密閉弁ケースの内側ケースを利用でき、例え
ばエポキシ樹脂を使用した注型とすることが可能で、樹
脂封止のための金型が不要であり、それだけ生産性が高
く、低コストで製作することができる。また、電磁コイ
ル及び永久磁石の磁束の洩れが少なく、同一トルクを得
るために、電磁コイル及び永久磁石を小型化でき、消費
電力を小さくでき、しかも全体をコンパクトに、かつ低
コストに生産できる。従って、本発明の方向制御弁を空
気調和機等に設置した場合、その装置を小型化できると
共に、その暖房運転時の室外機熱交換機の霜取りから暖
房運転への復帰迄の待ち時間を短縮することもできる。
Further, in the present invention, since the electromagnetic coil is disposed inside the permanent magnet, the inner case of the sealed valve case can be used for resin sealing for insulating the electromagnetic coil. For example, epoxy resin is used. Casting is possible, and a mold for resin sealing is not required, so that productivity is high and production can be performed at low cost. In addition, in order to reduce the leakage of the magnetic flux of the electromagnetic coil and the permanent magnet and obtain the same torque, the electromagnetic coil and the permanent magnet can be downsized, the power consumption can be reduced, and the whole can be produced compactly and at low cost. Therefore, when the directional control valve of the present invention is installed in an air conditioner or the like, the size of the device can be reduced, and the waiting time from defrosting the outdoor unit heat exchanger to returning to the heating operation during the heating operation can be reduced. You can also.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の密閉式方向制御弁の一実施形態の側断
面図である。
FIG. 1 is a side sectional view of one embodiment of a closed type directional control valve of the present invention.

【図2】図1のA−A方向の平断面図である。FIG. 2 is a plan sectional view taken along the line AA in FIG.

【図3】図1のB−B方向の平断面図である。FIG. 3 is a plan sectional view taken along a line BB in FIG. 1;

【図4】図3のC−C方向の側断面図である。FIG. 4 is a side sectional view taken along the line CC in FIG. 3;

【図5】図1の密閉式方向制御弁の組立前の部品展開図
である。
5 is an exploded view of parts of the sealed directional control valve of FIG. 1 before assembly.

【図6】図1の主弁の側断面図である。FIG. 6 is a side sectional view of the main valve of FIG. 1;

【図7】図6の上面から見た平面図である。FIG. 7 is a plan view as seen from the upper surface of FIG. 6;

【図8】図6の底面から見た平面図である。FIG. 8 is a plan view seen from the bottom surface of FIG. 6;

【図9】図1のロータヨークの側断面図である。FIG. 9 is a side sectional view of the rotor yoke of FIG. 1;

【図10】図9のD−D方向から見た平面図である。FIG. 10 is a plan view seen from the DD direction in FIG. 9;

【図11】図10のロータヨークの拡大平面図である。11 is an enlarged plan view of the rotor yoke of FIG.

【図12】図10のロータヨークの動作前の状態の平面
図である。
FIG. 12 is a plan view of the rotor yoke of FIG. 10 in a state before operation.

【図13】図12に続く動作1の状態の平面図である。FIG. 13 is a plan view of the state of Operation 1 following FIG. 12;

【図14】図13に続く動作2の状態の平面図である。FIG. 14 is a plan view of the state of Operation 2 following FIG. 13;

【図15】図14に続く動作完了の状態の平面図であ
る。
FIG. 15 is a plan view showing a state of the operation completion following FIG. 14;

【図16】図1のE−E方向の下面から見た平面図であ
る。
FIG. 16 is a plan view seen from the lower surface in the EE direction of FIG. 1;

【符号の説明】[Explanation of symbols]

1 密閉弁ケース 5 弁座 6 永久磁石 7 主弁 9 電磁コイル 13 弁室 14 弁室 15 連通孔 24 スプリング 27 流路 28 流路 29 流路 30 流路 DESCRIPTION OF SYMBOLS 1 Sealing valve case 5 Valve seat 6 Permanent magnet 7 Main valve 9 Electromagnetic coil 13 Valve room 14 Valve room 15 Communication hole 24 Spring 27 Flow path 28 Flow path 29 Flow path 30 Flow path

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下端部に弁座を固設した密閉弁ケース
と、密閉弁ケースの内部に回転可能に配設した永久磁石
と、密閉弁ケースの内部に回転可能に配設し、かつ密閉
弁ケース内に連通する複数の流路を通る流体の圧力によ
り弁座に押しつける力が発生する主弁と、上記永久磁石
の内側に位置して永久磁石に回転力を与える電磁コイル
とからなり、上記主弁と弁座とにより形成された弁室と
密閉弁ケース内の弁室とを導通することにより、主弁の
弁座に対する押しつけ力を低減する連通孔を主弁に設
け、かつ電磁コイルの回転により連通孔の開閉操作を行
なうようにした密閉式方向制御弁。
1. A closed valve case having a valve seat fixed to a lower end portion, a permanent magnet rotatably disposed inside the closed valve case, and a rotatably disposed and sealed inside the closed valve case. It comprises a main valve that generates a force that presses against a valve seat due to the pressure of fluid passing through a plurality of flow paths communicating with the valve case, and an electromagnetic coil that is located inside the permanent magnet and applies a rotational force to the permanent magnet, By providing a communication between the valve chamber formed by the main valve and the valve seat and the valve chamber in the sealed valve case, a communication hole for reducing the pressing force of the main valve against the valve seat is provided in the main valve, and the electromagnetic coil is provided. A closed-type directional control valve that opens and closes a communication hole by the rotation of.
【請求項2】 ロータヨークと主弁との間に、連通孔を
閉じる方向に付勢するスプリングを配設した請求項1記
載の密閉式方向制御弁。
2. The sealed directional control valve according to claim 1, further comprising a spring disposed between the rotor yoke and the main valve to bias the communication hole in a direction to close the communication hole.
JP28392397A 1997-10-16 1997-10-16 Sealed direction control valve Pending JPH11118050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28392397A JPH11118050A (en) 1997-10-16 1997-10-16 Sealed direction control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28392397A JPH11118050A (en) 1997-10-16 1997-10-16 Sealed direction control valve

Publications (1)

Publication Number Publication Date
JPH11118050A true JPH11118050A (en) 1999-04-30

Family

ID=17671967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28392397A Pending JPH11118050A (en) 1997-10-16 1997-10-16 Sealed direction control valve

Country Status (1)

Country Link
JP (1) JPH11118050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050103605A (en) * 2004-04-26 2005-11-01 우영식 Electronic rotary valve.
JP2006183802A (en) * 2004-12-28 2006-07-13 Saginomiya Seisakusho Inc Flow passage switching valve, compressor with flow passage switching valve and air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050103605A (en) * 2004-04-26 2005-11-01 우영식 Electronic rotary valve.
JP2006183802A (en) * 2004-12-28 2006-07-13 Saginomiya Seisakusho Inc Flow passage switching valve, compressor with flow passage switching valve and air conditioner
JP4615995B2 (en) * 2004-12-28 2011-01-19 株式会社鷺宮製作所 Channel switching valve, compressor with channel switching valve, and air conditioner

Similar Documents

Publication Publication Date Title
KR100454602B1 (en) Transfer valve, method of controlling transfer valve, freezing cycle and method of controlling freezing cycle
CN106545670B (en) Direct-acting solenoid valve and four-way selector valve provided with same as pilot valve
CN106369193B (en) Direct-acting solenoid valve and four-way selector valve provided with same as pilot valve
JPH08135812A (en) Four-way valve
JP2001343076A (en) Control valve
JPH11118050A (en) Sealed direction control valve
JP3746838B2 (en) Four-way valve
JP4142387B2 (en) Electric rotary flow path switching valve and refrigeration cycle apparatus for refrigeration / refrigerator
JP2002005317A (en) Rotary four-way valve
JP2001004052A (en) Solenoid controlled pilot type four-way valve
JPH1030741A (en) Control valve
JP3746839B2 (en) Refrigeration cycle
JPH0132389B2 (en)
JP2000065221A (en) Change-over valve, fluid compressor and heat pump type refrigeration cycle
JPH0979409A (en) Control valve
JP2001153491A (en) Motor operated selector valve and refrigerating cycle equipment
JP3136086B2 (en) Control valve
JPH11153252A (en) Solenoid pilot four-way valve
JPH1137332A (en) Electromagnetic pilot type four-way valve
JP2816260B2 (en) Four-way valve
JP3123901B2 (en) Composite valve for refrigeration cycle
JP4119720B2 (en) Electric valve and refrigeration cycle equipment for refrigeration / refrigerator
JPH0842737A (en) Four-way valve
JPH0972447A (en) Control valve
JP2001193855A (en) Four-way selector valve