JP2006183802A - Flow passage switching valve, compressor with flow passage switching valve and air conditioner - Google Patents

Flow passage switching valve, compressor with flow passage switching valve and air conditioner Download PDF

Info

Publication number
JP2006183802A
JP2006183802A JP2004378964A JP2004378964A JP2006183802A JP 2006183802 A JP2006183802 A JP 2006183802A JP 2004378964 A JP2004378964 A JP 2004378964A JP 2004378964 A JP2004378964 A JP 2004378964A JP 2006183802 A JP2006183802 A JP 2006183802A
Authority
JP
Japan
Prior art keywords
valve
main valve
pressure
sub
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004378964A
Other languages
Japanese (ja)
Other versions
JP4615995B2 (en
Inventor
Hideki Minamizawa
英樹 南澤
Yosuke Sugiyama
洋介 杉山
Michiaki Ono
道明 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2004378964A priority Critical patent/JP4615995B2/en
Publication of JP2006183802A publication Critical patent/JP2006183802A/en
Application granted granted Critical
Publication of JP4615995B2 publication Critical patent/JP4615995B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability of switching action by providing a compressor with a flow passage switching valve which is appropriate to be used for an on-vehicle air conditioner. <P>SOLUTION: A housing is attached to a compression part of a compressor main body. A valve chamber and ports are formed in the housing by cutting the housing. A continuity passage 31 is formed at a low pressure continuity part 3B of a main valve 3 provided in the valve chamber. A pressure equalizing hole 34 for communicating with the continuity passage 31 is formed at an auxiliary valve seat 33 of the main valve 3. A projection 35 is formed around the auxiliary valve seat 33. A pressure equalizing groove 42 in an arc shape forming a predetermined angle is formed at an auxiliary valve 4. Projections 43 are formed at two positioned on a back side of the auxiliary valve 4. A clutch mechanism is structured by the projections 35, 42. The pressure equalizing hole 34 is opened and closed by rotating the auxiliary valve 4. The main valve 3 is rotated via the clutch mechanism in a state that the continuity passage 31 and a pressure control space at upper part of the main valve 3 by opening the pressure equalizing hole 34. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空気調和機の冷凍サイクルに用いる流路切換弁、該流路切換弁を有する流路切換弁付き圧縮機、並びに該流路切換弁付き圧縮機を有する空気調和機に関する。   The present invention relates to a flow path switching valve used in a refrigeration cycle of an air conditioner, a compressor with a flow path switching valve having the flow path switching valve, and an air conditioner having the compressor with the flow path switching valve.

従来、この種の流路切換弁として例えば特開平9−292050号公報に開示されたものがある。この流路切換弁は、弁室内の冷媒圧力と主弁の導通路内の冷媒圧力との差圧によって主弁を弁座に押し付けるシール圧を得ることができ、シール構造を簡素化できる。しかし、この従来の流路切換弁は、パイロット弁により導通路内を均圧するとともに、パイロット弁を駆動する磁力と同じ磁力である間接的な力で主弁を回動させるので、均圧するまでの時間と主弁が回動するタイミングを取る必要があり、うまく主弁が回動しないことがある。   Conventionally, this type of flow path switching valve is disclosed in, for example, Japanese Patent Laid-Open No. 9-292050. The flow path switching valve can obtain a seal pressure that presses the main valve against the valve seat by a differential pressure between the refrigerant pressure in the valve chamber and the refrigerant pressure in the conduction path of the main valve, and the seal structure can be simplified. However, this conventional flow path switching valve equalizes the pressure in the conduction path by the pilot valve and rotates the main valve with an indirect force that is the same as the magnetic force that drives the pilot valve. It is necessary to take time and timing when the main valve rotates, and the main valve may not rotate well.

これに対して、副弁と均圧孔により導通路を均圧するとともに、副弁の駆動力を主弁に伝達して主弁を回動させるような流路切換弁が、例えば特開2003−314715号公報に開示されている。
特開平9−292050号公報 特開2003−314715号公報
On the other hand, a flow path switching valve that equalizes a conduction path using a sub valve and a pressure equalizing hole and transmits the driving force of the sub valve to the main valve to rotate the main valve is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-2003. This is disclosed in Japanese Patent No. 314715.
JP-A-9-292050 JP 2003-314715 A

しかし、特開2003−314715号公報の流路切換弁においても、低圧連通凹部に形成された均圧孔と、高圧連通凹部に形成された連通孔とを、副弁相当の2つの閉止弁でそれぞれ開閉するようにしている。また、閉止弁を移動する閉止弁支持体をギヤで回動させ、この閉止弁支持体と主弁に設けた連動突部とによって主弁を回動するようにしている。したがって、構造が複雑になり、確実な動作を得るための障害になる。   However, even in the flow path switching valve disclosed in Japanese Patent Application Laid-Open No. 2003-314715, the pressure equalization hole formed in the low pressure communication recess and the communication hole formed in the high pressure communication recess are formed by two closing valves corresponding to the sub valves. Each is opened and closed. Further, the closing valve support that moves the closing valve is rotated by a gear, and the main valve is rotated by the closing valve support and the interlocking protrusion provided on the main valve. Therefore, the structure becomes complicated, which becomes an obstacle for obtaining reliable operation.

本発明は上記の事情に鑑みなされたもので、簡単な構成で動作を円滑に行えるような信頼性を高めた流路切換弁、流路切換弁付き圧縮機及び空気調和機を提供することを課題とする。   The present invention has been made in view of the above circumstances, and provides a highly reliable flow path switching valve, a compressor with a flow path switching valve, and an air conditioner that can smoothly operate with a simple configuration. Let it be an issue.

請求項1の流路切換弁は、円筒状の弁室内に該弁室の軸回りに回動可能に主弁を収容するとともに、該主弁に対向する弁座に低圧ポートと2つの切換ポートを開口し、該主弁に形成された導通路により低圧ポートを一方の切換ポートに連通するとともに、高圧ポートを他方の切換ポートに連通するように、該主弁を回動して2つの切換ポートの連通先を切り換え、前記高圧ポートに通じる前記弁室内の圧力制御空間と前記主弁の導通路内との差圧により、該主弁の着座状態を保持するようにした流路切換弁において、前記主弁に形成され導通路と前記圧力制御空間とを導通する均圧孔と、該主弁に近接して前記弁室の軸回りに回動自在に配設され前記均圧孔を開閉する副弁と、前記副弁を回動する駆動手段と、前記主弁の回動範囲を前記低圧ポートが前記切換ポートに択一的に連通される第1位置及び第2位置の2箇所間の回動範囲に規制する主弁ストッパ機構と、前記副弁と前記主弁とを連結/非連結とするクラッチ機構とを設け、前記副弁が、該副弁の前記主弁に対する所定角度範囲で前記均圧孔を開とするとともに該所定角度範囲以外の位置で該均圧孔を閉とする形状に形成され、前記クラッチ機構は、前記副弁が均圧孔を開とする前記所定角度範囲の略中央位置で前記主弁が副弁に連結され、前記主弁ストッパ機構が規制する前記主弁の回動範囲から外れるように前記副弁が回動するとき前記主弁が副弁から非連結となる機構とされ、前記副弁の回動により、前記均圧孔を開とした状態で前記クラッチ機構により該副弁と共に前記主弁を回動するようにしたことを特徴とする。   The flow path switching valve according to claim 1 houses a main valve in a cylindrical valve chamber so as to be rotatable about an axis of the valve chamber, and a low pressure port and two switching ports in a valve seat facing the main valve. And the main valve is rotated so that the high pressure port is communicated with the other switching port, and the two switching is performed so that the low pressure port is communicated with the one switching port by the conduction path formed in the main valve. In the flow path switching valve which switches the communication destination of the port and maintains the seated state of the main valve by the differential pressure between the pressure control space in the valve chamber leading to the high pressure port and the conduction path of the main valve A pressure equalizing hole formed in the main valve for conducting the conduction path and the pressure control space; and disposed close to the main valve and rotatable about an axis of the valve chamber. A sub-valve, a driving means for rotating the sub-valve, and a rotation range of the main valve in the low pressure A main valve stopper mechanism that restricts the rotation range between two positions of a first position and a second position, which are selectively communicated with the switching port, and the sub valve and the main valve are connected / not connected. A clutch mechanism to be connected, and the sub valve opens the pressure equalizing hole in a predetermined angle range with respect to the main valve of the sub valve and closes the pressure equalizing hole at a position other than the predetermined angle range. The clutch mechanism is configured such that the main valve is connected to the sub valve at a substantially central position in the predetermined angle range in which the sub valve opens the pressure equalizing hole, and the main valve stopper mechanism regulates the clutch mechanism. When the sub valve rotates so as to be out of the rotation range of the main valve, the main valve is disconnected from the sub valve, and the pressure equalizing hole is opened by the rotation of the sub valve. And the main valve is rotated together with the auxiliary valve by the clutch mechanism. .

請求項2の流路切換弁は、請求項1に記載の流路切換弁であって、前記主弁と前記副弁の両対向面の前記軸回りの同一円周上の一部に、該円周の半径方向に稜線を持つ屋根型の突条が形成されるとともに、該副弁を該主弁に対して離間可能なように該主弁方向に付勢する付勢手段を備え、前記副弁と前記主弁の両突条の傾斜面が当接した状態で該副弁と主弁の連結状態となり、前記付勢手段の付勢力に抗して両突条が互いの稜線を載り越えることで該副弁と主弁の非連結状態となるように、前記クラッチ機構が構成されていることを特徴とする。   The flow path switching valve according to claim 2 is the flow path switching valve according to claim 1, wherein a part of the opposite surfaces of the main valve and the subvalve on the same circumference around the axis, A roof-shaped ridge having a ridge line in the circumferential radial direction is formed, and biasing means for biasing the auxiliary valve in the main valve direction so as to be separable from the main valve is provided, The sub-valve and the main valve are connected when the inclined surfaces of the sub-valve and the main valve are in contact with each other, and the two protuberances rest on each other's ridgeline against the biasing force of the biasing means. The clutch mechanism is configured so that the sub-valve and the main valve are disconnected from each other by exceeding.

請求項3の流路切換弁は、請求項2に記載の流路切換弁であって、前記副弁と前記主弁の両突条が、前記円周回りの180度離間した2箇所にそれぞれ形成されていることを特徴とする。   The flow path switching valve according to claim 3 is the flow path switching valve according to claim 2, wherein the protrusions of the sub valve and the main valve are respectively provided at two locations spaced 180 degrees around the circumference. It is formed.

請求項4の流路切換弁付き圧縮機は、請求項1、2、または3に記載の流路切換弁を備えた流路切換弁付き圧縮機であって、圧縮機本体の高圧空間と低圧空間とを形成するブロック状のハウジングを備え、前記流路切換弁の弁室、前記高圧ポート、前記低圧ポート、前記切換ポートを、前記ハウジングにそれぞれ穿設することで該ハウジング自体で形成するとともに、前記ハウジングの前記高圧ポートと低圧ポートとを前記低圧空間と高圧空間とにそれぞれ開口するようにしたことを特徴とする。   A compressor with a flow path switching valve according to claim 4 is a compressor with a flow path switching valve provided with the flow path switching valve according to claim 1, 2, or 3, wherein the high pressure space and the low pressure of the compressor body are provided. A block-shaped housing that forms a space, and the valve chamber of the flow path switching valve, the high-pressure port, the low-pressure port, and the switching port are formed in the housing itself by drilling in the housing, respectively. The high pressure port and the low pressure port of the housing are opened to the low pressure space and the high pressure space, respectively.

請求項5の空気調和機は、請求項1、2、または3に記載の流路切換弁を搭載したことを特徴とする。   An air conditioner according to a fifth aspect includes the flow path switching valve according to the first, second, or third aspect.

請求項6の空気調和機は、請求項4に記載の流路切換弁付き圧縮機を搭載したことを特徴とする。   An air conditioner according to a sixth aspect is equipped with the compressor with the flow path switching valve according to the fourth aspect.

請求項1の流路切換弁において、主弁の回動は、主弁ストッパ機構により低圧ポートが切換ポートに択一的に連通される第1位置及び第2位置の2箇所間の回動範囲に規制される。主弁が第1位置にあり、駆動手段により副弁が回動されて主弁の均圧孔が所定角度範囲に入ると導通路と圧力制御空間との均圧が開始され、均圧孔が所定角度範囲の略中央位置になるとクラッチ機構により主弁が副弁に連結され、副弁の回動により均圧孔を開とした状態で副弁と共に主弁が回動する。主弁の回動が進み、主弁ストッパ機構により主弁が第2位置に止まってクラッチ機構が非連結となり、副弁のみが回動する。そして、副弁は所定角度範囲以外の位置で均圧孔を閉とする。副弁を逆に回転することで、同様に主弁は第2位置から第1位置に切り換えられる。   2. The flow path switching valve according to claim 1, wherein the main valve is rotated by a rotation range between two positions of a first position and a second position where the low pressure port is selectively communicated with the switching port by the main valve stopper mechanism. Regulated by When the main valve is in the first position and the sub-valve is rotated by the driving means so that the pressure equalization hole of the main valve enters the predetermined angle range, the pressure equalization between the conduction path and the pressure control space is started. When the central position is within a predetermined angle range, the main valve is connected to the sub valve by the clutch mechanism, and the main valve rotates together with the sub valve while the pressure equalizing hole is opened by the rotation of the sub valve. The rotation of the main valve advances, the main valve stops at the second position by the main valve stopper mechanism, the clutch mechanism is disconnected, and only the sub valve rotates. The auxiliary valve closes the pressure equalizing hole at a position outside the predetermined angle range. By rotating the auxiliary valve in the reverse direction, the main valve is similarly switched from the second position to the first position.

副弁の回動により均圧孔が所定角度範囲内になると均圧が開始される。すなわち該所定角度範囲の略中央位置になる前(クラッチ機構が連結状態となる前)に均圧が開始され、クラッチ機構が連結状態となるときには十分に均圧されているので、主弁の回動を確実に行うことができる。副弁を主弁と同軸で回動すればよいので構造がきわめて簡単になる。   Pressure equalization is started when the pressure equalization hole is within a predetermined angle range by the rotation of the sub valve. That is, the pressure equalization is started before reaching the substantially central position of the predetermined angle range (before the clutch mechanism is engaged) and is sufficiently equalized when the clutch mechanism is engaged. Can be performed reliably. Since the auxiliary valve only needs to be rotated coaxially with the main valve, the structure becomes very simple.

請求項2の流路切換弁において、クラッチ機構の突条が当接しないときは非連結状態となり、主弁と副弁の突条が当接すると連結状態となる。連結状態から非連結状態となるときには、主弁は主弁ストッパ機構で強制的に第1位置あるいは第2位置に停止されるので、副弁の回動により、付勢手段の付勢力に抗して両突条が互いの稜線を載り越えて非連結状態となる。   In the flow path switching valve according to claim 2, when the protrusion of the clutch mechanism is not in contact, the connection state is established, and when the protrusion of the main valve and the auxiliary valve is in contact, the connection state is established. When the connected state is changed to the disconnected state, the main valve is forcibly stopped at the first position or the second position by the main valve stopper mechanism, so that the biasing force of the biasing means is resisted by the rotation of the sub valve. Thus, both ridges ride over each other's ridgeline and become unconnected.

請求項3の流路切換弁において、請求項2に記載の流路切換弁で副弁と主弁の両突条が、前記円周回りの180度離間した2箇所にそれぞれ形成されているので、クラッチ機構が連結状態となったときに回動中心を挟む両側で突条が当接するので、回動状態でバランスがとれて回動動作が確実に行われる。   In the flow path switching valve according to claim 3, in the flow path switching valve according to claim 2, the protrusions of the sub valve and the main valve are respectively formed at two positions spaced 180 degrees around the circumference. When the clutch mechanism is in the connected state, the ridges come into contact with both sides sandwiching the center of rotation, so that the rotation is balanced and the rotation operation is performed reliably.

請求項4の流路切換弁付き圧縮機において、ハウジングは高圧空間と低圧空間を形成するブロック状の部材である。このハウジングには、流路切換弁の弁室、高圧ポート、低圧ポート及び切換ポートが、それぞれ穿設されており、このハウジングの高圧ポートと低圧ポートとが低圧空間と高圧空間とにそれぞれ開口している。そして、ポートと弁室がハウジング自体により形成されており、当該流路切換弁付き圧縮機の外回りには流路切換弁用の配管がない。   5. The compressor with a flow path switching valve according to claim 4, wherein the housing is a block-shaped member that forms a high-pressure space and a low-pressure space. The housing is provided with a valve chamber of a flow path switching valve, a high pressure port, a low pressure port, and a switching port, and the high pressure port and the low pressure port of the housing open to a low pressure space and a high pressure space, respectively. ing. The port and the valve chamber are formed by the housing itself, and there is no pipe for the flow path switching valve outside the compressor with the flow path switching valve.

請求項5の空気調和機においては、請求項1、2、または3の流路切換弁の作用効果を奏する。   In the air conditioner of claim 5, the effect of the flow path switching valve of claim 1, 2, or 3 is achieved.

請求項6の空気調和機においては、請求項4の流路切換弁付き圧縮機の作用効果を奏する。   In the air conditioner of claim 6, the effect of the compressor with the flow path switching valve of claim 4 is exhibited.

請求項1の流路切換弁によれば、クラッチ機構が連結状態となる前に均圧が開始され、クラッチ機構が連結状態となるときには十分に均圧されているので、主弁の回動を確実に行うことができるとともに、副弁を主弁と同軸で回動すればよいので構造がきわめて簡単になり、簡単な構成で動作を円滑に行え信頼性が高まる。   According to the flow path switching valve of the first aspect, the pressure equalization is started before the clutch mechanism is connected, and the pressure is sufficiently equalized when the clutch mechanism is connected. In addition to being able to perform reliably, the sub-valve only needs to be rotated coaxially with the main valve, so that the structure becomes extremely simple, and the operation can be smoothly performed with a simple configuration, thereby increasing the reliability.

請求項2の流路切換弁によれば、請求項1の効果に加えて、クラッチ機構の構造を簡単にすることができる。   According to the flow path switching valve of claim 2, in addition to the effect of claim 1, the structure of the clutch mechanism can be simplified.

請求項3の流路切換弁によれば、請求項2の効果に加えて、副弁と主弁の回動状態でクラッチ機構のバランスがとれて回動動作が確実に行われるので、さらに動作を円滑に行える。   According to the flow path switching valve of the third aspect, in addition to the effect of the second aspect, the clutch mechanism is balanced in the rotational state of the sub-valve and the main valve so that the rotational operation is performed reliably. Can be done smoothly.

請求項4の流路切換弁付き圧縮機によれば、請求項1、2または3の効果に加えて、ポートと弁室がハウジング自体により形成され、当該流路切換弁付き圧縮機の外回りには流路切換弁用の配管がないので、外回りの配管を極力低減し、該流路切換弁と車載用圧縮機との相乗効果を得、信頼性の向上、省スペース、省エネ、省資源に寄与することができる。   According to the compressor with a flow path switching valve of claim 4, in addition to the effect of claim 1, 2, or 3, the port and the valve chamber are formed by the housing itself, Since there is no piping for the flow path switching valve, the outer piping is reduced as much as possible, and a synergistic effect of the flow path switching valve and the on-vehicle compressor is obtained, improving reliability, saving space, saving energy, and saving resources. Can contribute.

請求項5の空気調和機によれば、請求項1、2、または3の効果が得られる。   According to the air conditioner of claim 5, the effect of claim 1, 2, or 3 is obtained.

請求項6の空気調和機によれば、請求項4の効果が得られる。   According to the air conditioner of claim 6, the effect of claim 4 is obtained.

次に、本発明による流路切換弁、流路切換弁付き圧縮機及び空気調和機の実施形態を図面を参照して説明する。   Next, embodiments of a flow path switching valve, a compressor with a flow path switching valve, and an air conditioner according to the present invention will be described with reference to the drawings.

図1は本発明の実施形態に係る流路切換弁の要部分解斜視図、図2は同流路切換弁を用いた流路切換弁付き圧縮機の一部破断要部斜視図、図3は同流路切換弁付き圧縮機のA−A一部縦断面図、図4は同圧縮機の圧縮部の断面図、図5は同圧縮機のB−B縦断面図、図6は同圧縮機のハウジング部の上面図、図7は同圧縮機を用いた空気調和機の冷凍サイクルを示す図である。図3は図6のA−A断面を示し、図5は図6のB−B断面を示しており、図4の圧縮部10では断面を示す斜線を省略してある。以下の説明では図の上下方向を圧縮機の上下方向として説明する。なお、図4に示す圧縮機本体の圧縮部10は従来のものと同様であり、その一部を簡略化して図示してある。   FIG. 1 is an exploded perspective view of main parts of a flow path switching valve according to an embodiment of the present invention, FIG. 2 is a partially broken perspective view of a compressor with a flow path switching valve using the flow path switching valve, and FIG. Is a partial vertical cross-sectional view of the compressor with the flow path switching valve, FIG. 4 is a cross-sectional view of a compression portion of the compressor, FIG. 5 is a vertical cross-sectional view of the compressor, and FIG. FIG. 7 is a diagram showing a refrigeration cycle of an air conditioner using the compressor. 3 shows a cross section taken along the line AA of FIG. 6, FIG. 5 shows a cross section taken along the line BB of FIG. 6, and in the compression section 10 of FIG. In the following description, the vertical direction in the figure will be described as the vertical direction of the compressor. Note that the compressor 10 of the compressor body shown in FIG. 4 is the same as the conventional one, and a part thereof is shown in a simplified manner.

この実施形態の流路切換弁付き圧縮機は車載用の圧縮機であり、図7の冷凍サイクルは車載用空気調和機を構成している。圧縮機本体は圧縮部10にハウジング1を取り付けて構成されており、ハウジング1には後述のC切換ポート23及びE切換ポート24が形成されている。なお、図7ではサイクルの経路を示すためにC切換ポート23とE切換ポート24の位置をずらして図示してある。C切換ポート23から室外機20、キャピラリ30、室内機40及びE切換ポート24と配管により接続され、冷凍サイクルが構成されている。そして、冷房運転時に、圧縮機本体100から吐出される冷媒はC切換ポート23→室外機20→キャピラリ30→室内機40→E切換ポート24と循環し、室外機20が凝縮器、室内機40が蒸発器として機能し、車室内の冷房がなされる。また、暖房運転時には冷媒は逆に循環され、室内機40が凝縮器、室外機20が蒸発器として機能し、車室内の暖房がなされる。なお、C切換ポート23及びE切換ポート24の「C」「E」は冷房運転を基準に付けた名前である。   The compressor with a flow path switching valve of this embodiment is an in-vehicle compressor, and the refrigeration cycle in FIG. 7 constitutes an in-vehicle air conditioner. The main body of the compressor is configured by attaching a housing 1 to a compression unit 10, and a C switching port 23 and an E switching port 24 described later are formed in the housing 1. In FIG. 7, the positions of the C switching port 23 and the E switching port 24 are shifted in order to show the cycle path. The C switching port 23 is connected to the outdoor unit 20, the capillary 30, the indoor unit 40, and the E switching port 24 by piping, so that a refrigeration cycle is configured. During the cooling operation, the refrigerant discharged from the compressor main body 100 circulates through the C switching port 23 → the outdoor unit 20 → the capillary 30 → the indoor unit 40 → the E switching port 24, and the outdoor unit 20 is the condenser and the indoor unit 40. Functions as an evaporator and cools the passenger compartment. Further, during the heating operation, the refrigerant is circulated in reverse, the indoor unit 40 functions as a condenser, and the outdoor unit 20 functions as an evaporator, thereby heating the vehicle interior. “C” and “E” of the C switching port 23 and the E switching port 24 are names based on the cooling operation.

図4に示したように、圧縮機本体の圧縮部10は、フロントケース10aをバルブブロック10bで封止して構成され、フロントケース10a内には、シリンダブロック10c、駆動軸10d及び揺動板10eが収容されている。シリンダブロック10cにはシリンダボア10fが形成され、このシリンダボア10f内にはピストン10gが配設されている。ピストン10gは揺動板10eに連結され、揺動板10eは駆動軸10dに揺動自在に取り付けられている。また、バルブブロック10bには、吐出通路10jと吸入通路10kが形成されており、吐出通路10jは吐出弁10mにより開閉され、吸入通路10kは吸入弁10nにより開閉される。   As shown in FIG. 4, the compression unit 10 of the compressor body is configured by sealing a front case 10a with a valve block 10b, and in the front case 10a, a cylinder block 10c, a drive shaft 10d, and a swing plate. 10e is accommodated. A cylinder bore 10f is formed in the cylinder block 10c, and a piston 10g is disposed in the cylinder bore 10f. The piston 10g is connected to a swing plate 10e, and the swing plate 10e is swingably attached to the drive shaft 10d. Further, a discharge passage 10j and a suction passage 10k are formed in the valve block 10b. The discharge passage 10j is opened and closed by a discharge valve 10m, and the suction passage 10k is opened and closed by a suction valve 10n.

以上の構成により、図示しない車載エンジンの回転動力がプーリ10pを介して駆動軸10dに伝達されて駆動軸10dが回転すると、揺動板10eが図示しない機構により揺動してピストン10gがシリンダボア10f内で往復動する。これにより、吸入通路10kからの冷媒ガスの吸入と、吐出通路10jからの冷媒ガスの吐出が繰り返される。なお、図示しない圧力調整弁によりフロントケース10a内の圧力が調整されており、この圧力が増加するにつれて揺動板10eの傾斜角度が小さくなり、ピストン10gのストロークが少なくなって吐出容量が減少する。また、フロントケース10a内の圧力が減少すると、この圧力の減少につれて揺動板10eの傾斜角度が大きくなり、ピストン10gのストロークが増えて吐出容量が多くなる。これにより、圧縮機本体の運転能力が制御される。   With the above configuration, when the rotational power of the vehicle engine (not shown) is transmitted to the drive shaft 10d via the pulley 10p and the drive shaft 10d rotates, the swing plate 10e swings by a mechanism (not shown), and the piston 10g becomes the cylinder bore 10f. Reciprocates within. Thereby, the suction of the refrigerant gas from the suction passage 10k and the discharge of the refrigerant gas from the discharge passage 10j are repeated. Note that the pressure in the front case 10a is adjusted by a pressure control valve (not shown), and as the pressure increases, the inclination angle of the swing plate 10e decreases, the stroke of the piston 10g decreases, and the discharge capacity decreases. . When the pressure in the front case 10a decreases, the inclination angle of the swing plate 10e increases as the pressure decreases, and the stroke of the piston 10g increases and the discharge capacity increases. Thereby, the driving capability of the compressor body is controlled.

バルブブロック10bには金属材料でダイキャスト及び切削加工等により形成されたハウジング1が取り付けられている。ハウジング1は圧縮部10の形状に合わせた略円柱状のブロック部1Aと該ブロック部1Aの外周一箇所に形成された円筒状のケース部1Bとで構成されている。ブロック部1Aにはその周囲を囲う外壁1aと、この外壁1aの内部で該外壁1aと同心円にリング状に形成された隔壁1bと、隔壁1bの内側の中央で前記駆動軸10dの端部を通す軸受部1cとを、一体に成型したものである。そして、外壁1aと隔壁1bの間の空間は高圧空間sp1、隔壁1bの内側の空間は低圧空間sp2とされ、高圧空間sp1には吐出通路10jが開口され、低圧空間sp2には吸入通路10kが開口されている。   A housing 1 formed of a metal material by die casting, cutting, or the like is attached to the valve block 10b. The housing 1 includes a substantially columnar block portion 1A that matches the shape of the compression portion 10 and a cylindrical case portion 1B formed at one location on the outer periphery of the block portion 1A. The block portion 1A has an outer wall 1a surrounding the periphery, a partition wall 1b formed in a ring shape concentrically with the outer wall 1a inside the outer wall 1a, and an end portion of the drive shaft 10d at the center inside the partition wall 1b. The bearing portion 1c to be passed is molded integrally. A space between the outer wall 1a and the partition wall 1b is a high-pressure space sp1, a space inside the partition wall 1b is a low-pressure space sp2, a discharge passage 10j is opened in the high-pressure space sp1, and a suction passage 10k is formed in the low-pressure space sp2. It is open.

ハウジング1のケース部1Bは内部を円筒状に切削されて実施形態の流路切換弁のケース本体を形成しており、その内部に弁室11が形成されている。この弁室11の底面は弁座12とされるとともに、ケース部1Bの上端は後述の駆動部5を保持する蓋体13が填め込まれている。蓋体13は弁室11内に嵌合するシリンダ部13aを有し、弁室11はこのシリンダ部13aの外周のリング13a1により封止されている。弁座12には、弁室11と高圧空間sp1とを連通するDポート21、弁室11と低圧空間sp2とを連通するSポート22、弁室11とハウジング1の外部とを連通するC切換ポート23及びE切換ポート24が形成されている。Dポート21には主弁ストッパ管21aが挿入され、この主弁ストッパ管21aは弁座12よりも弁室11内に突出されている。また、Sポート22、C切換ポート23及びE切換ポート24は弁座12から縦に切削されるとともに、低圧空間sp2側及びハウジング1の端面からそれぞれ切削することにより、直角に屈曲した形状となっている。   A case portion 1B of the housing 1 is cut into a cylindrical shape to form a case main body of the flow path switching valve according to the embodiment, and a valve chamber 11 is formed therein. The bottom surface of the valve chamber 11 is a valve seat 12, and the upper end of the case portion 1 </ b> B is fitted with a lid 13 that holds a drive unit 5 described later. The lid body 13 has a cylinder portion 13a fitted in the valve chamber 11, and the valve chamber 11 is sealed by a ring 13a1 on the outer periphery of the cylinder portion 13a. The valve seat 12 has a D port 21 that communicates the valve chamber 11 and the high pressure space sp1, an S port 22 that communicates the valve chamber 11 and the low pressure space sp2, and a C switch that communicates the valve chamber 11 and the outside of the housing 1. A port 23 and an E switching port 24 are formed. A main valve stopper pipe 21 a is inserted into the D port 21, and the main valve stopper pipe 21 a protrudes into the valve chamber 11 from the valve seat 12. Further, the S port 22, the C switching port 23, and the E switching port 24 are cut vertically from the valve seat 12, and are bent at a right angle by cutting from the low pressure space sp2 side and the end face of the housing 1, respectively. ing.

弁室11内には主弁3が配設されている。主弁3は樹脂で形成され、弁座12の中心に立設された軸12aにより回動自在に軸支持されている。主弁3は、軸12aが貫通する軸受部を有するとともに、この軸受部の片側に主弁ストッパ管21aに倣って摺動する水平断面円弧状のストッパ部3Aを有し、その反対側に低圧導通部3Bを有している。低圧導通部3B内には弁座12側に開口した縦長でドーム状の導通路31が形成されており、この導通路31はSポート22をC切換ポート23またはE切換ポート24に択一的に導通可能となっている。導通路31の開口部の周囲には弁座12側に僅かに突出したシール部31aが形成されており、このシール部31aは弁座12の摺動面に接触する。   A main valve 3 is disposed in the valve chamber 11. The main valve 3 is made of resin and is rotatably supported by a shaft 12a standing at the center of the valve seat 12. The main valve 3 has a bearing portion through which the shaft 12a penetrates, and has a horizontal cross-section arc-shaped stopper portion 3A sliding along the main valve stopper tube 21a on one side of the bearing portion, and a low pressure on the opposite side. It has a conducting part 3B. In the low-pressure conducting part 3B, a vertically long dome-like conducting path 31 opened on the valve seat 12 side is formed, and this conducting path 31 is an alternative to the S switching port 23 or the E switching port 24. Can be conducted. A seal portion 31 a that slightly protrudes toward the valve seat 12 is formed around the opening of the conduction path 31, and this seal portion 31 a contacts the sliding surface of the valve seat 12.

主弁3の上部外周にはピストンリング32が配設されており、このピストンリング32は蓋体13のシリンダ部13aの内面に摺接される。このシリンダ部13a内の主弁3の上方空間は圧力制御空間Rとされている。なお、シリンダ部13aとピストンリング32との間には僅かに隙間が形成されている。   A piston ring 32 is disposed on the outer periphery of the upper portion of the main valve 3, and this piston ring 32 is in sliding contact with the inner surface of the cylinder portion 13 a of the lid body 13. The space above the main valve 3 in the cylinder portion 13a is a pressure control space R. A slight gap is formed between the cylinder portion 13a and the piston ring 32.

図1に示したように、主弁3の圧力制御空間R側の上端面には、軸12aの周囲に円形平板状の副弁座33が形成され、この副弁座33の一箇所には低圧導通部3B内の導通路31に連通する均圧孔34が形成されている。また、副弁座33の外周には180°離間した2箇所に突条35,35が形成されている。さらに、主弁3の上面には副弁座33の外周の一部に水平断面円弧状の副弁ストッパ36が形成されている。   As shown in FIG. 1, a circular flat plate-shaped sub valve seat 33 is formed around the shaft 12a on the upper end surface of the main valve 3 on the pressure control space R side. A pressure equalizing hole 34 communicating with the conduction path 31 in the low-pressure conduction part 3B is formed. Further, on the outer periphery of the auxiliary valve seat 33, protrusions 35, 35 are formed at two positions spaced apart by 180 °. Further, on the upper surface of the main valve 3, a sub valve stopper 36 having an arcuate horizontal section is formed on a part of the outer periphery of the sub valve seat 33.

副弁座33の上には円盤状の副弁4が配設されている。副弁4は中心に後述の駆動部5のシャフト53が嵌合される従動軸41を有するとともに、この従動軸41の外周で前記副弁座33の均圧孔34に対応する半径位置に所定角度で円弧状で該副弁4を貫通する均圧溝42が形成されている。また、図8に示したように、副弁4の主弁3側の面には、主弁3の突条35,35と同様に、該突条35,35に対応する半径位置に180°離間した突条43,43が形成されている。そして、突条43,43の内側の面(均圧溝42の周囲)は主弁3側の副弁座33に密着される。また、副弁4の外周一部には副弁ストッパ36に当接可能な扇状のストッパ片44が形成されている。   A disc-shaped auxiliary valve 4 is disposed on the auxiliary valve seat 33. The sub-valve 4 has a driven shaft 41 to which a shaft 53 of the driving unit 5 described later is fitted at the center, and a predetermined radial position on the outer periphery of the driven shaft 41 corresponding to the pressure equalizing hole 34 of the sub-valve seat 33. A pressure equalizing groove 42 penetrating the auxiliary valve 4 is formed in an arc shape at an angle. Further, as shown in FIG. 8, on the surface of the auxiliary valve 4 on the main valve 3 side, similarly to the protrusions 35, 35 of the main valve 3, the radial position corresponding to the protrusions 35, 35 is 180 °. Separated protrusions 43 and 43 are formed. The inner surfaces of the protrusions 43, 43 (around the pressure equalizing groove 42) are in close contact with the sub valve seat 33 on the main valve 3 side. Further, a fan-shaped stopper piece 44 capable of contacting the auxiliary valve stopper 36 is formed on a part of the outer periphery of the auxiliary valve 4.

駆動部5は、蓋体13の上端に固定された円筒状のケース51を備えている。、ケース51の内部には、マグネット製のロータ52が配設され、このロータ52はシャフト53に取付けられ、シャフト53は、蓋体13の上端に延設された軸受13b内に回転自在に嵌合されている。副弁4は従動軸41とシャフト53の下端の周囲に配設されたバネ54により下方に付勢されている。図1に示したように、シャフト53の下端部は二股の係合部53aとされ、この係合部53aが副弁4の従動軸41に係合される。また、ケース51の外周には駆動コイル55が配設されており、この駆動コイル55、ロータ52及びシャフト53により駆動手段としてのステッピングモータが構成されている。   The drive unit 5 includes a cylindrical case 51 fixed to the upper end of the lid body 13. In the case 51, a magnet rotor 52 is disposed. The rotor 52 is attached to a shaft 53, and the shaft 53 is rotatably fitted in a bearing 13b extending at the upper end of the lid 13. Are combined. The sub valve 4 is urged downward by a spring 54 disposed around the driven shaft 41 and the lower end of the shaft 53. As shown in FIG. 1, the lower end portion of the shaft 53 is a bifurcated engagement portion 53 a, and this engagement portion 53 a is engaged with the driven shaft 41 of the sub valve 4. A drive coil 55 is disposed on the outer periphery of the case 51, and the drive coil 55, the rotor 52, and the shaft 53 constitute a stepping motor as drive means.

主弁3の突条35と副弁4の突条43は、いずれも円周の半径方向に稜線を持つ屋根型の形状であり、この突条35,43はクラッチ機構を構成している。突条43,35の互いの傾斜面が当接するとき、駆動部5のバネ54により副弁4は主弁3側に付勢されているので、副弁4の回動時にもこの当接状態が保持され、主弁3が副弁4と共に回動する。すなわちクラッチ機構が連結状態となる。一方、主弁3のストッパ部3Aの端部が主弁ストッパ管21aに当接すると、主弁3の回動が阻止され、さらに副弁4が回動するとき、バネ54の付勢力に抗して副弁4の突条43の稜線が主弁3の突条35の稜線を載り越え、各突条43,35の当接状態が解除される。すなわちクラッチ機構が非連結状態となる。このように、駆動部5の駆動により、副弁4は、突条43,43が主弁3突条35,35に当接しないとき主弁3に対して単独で回動し、突条43,43が突条35,35に当接すると、主弁3を伴って回動する。   Both the ridge 35 of the main valve 3 and the ridge 43 of the sub-valve 4 have a roof shape having a ridge line in the circumferential radial direction, and the ridges 35 and 43 constitute a clutch mechanism. When the inclined surfaces of the protrusions 43 and 35 are in contact with each other, the auxiliary valve 4 is urged toward the main valve 3 by the spring 54 of the drive unit 5. Is held, and the main valve 3 rotates together with the sub-valve 4. That is, the clutch mechanism is in a connected state. On the other hand, when the end of the stopper portion 3A of the main valve 3 comes into contact with the main valve stopper tube 21a, the main valve 3 is prevented from rotating, and when the sub valve 4 is further rotated, it resists the biasing force of the spring 54. Then, the ridge line of the ridge 43 of the sub-valve 4 rides over the ridge line of the ridge 35 of the main valve 3, and the contact state of the ridges 43, 35 is released. That is, the clutch mechanism is disconnected. Thus, by driving the drive unit 5, the sub-valve 4 rotates independently with respect to the main valve 3 when the protrusions 43, 43 do not contact the main valve 3 protrusions 35, 35. , 43 are brought into contact with the ridges 35, 35 and are rotated with the main valve 3.

次に、実施形態の流路切換弁の動作を説明する。図9は実施形態の流路切換弁の動作説明図であり、同図は各部位の位置関係を示すものであり実線、破線、斜線等の表記は前後位置や構造を示すものではない。また、「D,S,C,E」の表記は、Dポート21、Sポート22、C切換ポート23及びE切換ポート24の弁座12における開口を示している。図9(A) は冷房運転状態、図9(D) は暖房運転状態、図9(B) ,(C) は運転状態の切換過程である。なお、弁座12において、Dポート21とSポート22は180°離間する位置に開口し、C切換ポート23とE切換ポート24はSポート22から90°より僅かに小さい角度づつ離間して開口されている。   Next, the operation of the flow path switching valve of the embodiment will be described. FIG. 9 is an operation explanatory diagram of the flow path switching valve of the embodiment. FIG. 9 shows the positional relationship of each part, and the notation such as a solid line, a broken line, and a slanted line does not indicate the front-rear position or structure. The notation “D, S, C, E” indicates the opening in the valve seat 12 of the D port 21, the S port 22, the C switching port 23, and the E switching port 24. 9A shows the cooling operation state, FIG. 9D shows the heating operation state, and FIGS. 9B and 9C show the switching process of the operation state. In the valve seat 12, the D port 21 and the S port 22 are opened at positions separated by 180 °, and the C switching port 23 and the E switching port 24 are opened at an angle slightly smaller than 90 ° from the S port 22. Has been.

先ず、図9(A) の冷房運転時にあるとする。図9(A) のように、Dポート21はC切換ポート23に導通され、Sポート22は導通路31によりE切換ポート24に導通されている。そして、Dポート21から高圧冷媒が導入されて弁室11が高圧になり、導通路31が低圧になっている。このとき、図9(A) のように均圧孔34が副弁4により閉じられている。したがって、主弁3の上部の圧力制御空間Rは高圧になり、圧力制御空間Rと導通路31との差圧により主弁3は弁座12に着座して密着されている。   First, it is assumed that the cooling operation shown in FIG. As shown in FIG. 9A, the D port 21 is electrically connected to the C switching port 23, and the S port 22 is electrically connected to the E switching port 24 by the conduction path 31. And the high pressure refrigerant | coolant is introduce | transduced from the D port 21, the valve chamber 11 becomes high pressure, and the conduction path 31 is low pressure. At this time, the pressure equalizing hole 34 is closed by the auxiliary valve 4 as shown in FIG. Therefore, the pressure control space R above the main valve 3 becomes high pressure, and the main valve 3 is seated on and closely contacted with the valve seat 12 by the pressure difference between the pressure control space R and the conduction path 31.

次に、上記冷房運転状態から暖房運転状態に切り換えるとき、圧縮機本体は運転状態のままで、ステッピングモータを駆動して副弁4を図9(A) の状態から反時計回りに回動する。そして、図9(B) の状態になると、副弁4の均圧溝42により均圧孔34が開放され、導通路31と圧力制御空間Rとが均圧されて圧力制御空間Rは低圧となる。この図9(B) の状態では、均圧孔34が均圧溝42の中央の位置にあるが、均圧溝42は円弧状に所定角度を有しているので、この状態になる前すなわち均圧孔34が均圧溝42に架かった位置から均圧が開始され、図9(B) の状態では十分に均圧されている。したがって、Dポート21から吐出する冷媒の高圧によって主弁3は弁座12から離間(浮上)した状態となる。   Next, when switching from the cooling operation state to the heating operation state, the compressor main body remains in the operation state, and the stepping motor is driven to rotate the auxiliary valve 4 counterclockwise from the state of FIG. . 9B, the pressure equalizing hole 34 is opened by the pressure equalizing groove 42 of the sub-valve 4 so that the conduction path 31 and the pressure control space R are equalized, and the pressure control space R becomes low pressure. Become. In the state of FIG. 9B, the pressure equalizing hole 34 is at the center position of the pressure equalizing groove 42. However, since the pressure equalizing groove 42 has a predetermined angle in an arc shape, The pressure equalization is started from the position where the pressure equalization hole 34 spans the pressure equalization groove 42, and the pressure is sufficiently equalized in the state of FIG. 9B. Therefore, the main valve 3 is separated (floated) from the valve seat 12 by the high pressure of the refrigerant discharged from the D port 21.

また、この図9(B) の状態で副弁4の突条43,43が主弁3の突条35,35に当接するので、副弁4がさらに反時計回りに回動するとき、主弁3は副弁4と共に回動し、図9(C) の状態となる。これにより、ストッパ部3Aの端部が主弁ストッパ管21aに当接して主弁3の回動が阻止されるとともに、Dポート21はE切換ポート24に導通され、Sポート22は導通路31によりC切換ポート23に導通される。さらに副弁4が回動すると、突条43,35によるクラッチ機構が非連結状態となって副弁4だけが回動し、図9(D) の状態となる。このとき、均圧孔34が副弁4により閉じられるとともに、副弁4のストッパ片44が副弁ストッパ36に当接して副弁4の回動が停止される。これにより、圧力制御空間Rは高圧になり、圧力制御空間Rと導通路31との差圧により主弁3は弁座12に着座して密着される。   9B, the protrusions 43, 43 of the auxiliary valve 4 come into contact with the protrusions 35, 35 of the main valve 3. Therefore, when the auxiliary valve 4 further rotates counterclockwise, The valve 3 rotates together with the auxiliary valve 4 to be in the state shown in FIG. As a result, the end of the stopper portion 3A abuts against the main valve stopper tube 21a to prevent the main valve 3 from rotating, the D port 21 is conducted to the E switching port 24, and the S port 22 is conducted to the conduction path 31. Is conducted to the C switching port 23. When the sub-valve 4 further rotates, the clutch mechanism by the protrusions 43 and 35 is disengaged, and only the sub-valve 4 rotates, and the state shown in FIG. At this time, the pressure equalizing hole 34 is closed by the auxiliary valve 4, and the stopper piece 44 of the auxiliary valve 4 comes into contact with the auxiliary valve stopper 36 to stop the rotation of the auxiliary valve 4. As a result, the pressure control space R becomes high pressure, and the main valve 3 is seated on and closely contacts the valve seat 12 due to the differential pressure between the pressure control space R and the conduction path 31.

暖房運転状態から冷房運転状態に切り換えるときは図9(D) の状態から副弁4を逆(時計回り)に回動すれば、図9(C) の状態で圧力制御空間Rと導通路31とが均圧するとともにクラッチ機構が連結状態となり、副弁4がさらに回動して主弁が共に回動する。そして、図9(B) の状態でストッパ部3Aの端部が主弁ストッパ管21aに当接して主弁3の回動が阻止され、クラッチ機構が非連結状態となってさらに副弁4が回動して図9(A) の状態となる。   When switching from the heating operation state to the cooling operation state, if the auxiliary valve 4 is rotated counterclockwise from the state of FIG. 9D, the pressure control space R and the conduction path 31 in the state of FIG. 9C. And the clutch mechanism is in a connected state, the sub valve 4 further rotates, and the main valve rotates together. 9B, the end of the stopper portion 3A abuts the main valve stopper tube 21a to prevent the main valve 3 from rotating, and the clutch mechanism is disengaged and the sub valve 4 is further disengaged. It turns to the state of FIG. 9 (A).

なお、この逆回転の場合には突条35,43によるクラッチ機構が連結状態となるとき及び非連結状態に移行するとき、均圧溝42と均圧孔34の位置関係は図9(B) ,(C) から僅かにずれるが、均圧溝42が所定角度を有しているので、クラッチ機構が非連結状態に移行するときには十分に均圧されている。   In the case of this reverse rotation, the positional relationship between the pressure equalizing groove 42 and the pressure equalizing hole 34 is as shown in FIG. Although slightly deviated from (C), the pressure equalizing groove 42 has a predetermined angle, so that the pressure is sufficiently equalized when the clutch mechanism shifts to the non-connected state.

ハウジング1はブロック状であり、弁室11、Dポート21、Sポート22、C切換ポート23、E切換ポート24が、ハウジング1にそれぞれ穿設することでハウジング1自体で形成されている。したがって、圧縮機本体の外回りには流路切換弁用の配管がなく、外回りの配管が極力低減される。   The housing 1 has a block shape, and the valve chamber 11, the D port 21, the S port 22, the C switching port 23, and the E switching port 24 are formed in the housing 1 by being formed in the housing 1. Therefore, there is no pipe for the flow path switching valve outside the compressor body, and the outside pipe is reduced as much as possible.

以上の実施形態では圧縮機本体として斜板式のものを例に説明したが、スクロール式の圧縮機本体であってもよい。   In the above embodiment, the swash plate type has been described as an example of the compressor body, but a scroll type compressor body may be used.

本発明の実施形態に係る流路切換弁の要部分解斜視図である。It is a principal part disassembled perspective view of the flow-path switching valve concerning embodiment of this invention. 同流路切換弁を用いた流路切換弁付き圧縮機の一部破断要部斜視図である。It is a partially broken principal part perspective view of the compressor with a flow-path switching valve using the same flow-path switching valve. 同流路切換弁付き圧縮機のA−A一部縦断面図である。It is AA partial longitudinal cross-sectional view of the compressor with a flow-path switching valve. 同圧縮機の圧縮部の断面図、Sectional view of the compression part of the compressor, 同圧縮機のB−B縦断面図である。It is a BB longitudinal cross-sectional view of the compressor. 同圧縮機のハウジング部の上面図である。It is a top view of the housing part of the compressor. 同圧縮機を用いた空気調和機の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of the air conditioner using the compressor. 実施形態における副弁の裏面斜視図である。It is a back surface perspective view of a subvalve in an embodiment. 実施形態の流路切換弁の動作説明図である。It is operation | movement explanatory drawing of the flow-path switching valve of embodiment.

符号の説明Explanation of symbols

1 ハウジング
11 弁室
12 弁座
R 圧力制御空間
sp1 高圧空間
sp2 低圧空間
21 Dポート
21a 主弁ストッパ管
22 Sポート
23 C切換ポート
24 E切換ポート
3 主弁
3A ストッパ部
31 導通路
33 副弁座
34 均圧孔
35 突条
4 副弁
42 均圧溝
43 突条
5 駆動部
52 ロータ
53 シャフト
54 バネ
55 駆動コイル
10 圧縮部
20 室外機
30 キャピラリ
40 室内機
DESCRIPTION OF SYMBOLS 1 Housing 11 Valve chamber 12 Valve seat R Pressure control space sp1 High pressure space sp2 Low pressure space 21 D port 21a Main valve stopper pipe 22 S port 23 C switching port 24 E switching port 3 Main valve 3A Stopper part 31 Conduction path 33 Sub valve seat 34 Pressure equalizing hole 35 Projection 4 Sub valve 42 Pressure equalizing groove 43 Projection 5 Drive unit 52 Rotor 53 Shaft 54 Spring 55 Drive coil 10 Compression unit 20 Outdoor unit 30 Capillary 40 Indoor unit

Claims (6)

円筒状の弁室内に該弁室の軸回りに回動可能に主弁を収容するとともに、該主弁に対向する弁座に低圧ポートと2つの切換ポートを開口し、該主弁に形成された導通路により低圧ポートを一方の切換ポートに連通するとともに、高圧ポートを他方の切換ポートに連通するように、該主弁を回動して2つの切換ポートの連通先を切り換え、前記高圧ポートに通じる前記弁室内の圧力制御空間と前記主弁の導通路内との差圧により、該主弁の着座状態を保持するようにした流路切換弁において、
前記主弁に形成され導通路と前記圧力制御空間とを導通する均圧孔と、
該主弁に近接して前記弁室の軸回りに回動自在に配設され前記均圧孔を開閉する副弁と、
前記副弁を回動する駆動手段と、
前記主弁の回動範囲を前記低圧ポートが前記切換ポートに択一的に連通される第1位置及び第2位置の2箇所間の回動範囲に規制する主弁ストッパ機構と、
前記副弁と前記主弁とを連結/非連結とするクラッチ機構と
を設け、
前記副弁が、該副弁の前記主弁に対する所定角度範囲で前記均圧孔を開とするとともに該所定角度範囲以外の位置で該均圧孔を閉とする形状に形成され、
前記クラッチ機構は、前記副弁が均圧孔を開とする前記所定角度範囲の略中央位置で前記主弁が副弁に連結され、前記主弁ストッパ機構が規制する前記主弁の回動範囲から外れるように前記副弁が回動するとき前記主弁が副弁から非連結となる機構とされ、
前記副弁の回動により、前記均圧孔を開とした状態で前記クラッチ機構により該副弁と共に前記主弁を回動するようにしたことを特徴とする流路切換弁。
A main valve is accommodated in a cylindrical valve chamber so as to be rotatable about an axis of the valve chamber, and a low pressure port and two switching ports are opened in a valve seat facing the main valve, and formed in the main valve. The low pressure port communicates with one switching port through the conducting path, and the main valve is rotated to switch the communication destination of the two switching ports so that the high pressure port communicates with the other switching port. In the flow path switching valve configured to maintain the seating state of the main valve by the differential pressure between the pressure control space in the valve chamber leading to the inside of the conduction path of the main valve,
A pressure equalizing hole formed in the main valve and conducting the conduction path and the pressure control space;
A sub-valve arranged close to the main valve so as to be rotatable about an axis of the valve chamber and opening and closing the pressure equalizing hole;
Driving means for rotating the auxiliary valve;
A main valve stopper mechanism for restricting a rotation range of the main valve to a rotation range between two positions of a first position and a second position where the low-pressure port is selectively communicated with the switching port;
A clutch mechanism for connecting / disconnecting the sub valve and the main valve;
The sub valve is formed in a shape that opens the pressure equalizing hole in a predetermined angle range with respect to the main valve of the sub valve and closes the pressure equalizing hole at a position other than the predetermined angle range,
In the clutch mechanism, the main valve is connected to the sub valve at a substantially central position in the predetermined angle range where the sub valve opens the pressure equalizing hole, and the main valve rotation range regulated by the main valve stopper mechanism. The main valve is a mechanism that is disconnected from the sub-valve when the sub-valve rotates so as to be disengaged from the
A flow path switching valve characterized in that the main valve is rotated together with the auxiliary valve by the clutch mechanism in a state where the pressure equalizing hole is opened by the rotation of the auxiliary valve.
前記主弁と前記副弁の両対向面の前記軸回りの同一円周上の一部に、該円周の半径方向に稜線を持つ屋根型の突条が形成されるとともに、該副弁を該主弁に対して離間可能なように該主弁方向に付勢する付勢手段を備え、
前記副弁と前記主弁の両突条の傾斜面が当接した状態で該副弁と主弁の連結状態となり、前記付勢手段の付勢力に抗して両突条が互いの稜線を載り越えることで該副弁と主弁の非連結状態となるように、
前記クラッチ機構が構成されていることを特徴とする請求項1に記載の流路切換弁。
A roof-shaped ridge having a ridge line in the radial direction of the circumference is formed on a part of the opposite circumference of the main valve and the sub-valve on the same circumference around the axis. Urging means for urging in the main valve direction so as to be separable from the main valve;
The sub-valve and the main valve are connected to each other when the inclined surfaces of the sub-valve and the main valve are in contact with each other, and the two ridges cross each other's ridgeline against the urging force of the urging means. So that the sub-valve and the main valve are disconnected from each other.
The flow path switching valve according to claim 1, wherein the clutch mechanism is configured.
前記副弁と前記主弁の両突条が、前記円周回りの180度離間した2箇所にそれぞれ形成されていることを特徴とする請求項2に記載の流路切換弁。   3. The flow path switching valve according to claim 2, wherein the protrusions of the sub valve and the main valve are formed at two locations 180 degrees apart from each other around the circumference. 請求項1、2、または3に記載の流路切換弁を備えた流路切換弁付き圧縮機であって、
圧縮機本体の高圧空間と低圧空間とを形成するブロック状のハウジングを備え、前記流路切換弁の弁室、前記高圧ポート、前記低圧ポート、前記切換ポートを、前記ハウジングにそれぞれ穿設することで該ハウジング自体で形成するとともに、前記ハウジングの前記高圧ポートと低圧ポートとを前記低圧空間と高圧空間とにそれぞれ開口するようにしたことを特徴とする流路切換弁付き圧縮機。
A compressor with a flow path switching valve comprising the flow path switching valve according to claim 1,
A block-shaped housing that forms a high-pressure space and a low-pressure space of the compressor body is provided, and the valve chamber of the flow path switching valve, the high-pressure port, the low-pressure port, and the switching port are formed in the housing, respectively. The compressor with a flow path switching valve is formed by the housing itself, and the high pressure port and the low pressure port of the housing are opened to the low pressure space and the high pressure space, respectively.
請求項1、2、または3に記載の流路切換弁を搭載したことを特徴とする空気調和機。   An air conditioner equipped with the flow path switching valve according to claim 1, 2 or 3. 請求項4に記載の流路切換弁付き圧縮機を搭載したことを特徴とする空気調和機。   An air conditioner equipped with the compressor with a flow path switching valve according to claim 4.
JP2004378964A 2004-12-28 2004-12-28 Channel switching valve, compressor with channel switching valve, and air conditioner Expired - Fee Related JP4615995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004378964A JP4615995B2 (en) 2004-12-28 2004-12-28 Channel switching valve, compressor with channel switching valve, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004378964A JP4615995B2 (en) 2004-12-28 2004-12-28 Channel switching valve, compressor with channel switching valve, and air conditioner

Publications (2)

Publication Number Publication Date
JP2006183802A true JP2006183802A (en) 2006-07-13
JP4615995B2 JP4615995B2 (en) 2011-01-19

Family

ID=36737051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004378964A Expired - Fee Related JP4615995B2 (en) 2004-12-28 2004-12-28 Channel switching valve, compressor with channel switching valve, and air conditioner

Country Status (1)

Country Link
JP (1) JP4615995B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147932A1 (en) * 2008-06-02 2009-12-10 株式会社鷺宮製作所 Flow path selector valve
CN112879596A (en) * 2019-11-29 2021-06-01 株式会社鹭宫制作所 Rotary switching valve and refrigeration cycle system
JP2021124119A (en) * 2020-01-31 2021-08-30 株式会社鷺宮製作所 Rotary switching valve
CN114688305A (en) * 2020-12-25 2022-07-01 株式会社鹭宫制作所 Rotary switching valve

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341668A (en) * 1991-05-17 1992-11-27 Ranco Japan Ltd Four-way valve
JPH08247328A (en) * 1995-03-15 1996-09-27 Taiheiyo Seiko Kk Four way valve used for air conditioner
JPH0972447A (en) * 1995-09-04 1997-03-18 Pacific Ind Co Ltd Control valve
JPH1144369A (en) * 1997-05-27 1999-02-16 Saginomiya Seisakusho Inc Motor-driven four-way valve
JPH11118050A (en) * 1997-10-16 1999-04-30 Yokohama Hydex Co Sealed direction control valve
JP2000257990A (en) * 1999-03-05 2000-09-22 Toshiba Corp Change-over valve, fluid compressor, and heat pump type refrigerating cycle
JP2002013843A (en) * 2000-04-26 2002-01-18 Fuji Koki Corp Four-way change-over valve
JP2002340446A (en) * 2001-05-17 2002-11-27 Fuji Koki Corp Four-way change-over valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341668A (en) * 1991-05-17 1992-11-27 Ranco Japan Ltd Four-way valve
JPH08247328A (en) * 1995-03-15 1996-09-27 Taiheiyo Seiko Kk Four way valve used for air conditioner
JPH0972447A (en) * 1995-09-04 1997-03-18 Pacific Ind Co Ltd Control valve
JPH1144369A (en) * 1997-05-27 1999-02-16 Saginomiya Seisakusho Inc Motor-driven four-way valve
JPH11118050A (en) * 1997-10-16 1999-04-30 Yokohama Hydex Co Sealed direction control valve
JP2000257990A (en) * 1999-03-05 2000-09-22 Toshiba Corp Change-over valve, fluid compressor, and heat pump type refrigerating cycle
JP2002013843A (en) * 2000-04-26 2002-01-18 Fuji Koki Corp Four-way change-over valve
JP2002340446A (en) * 2001-05-17 2002-11-27 Fuji Koki Corp Four-way change-over valve

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147932A1 (en) * 2008-06-02 2009-12-10 株式会社鷺宮製作所 Flow path selector valve
JP5087677B2 (en) * 2008-06-02 2012-12-05 株式会社鷺宮製作所 Flow path switching valve
US8813784B2 (en) 2008-06-02 2014-08-26 Kabushiki Kaisha Saginomiya Seisakusho Flow path switching valve
CN112879596A (en) * 2019-11-29 2021-06-01 株式会社鹭宫制作所 Rotary switching valve and refrigeration cycle system
JP2021124119A (en) * 2020-01-31 2021-08-30 株式会社鷺宮製作所 Rotary switching valve
JP7227931B2 (en) 2020-01-31 2023-02-22 株式会社鷺宮製作所 Rotary switching valve
CN114688305A (en) * 2020-12-25 2022-07-01 株式会社鹭宫制作所 Rotary switching valve
CN114688305B (en) * 2020-12-25 2024-03-12 株式会社鹭宫制作所 Rotary switching valve

Also Published As

Publication number Publication date
JP4615995B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP4180786B2 (en) Electric switching valve and refrigeration cycle apparatus for refrigeration / refrigerator
US8813784B2 (en) Flow path switching valve
JP3145048U (en) Electric expansion valve and refrigeration cycle
JP4256692B2 (en) Electric switching valve
JP4440795B2 (en) Channel switching valve and air conditioner
JP3718964B2 (en) Rotary compressor
JP4615995B2 (en) Channel switching valve, compressor with channel switching valve, and air conditioner
JP2009270697A (en) Flow path selector valve
JP2000320711A (en) Electric control valve
JP2009270639A (en) Flow path selector valve
JP2000310348A (en) Electric operated selector valve
JP5404456B2 (en) Multi-way selector valve
JP2005256853A (en) Flow passage change-over valve
JP2005076840A (en) Passage selector valve, and refrigerating cycle
JPS62126290A (en) Reversible rotary type compressor
JP2001254861A (en) Three-way valve
JP2005207574A (en) Refrigerant flow control valve and air-conditioner
JPH0979409A (en) Control valve
JP2001173812A (en) Flow passage switching valve
JP6171482B2 (en) Vane type compressor
JP2816260B2 (en) Four-way valve
JP2006200555A (en) Channel selector valve and air-conditioner
JP2009275834A (en) Flow path selector valve
CN112879596B (en) Rotary switching valve and refrigeration cycle system
JP2004125096A (en) Electrical rotation type channel change valve and freezing cycle device for freezer/refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees