JP2009275834A - Flow path selector valve - Google Patents

Flow path selector valve Download PDF

Info

Publication number
JP2009275834A
JP2009275834A JP2008128002A JP2008128002A JP2009275834A JP 2009275834 A JP2009275834 A JP 2009275834A JP 2008128002 A JP2008128002 A JP 2008128002A JP 2008128002 A JP2008128002 A JP 2008128002A JP 2009275834 A JP2009275834 A JP 2009275834A
Authority
JP
Japan
Prior art keywords
valve
pressure
sub
port
main valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008128002A
Other languages
Japanese (ja)
Inventor
Naoki Kusaka
直樹 日下
Hideki Minamizawa
英樹 南澤
Yasuo Komiya
靖雄 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2008128002A priority Critical patent/JP2009275834A/en
Publication of JP2009275834A publication Critical patent/JP2009275834A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Multiple-Way Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow path selector valve which can retain a seating condition of a main valve 3 by a differential pressure between the outside of the main valve 3 and a low pressure passage 31A, which can quickly perform pressure equalization in a high-pressure coolant of the outside of the main valve 3 and a low-pressure coolant in the low-pressure passage 31A, and which can secure the rotary movement of the main valve 3. <P>SOLUTION: A pressure-equalization valve 4 is provided to the main valve 3, and a first communicating hole 34 and a second communicating hole 35 are formed. The first communicating hole 34 connects the low-pressure passage 31A and the top of the main valve 3, and the second communicating hole 35 connects the sub-valve back space 42A and the top of the main valve 3. A sub-sub valve 5 is provided above the main valve 3, and switching between connection and non-connection of the first communicating hole 34 and the second communicating hole 35 is performed by rotating the sub-sub valve 5. The sub-valve back space 42A is brought under high-pressure, and a sub-valve 43 is seated in a sub-valve port 41 in the non-connection state of the first communicating hole 34 and the second communicating hole 35. Then air conditioning operation or heating operation is performed. The sub-valve 43 is separated from the sub-valve port 41 in the connection state of the first communicating hole 34 and the second communicating hole 35. Then pressure equalization is performed in the space of the outside of the main valve 3 and the interior of the low-pressure passage 31A, and the main valve 3 is rotated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ヒートポンプ式の冷凍サイクル等に用いられ、冷媒の流路を切り換える流路切換弁に関する。   The present invention relates to a flow path switching valve that is used in a heat pump refrigeration cycle or the like and switches a flow path of a refrigerant.

従来、この種の流路切換弁として例えば特開2003−148835号公報(特許文献1)及び特開2006−183802号公報(特許文献2)に開示されたものがある。特許文献1のものは、弁本体(弁座)に吸入圧力導通孔(低圧ポート)と吐出圧力導通孔(高圧ポート)と二つの導通孔(切換ポート)が形成され、主弁には吸入圧力導通孔と二つの導通孔とを選択的に連通する連通部(低圧路)と、連通部と弁室とを連通する均圧孔とを備えている。また、主弁上にロータの回転に連動する副弁を設けている。そして、主弁の外側すなわち弁室内の圧力と連通部内の圧力との差圧により、主弁を弁本体(弁座)に押え付け、着座状態を保持している。また、冷媒の流路を切り換えるときは、副弁をモータ部により回動し、均圧孔を開けて上記差圧を無くすようにしている。   Conventionally, this type of flow path switching valve is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-148835 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2006-183802 (Patent Document 2). In Patent Document 1, a suction pressure conduction hole (low pressure port), a discharge pressure conduction hole (high pressure port), and two conduction holes (switching port) are formed in a valve body (valve seat), and a suction pressure is formed in a main valve. A communication portion (low pressure passage) that selectively communicates the conduction hole and the two conduction holes, and a pressure equalization hole that communicates the communication portion and the valve chamber are provided. In addition, a sub-valve interlocking with the rotation of the rotor is provided on the main valve. The main valve is pressed against the valve main body (valve seat) by the pressure difference between the pressure outside the main valve, that is, the pressure in the valve chamber and the pressure in the communicating portion, and the seated state is maintained. Further, when switching the refrigerant flow path, the sub-valve is rotated by the motor unit to open the pressure equalizing hole so as to eliminate the differential pressure.

特許文献2のものは、弁室内の主弁の外側の冷媒圧力と主弁の低圧路(導通路)内の冷媒圧力との差圧によって主弁を弁座に押し付けるシール圧を得るものである。そして、この特許文献2のものでは、主弁が第1位置にあるとき副弁を回動し、主弁の均圧孔が所定角度範囲に入ることで低圧路(導通路)と圧力制御空間との均圧を開始し、均圧孔が所定角度範囲の略中央位置になったところでクラッチ機構により主弁と副弁を連結し、副弁の回動により主弁を回動するようにしている。そして、副弁が回動するとき、クラッチ機構が副弁と主弁とを連結する前に均圧を開始することで、クラッチ機構が連結状態となるとき、すなわち主弁の回動が開始されるときには十分に均圧されるようにしている。
特開2003−148835号公報 特開2006−183802号公報
Patent Document 2 obtains a seal pressure that presses the main valve against the valve seat by a differential pressure between the refrigerant pressure outside the main valve in the valve chamber and the refrigerant pressure in the low pressure passage (conduction passage) of the main valve. . And in the thing of this patent document 2, when a main valve exists in a 1st position, a subvalve is rotated and a pressure equalizing hole of a main valve enters into a predetermined angle range, and a low pressure path (conduction path) and pressure control space When the pressure equalizing hole is at a substantially central position within a predetermined angle range, the main valve and the sub valve are connected by the clutch mechanism, and the main valve is rotated by the rotation of the sub valve. Yes. When the sub-valve rotates, the clutch mechanism starts pressure equalization before connecting the sub-valve and the main valve, so that when the clutch mechanism is in a connected state, that is, the main valve starts rotating. The pressure is equalized sufficiently.
JP 2003-148835 A JP 2006-183802 A

しかしながら、特許文献1あるいは特許文献2のものでは、副弁をモータ等により回動して主弁の均圧孔を開閉するため、副弁と均圧孔の周囲との効力により副弁と主弁との間に摩擦力が生じ、モータ等の力で副弁を回動するには、小開口面積の均圧孔の開閉しかできず、主弁外部の空間と低圧路との均圧を速やかに行えないという問題がある。   However, in Patent Document 1 or Patent Document 2, the auxiliary valve is rotated by a motor or the like to open and close the pressure equalizing hole of the main valve. A frictional force is generated between the valve and the auxiliary valve can be rotated by the force of a motor, etc., and the pressure equalizing hole with a small opening area can only be opened and closed. There is a problem that it cannot be done quickly.

本発明は、主弁の外側の空間の冷媒圧力と主弁の低圧路の冷媒圧力との差圧によって主弁の着座状態を保持するようにした流路切換弁において、該主弁の回動に先立って、主弁の周囲の高圧冷媒と低圧路内の低圧冷媒の圧力を素早く均圧するとともに、主弁の回動動作を確実にすることを課題とする。   The present invention relates to a flow path switching valve configured to maintain a seated state of a main valve by a differential pressure between a refrigerant pressure in a space outside the main valve and a refrigerant pressure in a low-pressure passage of the main valve. Prior to this, it is an object to quickly equalize the pressures of the high-pressure refrigerant around the main valve and the low-pressure refrigerant in the low-pressure path and to ensure the rotation of the main valve.

請求項1の流路切換弁は、円筒状の弁室内に該弁室の軸回りに回動可能に主弁を収容するとともに、該主弁に対向する弁座に低圧ポート、高圧ポート及び2つの切換ポートを開口し、前記主弁に形成された低圧路により低圧ポートを一方の切換ポートに連通するとともに、高圧ポートを他方の切換ポートに連通するように、該主弁を回動して2つの切換ポートの連通先を切り換え、高圧ポートから流入する冷媒を一方の切換ポートに流出するとともに他方の切換ポートから流入する冷媒を低圧ポートに流出する流路切換弁であって、前記高圧ポートに通じる主弁の外側と前記主弁の低圧路との冷媒の差圧により、該主弁の着座状態を保持するようにした流路切換弁において、前記主弁に均圧弁が設けられ、該均圧弁は、前記低圧路に導通する副弁ポートと、該副弁ポートに連通するシリンダと、該シリンダ内に内挿されて該副弁ポートに着座及び離座が可能な副弁と、該副弁を前記副弁ポート側に付勢する付勢手段とから構成され、前記主弁に、前記副弁の側部及び前記シリンダ部を該主弁の側面外側に導通する高圧路が形成されるとともに、該記副弁に、該高圧路を当該副弁の該副弁ポートと反対側の副弁背空間に導通する副弁通路が形成され、前記主弁に、前記副弁背空間と前記低圧路との導通状態及び非導通状態を切り換える切り換え手段が設けられ、前記切り換え手段により前記副弁背空間と前記低圧路を非導通状態として、前記高圧路と前記副弁通路を介して前記副弁背空間を高圧にすることで前記付勢手段により前記副弁を前記副弁ポートに着座させ、前記主弁の外側の空間と前記低圧路内との差圧により、該主弁の着座状態を保持し、前記切り換え手段により前記副弁背空間と前記低圧路を導通状態として、該副弁背空間を低圧にすることで前記副弁を前記副弁ポートから離座させ、前記主弁の外側の空間と前記低圧路とを均圧させて、該主弁を回動させるようにしたことを特徴とする。   The flow path switching valve according to claim 1 accommodates a main valve in a cylindrical valve chamber so as to be rotatable about an axis of the valve chamber, and a low pressure port, a high pressure port, and 2 in a valve seat facing the main valve. One switching port is opened, and the main valve is rotated so that the low pressure port communicates with one switching port and the high pressure port communicates with the other switching port by a low pressure passage formed in the main valve. A flow path switching valve that switches communication destinations of two switching ports, allows refrigerant flowing in from the high pressure port to flow out to one switching port, and flows refrigerant flowing in from the other switching port to the low pressure port, the high pressure port In the flow path switching valve configured to maintain the seated state of the main valve by the differential pressure of the refrigerant between the outside of the main valve leading to the main valve and the low pressure passage of the main valve, the main valve is provided with a pressure equalizing valve, The pressure equalizing valve is connected to the low-pressure path. A valve port, a cylinder communicating with the sub valve port, a sub valve inserted in the cylinder and capable of being seated and separated from the sub valve port, and biasing the sub valve toward the sub valve port side The main valve is formed with a high-pressure passage that connects the side portion of the sub-valve and the cylinder portion to the outside of the side surface of the main valve, and the sub-valve includes the high-pressure passage. A sub-valve passage that connects the passage to the sub-valve back space on the opposite side of the sub-valve port of the sub-valve is formed, and the main valve has a conduction state and a non-conduction state between the sub-valve back space and the low-pressure passage. Switching means is provided for switching between the auxiliary valve back space and the low pressure passage by the switching means, and the auxiliary valve back space is set to a high pressure via the high pressure passage and the auxiliary valve passage. The auxiliary valve is seated on the auxiliary valve port by an urging means, and the outside of the main valve is The seating state of the main valve is maintained by the differential pressure between the space and the low pressure passage, and the auxiliary valve back space and the low pressure passage are brought into conduction by the switching means, and the sub valve back space is made low pressure. Thus, the auxiliary valve is separated from the auxiliary valve port to equalize the space outside the main valve and the low pressure passage, thereby rotating the main valve.

請求項1の流路切換弁において、主弁が弁座に着座しているとき、切り換え手段が副弁背空間と低圧路が非導通状態としており、副弁背空間は高圧路と副弁通路を介して流入する冷媒により高圧となる。これにより、副弁ポートは付勢手段で付勢された副弁により閉状態となり、主弁の外側の冷媒圧力と低圧路内の冷媒圧力の差圧により、主弁の着座状態が保持される。冷媒の流路を切り換えるとき、切り換え手段により副弁背空間が低圧路に導通される。これにより、副弁背空間が低圧となり、主弁の外側に導通する高圧路からの冷媒圧力により副弁が副弁ポートから離間し、この副弁ポートにより低圧路が高圧路に導通して主弁の外側と低圧路とが均圧する。   2. The flow path switching valve according to claim 1, wherein when the main valve is seated on the valve seat, the switching means is in a non-conducting state between the auxiliary valve back space and the low pressure path, and the auxiliary valve back space includes the high pressure path and the auxiliary valve path. It becomes a high pressure by the refrigerant flowing in through. As a result, the sub valve port is closed by the sub valve urged by the urging means, and the seating state of the main valve is maintained by the differential pressure between the refrigerant pressure outside the main valve and the refrigerant pressure in the low pressure passage. . When the refrigerant flow path is switched, the auxiliary valve back space is connected to the low pressure path by the switching means. As a result, the sub valve back space becomes a low pressure, and the sub valve is separated from the sub valve port by the refrigerant pressure from the high pressure path that conducts to the outside of the main valve, and the low pressure path is conducted to the high pressure path by the sub valve port. The outside of the valve and the low pressure path are equalized.

請求項2の流路切換弁は請求項1に記載の流路切換弁であって、前記切り換え手段が、前記低圧路を前記主弁の弁座と反対側端面に導通するよう該主弁に形成された第1連通孔と、前記副弁背空間を該主弁の弁座と反対側端面に導通するよう該主弁に形成された第2連通孔と、前記主弁の弁座と反対側端面に接して該主弁の軸回りに回動し、前記第1連通孔と第2連通孔の導通状態及び非導通状態を切り換える副々弁と、から構成されていることを特徴とする。   The flow path switching valve according to claim 2 is the flow path switching valve according to claim 1, wherein the switching means is connected to the main valve so as to conduct the low-pressure path to an end surface opposite to the valve seat of the main valve. A first communication hole formed, a second communication hole formed in the main valve so as to conduct the auxiliary valve back space to an end surface opposite to the valve seat of the main valve, and opposite to the valve seat of the main valve A secondary valve that contacts the side end surface and rotates about the axis of the main valve to switch between the conductive state and the non-conductive state of the first communication hole and the second communication hole. .

請求項2の流路切換弁において、副々弁が回動することにより第1連通孔と第2連通孔の導通状態及び非導通状態が切り換えられる。第1連通孔と第2連通孔が導通状態となると、副弁背空間と低圧路が導通状態となり、第1連通孔と第2連通孔が非導通状態となると副弁背空間と低圧路が非導通状態となる。   In the flow path switching valve according to claim 2, the conduction state and the non-conduction state of the first communication hole and the second communication hole are switched by the rotation of the secondary valve. When the first communication hole and the second communication hole are in the conductive state, the auxiliary valve back space and the low pressure path are in the conductive state, and when the first communication hole and the second communication hole are in the nonconductive state, the auxiliary valve back space and the low pressure path are in the conductive state. It becomes a non-conductive state.

請求項1の流路切換弁によれば、均圧弁は、副弁が副弁ポートから離間する動作により均圧させるので、抵抗力に抗して副弁を回動して均圧するものに比べて、副弁ポートの開口面積を大きくでき、速やかに均圧することができる。   According to the flow path switching valve of the first aspect, the pressure equalizing valve equalizes the pressure by the operation in which the sub valve separates from the sub valve port, so that the pressure equalizing valve rotates against the resistance force to equalize the pressure. Thus, the opening area of the auxiliary valve port can be increased and pressure can be quickly equalized.

請求項2の流路切換弁によれば、請求項1の効果に加えて、副々弁を回動するだけで副弁背空間と低圧路との導通状態/非導通状態を切り換えることができるので、簡単な構成となる。   According to the flow path switching valve of the second aspect, in addition to the effect of the first aspect, the conduction state / non-conduction state between the auxiliary valve back space and the low pressure passage can be switched only by rotating the auxiliary valve. So it becomes a simple configuration.

次に、本発明による流路切換弁の実施形態を図面を参照して説明する。図1は本発明の実施形態に係る流路切換弁の冷房運転状態の縦断面図(図6(A) のB−B位置断面図)、図2は同流路切換弁の均圧弁の均圧時の縦断面図(図6(B) のB−B位置断面図)、図3は図1のA−A位置断面図、図4は同流路切換弁の均圧弁の拡大断面図、図5は同流路切換弁の副々弁の斜視図、図6は同流路切換弁の動作説明図である。   Next, an embodiment of a flow path switching valve according to the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a flow switching valve according to an embodiment of the present invention in a cooling operation state (sectional view taken along the line BB in FIG. 6A), and FIG. 2 is a pressure equalizing valve of the flow switching valve. FIG. 3 is a sectional view taken along the line AA in FIG. 1, FIG. 4 is an enlarged sectional view of the pressure equalizing valve of the flow path switching valve, FIG. 5 is a perspective view of a secondary valve of the flow path switching valve, and FIG. 6 is an operation explanatory view of the flow path switching valve.

この実施形態の流路切換弁は、本体ケースを構成するケース部材1と弁座部材2とを有している。ケース部材1には略円筒状の弁室11が形成されている。また、弁座部材2には円形台状の弁座21が形成されており、この弁座21の周囲にはリング22が取り付けられている。そして、弁室11の開口部に弁座21及びリング22を嵌め込むことにより、弁室11が封止される。弁室11内には主弁3が収容されており、この主弁3は均圧弁4を備えている。また、主弁3の上部には副々弁5が収容されるとともに、ケース部材1の上部から弁室11内にかけて駆動部6が取り付けられている。なお、ケース部材1の上部には駆動部6の図示しないモータが収容されている。   The flow path switching valve of this embodiment has a case member 1 and a valve seat member 2 constituting a main body case. A substantially cylindrical valve chamber 11 is formed in the case member 1. The valve seat member 2 is formed with a circular trapezoidal valve seat 21, and a ring 22 is attached around the valve seat 21. The valve chamber 11 is sealed by fitting the valve seat 21 and the ring 22 into the opening of the valve chamber 11. A main valve 3 is accommodated in the valve chamber 11, and the main valve 3 includes a pressure equalizing valve 4. A secondary valve 5 is accommodated in the upper part of the main valve 3, and a drive unit 6 is attached from the upper part of the case member 1 to the valve chamber 11. A motor (not shown) of the drive unit 6 is accommodated in the upper part of the case member 1.

図3に示すように、弁座21には、弁室11と図示しない圧縮機の冷媒吐出口に連通される「高圧ポート」としてのDポート21D、弁室11と同圧縮機の冷媒吸入口に連通される「低圧ポート」としてのSポート21S、弁室11と図示しない室外熱交換器に連通される「切換ポート」としてのC切換ポート21C及び図示しない室内熱交換器に連通される「切換ポート」としてのE切換ポート21Eが、それぞれ形成されている。なお、Dポート21DとSポート21Sは180°離間する位置に開口し、C切換ポート21CとE切換ポート21EはSポート21Sからそれぞれ90°づつ離間して開口されている。また、Dポート21Dにはストッパ管21aが挿入され、このストッパ管21aは弁座21の端面(シール部)よりも弁室11内に突出されている(図1参照)。   As shown in FIG. 3, the valve seat 21 includes a D port 21 </ b> D as a “high pressure port” communicating with the valve chamber 11 and a refrigerant discharge port of a compressor (not shown), a refrigerant suction port of the compressor with the valve chamber 11. S port 21S as a “low pressure port” communicated with the valve chamber 11, a C switching port 21C as a “switching port” communicated with the valve chamber 11 and an outdoor heat exchanger (not shown), and an indoor heat exchanger (not shown). E switching ports 21E as “switching ports” are respectively formed. The D port 21D and the S port 21S are opened at positions spaced apart by 180 °, and the C switching port 21C and the E switching port 21E are opened 90 ° apart from the S port 21S, respectively. A stopper pipe 21a is inserted into the D port 21D, and the stopper pipe 21a protrudes into the valve chamber 11 from the end face (seal part) of the valve seat 21 (see FIG. 1).

主弁3は樹脂で形成された略円柱形状の部材であり、図1に示すように、この主弁3は、ケース部材1の内部上端と弁座21の中心に保持された軸10に軸支され、弁座21に対して弁室11内で回動自在に配設されている。また、図3に示すように、主弁3の弁座21側には、軸10の片側に位置する低圧導通部31と、この低圧導通部31と反対側に形成されたストッパ部32A,32Bとを有している。低圧導通部31は、Sポート21SとE切換ポート21E(あるいはSポート21SとC切換ポート21C)とを囲うような半円弧状の形状であり、この低圧導通部31の内部の空間は低圧路31Aとなっている。そして、低圧導通部31の弁座21側の端面(シール部)は弁座21の摺動面に接触する。   The main valve 3 is a substantially cylindrical member made of resin. As shown in FIG. 1, the main valve 3 is pivoted on a shaft 10 held at the upper end inside the case member 1 and the center of the valve seat 21. The valve seat 21 is supported so as to be rotatable in the valve chamber 11. As shown in FIG. 3, on the valve seat 21 side of the main valve 3, a low-pressure conducting portion 31 located on one side of the shaft 10 and stopper portions 32 </ b> A and 32 </ b> B formed on the opposite side of the low-pressure conducting portion 31. And have. The low voltage conducting part 31 has a semicircular arc shape surrounding the S port 21S and the E switching port 21E (or the S port 21S and the C switching port 21C), and the space inside the low voltage conducting part 31 is a low pressure path. It is 31A. The end face (seal part) on the valve seat 21 side of the low-pressure conducting part 31 is in contact with the sliding surface of the valve seat 21.

図3に示すように、主弁3のストッパ部32A,32BはDポート21Dのストッパ管21aの側面に整合する形状となっており、このストッパ部32A,32Bの一方がストッパ管21aに択一的に当接することで、主弁3の回動範囲が規制される。なお、一方のストッパ部32Aは冷房運転状態に切り換えるときにストッパ管21aに当接し、他方のストッパ部32Bが暖房運転状態に切り換えるときにストッパ管21aに当接する。   As shown in FIG. 3, the stopper portions 32A and 32B of the main valve 3 are shaped to match the side surface of the stopper tube 21a of the D port 21D, and one of the stopper portions 32A and 32B is selected as the stopper tube 21a. The abutting of the main valve 3 regulates the rotation range of the main valve 3. One stopper portion 32A contacts the stopper tube 21a when switching to the cooling operation state, and the other stopper portion 32B contacts the stopper tube 21a when switching to the heating operation state.

図4に示すように、均圧弁4は、主弁3に形成された副弁ポート41と、主弁3に形成されたシリンダ42と、シリンダ42内に内挿された副弁43と、副弁43を副弁ポート41側に付勢する付勢手段としてのコイルバネ44とで構成されている。副弁ポート41は低圧導通部31内の低圧路31Aに導通する均圧孔を構成しており、シリンダ42はこの副弁ポート41に連通されている。副弁43はシリンダ42内を上下に摺動して副弁ポート41に着座及び離座が可能となっており、シリンダ42内において、副弁43に対して副弁ポート41と反対側の空間は副弁背空間42Aとなっている。また、副弁43には、その側部から副弁背空間42Aに導通する副弁通路43aが形成されている。   As shown in FIG. 4, the pressure equalizing valve 4 includes a sub valve port 41 formed in the main valve 3, a cylinder 42 formed in the main valve 3, a sub valve 43 inserted in the cylinder 42, It comprises a coil spring 44 as urging means for urging the valve 43 toward the auxiliary valve port 41 side. The sub valve port 41 forms a pressure equalizing hole that conducts to the low pressure passage 31 </ b> A in the low pressure conducting portion 31, and the cylinder 42 communicates with the sub valve port 41. The auxiliary valve 43 slides up and down in the cylinder 42 and can be seated and separated from the auxiliary valve port 41. In the cylinder 42, the space on the opposite side of the auxiliary valve port 41 from the auxiliary valve 43 Is a secondary valve back space 42A. Further, the auxiliary valve 43 is formed with an auxiliary valve passage 43a that conducts from the side portion to the auxiliary valve back space 42A.

主弁3にはシリンダ42の側部で副弁ポート41側端部に開口する高圧路33が形成されており、この高圧路33は副弁43の側部及びシリンダ42を主弁3の側面外側に導通している。また、シリンダ42と軸10(図1参照)との間には低圧路31Aを主弁3の上部(弁座2と反対側)に導通する第1連通孔34が形成されるとともに、副弁背空間42Aを主弁3の上部に導通する第2連通孔35が第1連通孔34と平行に形成されている。なお、主弁3の上部の周囲一箇所にはストッパ36が立設されている。   The main valve 3 is formed with a high pressure passage 33 that opens to the end of the sub valve port 41 at the side of the cylinder 42. The high pressure passage 33 connects the side of the sub valve 43 and the cylinder 42 to the side of the main valve 3. Conducted to the outside. A first communication hole 34 is formed between the cylinder 42 and the shaft 10 (see FIG. 1) to connect the low pressure passage 31A to the upper part of the main valve 3 (on the side opposite to the valve seat 2). A second communication hole 35 that connects the back space 42 </ b> A to the upper portion of the main valve 3 is formed in parallel with the first communication hole 34. A stopper 36 is erected at one place around the upper portion of the main valve 3.

図5に示すように、副々弁5は略円盤状の形状をしたスライド弁部51とその中央のボス部52とを有しており、このボス部52の中心において軸10に軸支されている。また、スライド弁部51の主弁3側の面には第1連通孔34と第2連通孔35とを導通する導通凹部511が2箇所に形成されている。また、スライド弁部51の周囲一箇所には主弁3のストッパ36に当接するストッパ51aが形成されている。   As shown in FIG. 5, the secondary valve 5 has a slide valve portion 51 having a substantially disc shape and a central boss portion 52, and is pivotally supported by the shaft 10 at the center of the boss portion 52. ing. In addition, on the surface of the slide valve portion 51 on the main valve 3 side, two conductive recesses 511 that conduct the first communication hole 34 and the second communication hole 35 are formed. Further, a stopper 51 a that contacts the stopper 36 of the main valve 3 is formed at one place around the slide valve portion 51.

駆動部6は、軸10に回動自在に軸支されたウォームホイール61と、このウォームホイール61に歯合されたウォーム歯車62とを有し、このウォーム歯車62は図示しないモータの駆動軸に固定されている。また、ウォームホイール61はボス部61aによって軸10に軸支されており、このボス部61aが副々弁5のボス部52に形成された略長方形の角孔52aに嵌合されている。また、ウォームホイール61と副々弁5との間には、副々弁5を主弁3側に付勢するコイルバネ63が配設されている。これにより、ウォームホイール61と副々弁5は軸10の回りに協働して回動可能となっている。   The drive unit 6 includes a worm wheel 61 pivotally supported on the shaft 10 and a worm gear 62 meshed with the worm wheel 61. The worm gear 62 is a drive shaft of a motor (not shown). It is fixed. The worm wheel 61 is pivotally supported on the shaft 10 by a boss portion 61 a, and the boss portion 61 a is fitted in a substantially rectangular square hole 52 a formed in the boss portion 52 of the secondary valve 5. A coil spring 63 that urges the secondary valve 5 toward the main valve 3 is disposed between the worm wheel 61 and the secondary valve 5. Thereby, the worm wheel 61 and the secondary valve 5 can be rotated around the shaft 10 in cooperation.

以上の構成により次のように動作する。図1の冷房運転状態では、図4(A) に示すように、第1連通孔34と第2連通孔35は副々弁5のスライド弁部51の底面により非導通となっており、副弁背空間42Aは、高圧路33及び副弁通路43aを介して主弁3の外側の空間と同圧になっている。したがって、この副弁背空間42Aの高圧と低圧路31Aの低圧との差圧及びコイルバネ44の付勢力により副弁43が副弁ポート41を閉じ、均圧弁4が閉状態となる。これにより、主弁3はその外側の空間と低圧路31A内の差圧により弁座21に着座し、その着座状態を保持している。   With the above configuration, the operation is as follows. In the cooling operation state of FIG. 1, as shown in FIG. 4A, the first communication hole 34 and the second communication hole 35 are non-conductive by the bottom surface of the slide valve portion 51 of the sub-valve valve 5. The valve back space 42 </ b> A has the same pressure as the space outside the main valve 3 through the high-pressure passage 33 and the auxiliary valve passage 43 a. Accordingly, the sub valve 43 closes the sub valve port 41 and the pressure equalizing valve 4 is closed by the differential pressure between the high pressure of the sub valve back space 42A and the low pressure of the low pressure passage 31A and the biasing force of the coil spring 44. Thereby, the main valve 3 is seated on the valve seat 21 by the differential pressure in the outer space and the low pressure passage 31A, and the seated state is maintained.

次に、流路を切り換えるとき均圧弁4は次のように動作する。副々弁5が回転し、図4(A) の二点差線で示すように、副々弁5の導通凹部511が第1連通孔34と第2連通孔35を導通すると、副弁背空間42Aが低圧路31Aと均圧する。ここで、副弁43を副弁ポート41に着座させる方向に働く力F1は、コイルバネ44の付勢力と、高圧路33の圧力と低圧路31Aの圧力の差圧に副弁ポート41の断面積を掛けた力との和である。一方、副弁43を副弁ポート41から離間させる方向に働く力F2は、高圧路33の圧力と低圧路31Aの圧力の差圧に副弁43の外径の断面積を掛けた力である(なお、副弁43の自重は無視している。)。そこで、F1<F2となるようにコイルバネ44の付勢力、副弁43の外径及び副弁ポート41の径が設定されている。なお、実際には、背空間42Aと低圧路31Aが完全に均圧する前に、副弁43が副弁ポート41から離間し、高圧路33の冷媒圧力により副弁43を着座させる方向に働く力は弱まり、副弁43は直ぐに図4(B) のように副弁ポート41から離間する。これにより、均圧弁4が開状態となり主弁3の外側の空間と低圧路31A内が均圧する。このように、第1連通孔34、第2連通孔35及び副々弁5は、副弁背空間42Aと低圧路31Aとの導通状態及び非導通状態を切り換える切り換え手段を構成している。   Next, when switching the flow path, the pressure equalizing valve 4 operates as follows. When the secondary valve 5 rotates and the conduction recess 511 of the secondary valve 5 conducts the first communication hole 34 and the second communication hole 35 as shown by the two-dotted line in FIG. 42A equalizes pressure with the low pressure passage 31A. Here, the force F1 acting in the direction in which the auxiliary valve 43 is seated on the auxiliary valve port 41 is a cross-sectional area of the auxiliary valve port 41 due to the biasing force of the coil spring 44 and the differential pressure between the pressure of the high pressure passage 33 and the pressure of the low pressure passage 31A. This is the sum of the force multiplied by. On the other hand, the force F2 acting in the direction of separating the auxiliary valve 43 from the auxiliary valve port 41 is a force obtained by multiplying the differential pressure between the pressure of the high pressure passage 33 and the pressure of the low pressure passage 31A by the sectional area of the outer diameter of the auxiliary valve 43. (Note that the weight of the auxiliary valve 43 is ignored.) Therefore, the biasing force of the coil spring 44, the outer diameter of the auxiliary valve 43, and the diameter of the auxiliary valve port 41 are set so that F1 <F2. Actually, the auxiliary valve 43 is separated from the auxiliary valve port 41 before the back space 42A and the low pressure path 31A are completely equalized, and the force acts in the direction in which the auxiliary valve 43 is seated by the refrigerant pressure in the high pressure path 33. The secondary valve 43 immediately moves away from the secondary valve port 41 as shown in FIG. As a result, the pressure equalizing valve 4 is opened, and the space outside the main valve 3 and the pressure in the low pressure passage 31A are equalized. Thus, the 1st communicating hole 34, the 2nd communicating hole 35, and the secondary valve 5 comprise the switching means which switches the conduction | electrical_connection state and non-conduction state of the subvalve back space 42A and the low pressure path 31A.

次に図6に基づいて冷房運転及び暖房運転の切換動作を説明する。なお、図6は弁座21に対して副々弁5側から見た状態での各部位の位置関係を示すものであり実線、破線、斜線等の表記は前後位置や構造を示すものではない。また、「D,S,C,E」の表記は、Dポート21D、Sポート21S、C切換ポート21C及びE切換ポート21Eの弁座21における開口を示している。図6(A) は冷房運転状態、図6(D) は暖房運転状態、図6(B) ,(C) ,(E) ,(F) は運転状態の切換過程である。   Next, the switching operation between the cooling operation and the heating operation will be described with reference to FIG. FIG. 6 shows the positional relationship of each part in the state seen from the secondary valve 5 side with respect to the valve seat 21, and the notation such as a solid line, a broken line, and a slanted line does not indicate the front-rear position or structure. . The notation “D, S, C, E” indicates openings in the valve seat 21 of the D port 21D, the S port 21S, the C switching port 21C, and the E switching port 21E. 6A shows the cooling operation state, FIG. 6D shows the heating operation state, and FIGS. 6B, 6C, 6E, and 6F show the operation state switching process.

先ず、図6(A) の冷房運転時にあるとする。図6(A) のように、Dポート21DはC切換ポート21Cに導通され、Sポート21Sは低圧路31AによりE切換ポート21Eに導通されている。また、副々弁5のスライド弁部51により第1連通孔34と第2連通孔35は非導通となっている(図1参照)。そして、Dポート21Dから導入される高圧冷媒により副弁43が副弁ポート41を閉じ、均圧弁4が閉状態となる。これにより、主弁3の外側の空間が高圧になるとともに、低圧路31Aが低圧になっている。したがって、主弁3の外側の空間と低圧路31Aとの差圧により主弁3は弁座21に着座して密着されている。   First, it is assumed that the cooling operation shown in FIG. As shown in FIG. 6A, the D port 21D is electrically connected to the C switching port 21C, and the S port 21S is electrically connected to the E switching port 21E by the low pressure path 31A. Further, the first communication hole 34 and the second communication hole 35 are made non-conductive by the slide valve portion 51 of the secondary valve 5 (see FIG. 1). Then, the auxiliary valve 43 closes the auxiliary valve port 41 by the high-pressure refrigerant introduced from the D port 21D, and the pressure equalizing valve 4 is closed. Thereby, the space outside the main valve 3 becomes high pressure, and the low pressure passage 31A becomes low pressure. Therefore, the main valve 3 is seated on and closely contacted with the valve seat 21 due to the differential pressure between the space outside the main valve 3 and the low pressure passage 31A.

次に、上記冷房運転状態から暖房運転状態に切り換えるとき、圧縮機本体は運転状態のままで駆動部6を駆動すると、副々弁5のみが図6(A) の状態から反時計回りに回動する。そして、副々弁5のストッパ51aが主弁3のストッパ36に当接して図6(B) の状態になると、スライド弁部51の一方の導通凹部511が第1連通孔34と第2連通孔35を導通する(図2参照)。これにより、前記のように均圧弁4が開状態となり、主弁3の外側の空間と低圧路31Aが均圧され、主弁3に加わる差圧がキャンセルされる。   Next, when switching from the cooling operation state to the heating operation state, if the drive unit 6 is driven while the compressor body remains in the operation state, only the secondary valve 5 rotates counterclockwise from the state of FIG. Move. When the stopper 51a of the secondary valve 5 comes into contact with the stopper 36 of the main valve 3 and enters the state shown in FIG. 6B, one of the conductive recesses 511 of the slide valve portion 51 is connected to the first communication hole 34 and the second communication hole. The hole 35 is conducted (see FIG. 2). As a result, the pressure equalizing valve 4 is opened as described above, the pressure outside the main valve 3 and the low pressure passage 31A are equalized, and the differential pressure applied to the main valve 3 is cancelled.

また、このとき、副々弁5のストッパ51aが主弁3のストッパ36に当接しているので、副々弁5と主弁3とが共に回動する。そして、図6(C) のように主弁3のストッパ部32Bがストッパ管21aに当接し、副々弁5及び主弁3の回動が停止される。なお、ストッパ部32Bがストッパ管21aに当接することにより、駆動部6のモータ及び駆動回路に過負荷が掛かるのでこれを検出してモータを停止するようにしてもよい。次に、副々弁5を所定量だけ逆(時計回り)に回転して導通凹部511を第1連通孔34と第2連通孔35の位置から移動させて、図6(D) のように第1連通孔34と第2連通孔35をスライド弁部51により非導通の状態とする。これにより、前記同様に均圧弁4が閉状態となる。そして、前記同様にDポート21Dから導入される高圧冷媒によって、主弁3の外側の空間と低圧路31Aとの差圧により主弁3は弁座21に着座して密着され、暖房運転状態となる。   At this time, since the stopper 51a of the secondary valve 5 is in contact with the stopper 36 of the main valve 3, both the secondary valve 5 and the main valve 3 rotate. Then, as shown in FIG. 6C, the stopper portion 32B of the main valve 3 comes into contact with the stopper pipe 21a, and the rotation of the secondary valve 5 and the main valve 3 is stopped. Since the stopper portion 32B abuts against the stopper tube 21a, an overload is applied to the motor and the drive circuit of the drive portion 6, so that this may be detected and the motor may be stopped. Next, the secondary valve 5 is rotated backward (clockwise) by a predetermined amount to move the conduction recess 511 from the position of the first communication hole 34 and the second communication hole 35, as shown in FIG. 6 (D). The first communication hole 34 and the second communication hole 35 are made non-conductive by the slide valve portion 51. As a result, the pressure equalizing valve 4 is closed as described above. Similarly to the above, by the high pressure refrigerant introduced from the D port 21D, the main valve 3 is seated and brought into close contact with the valve seat 21 by the differential pressure between the space outside the main valve 3 and the low pressure passage 31A. Become.

暖房運転状態から冷房運転状態に切り換えるときは、圧縮機本体は運転状態のままで駆動部6を駆動し、副々弁5のを図6(D) の状態から時計回りに回動する。そして、副々弁5のストッパ51aが主弁3のストッパ36に当接して図6(E) の状態になると、スライド弁部51の他方の導通凹部511が第1連通孔34と第2連通孔35を導通する。これにより、前記のように均圧弁4が開状態となり、主弁3の外側の空間と低圧路31Aが均圧され、主弁3に加わる差圧がキャンセルされる。   When switching from the heating operation state to the cooling operation state, the compressor main body drives the drive unit 6 while maintaining the operation state, and rotates the secondary valve 5 clockwise from the state of FIG. 6 (D). When the stopper 51a of the secondary valve 5 comes into contact with the stopper 36 of the main valve 3 and the state shown in FIG. 6 (E) is reached, the other conduction recess 511 of the slide valve portion 51 is connected to the first communication hole 34 and the second communication hole 34. The hole 35 is conducted. As a result, the pressure equalizing valve 4 is opened as described above, the pressure outside the main valve 3 and the low pressure passage 31A are equalized, and the differential pressure applied to the main valve 3 is cancelled.

また、このとき、副々弁5のストッパ51aが主弁3のストッパ36に当接しているので、副々弁5と主弁3とが共に回動し、図6(F) のように主弁3のストッパ部32Aがストッパ管21aに当接し、副々弁5及び主弁3の回動が停止される。そして、副々弁5を所定量だけ逆(反時計回り)に回転して導通凹部511を第1連通孔34と第2連通孔35の位置から移動させて、図6(A) のように第1連通孔34と第2連通孔35をスライド弁部51により非導通の状態とする。これにより、前記同様に均圧弁4が閉状態となる。前記冷房運転状態となる。   At this time, since the stopper 51a of the secondary valve 5 is in contact with the stopper 36 of the main valve 3, both the secondary valve 5 and the main valve 3 rotate, and the main valve 5 as shown in FIG. The stopper portion 32A of the valve 3 comes into contact with the stopper tube 21a, and the rotation of the secondary valve 5 and the main valve 3 is stopped. Then, the secondary valve 5 is rotated reversely (counterclockwise) by a predetermined amount to move the conduction recess 511 from the position of the first communication hole 34 and the second communication hole 35, as shown in FIG. 6 (A). The first communication hole 34 and the second communication hole 35 are made non-conductive by the slide valve portion 51. As a result, the pressure equalizing valve 4 is closed as described above. The cooling operation state is entered.

以上のように、均圧弁4において、副弁43は、副弁背空間42Aと高圧路33との差圧により副弁ポート41から離間するので、従来のように均圧孔に対して副弁をスライドさせて均圧孔を開放するようなものに比べて、副弁43を容易に離間させることができ、均圧孔としての副弁ポート41の径を大きくすることができ、速やかに均圧することができる。なお、従来例においては、副弁をモータ等でスライドさせる場合には均圧孔の直径は4mm程度が最大径であるが、実施形態における副弁ポート41は4mm以上の大きな直径となっている。   As described above, in the pressure equalizing valve 4, the auxiliary valve 43 is separated from the auxiliary valve port 41 due to the differential pressure between the auxiliary valve back space 42 </ b> A and the high pressure passage 33, so As compared with the type in which the pressure equalizing hole is opened by sliding the sub valve, the sub valve 43 can be easily separated, and the diameter of the sub valve port 41 as the pressure equalizing hole can be increased. Can be pressed. In the conventional example, when the auxiliary valve is slid by a motor or the like, the diameter of the pressure equalizing hole is about 4 mm, but the auxiliary valve port 41 in the embodiment has a large diameter of 4 mm or more. .

以上の実施形態では、切り換え手段を第1連通孔34、第2連通孔35及び副々弁5により構成し、この回動する副々弁5により副弁背空間42Aと低圧路31Aとの非導通状態/導通状態を切り換えるようにしているので、主弁3の回動を副々弁5の回動に連動させるように構成することができ、構造が簡単になる。ただし、この切り換え手段は実施形態のものに限らず、副弁背空間と低圧路との非導通状態/導通状態を切り換えるものであればよい。例えば、主弁本体内に、副弁背空間と低圧路とを連通する1つの通路と副々弁とを設け、この主弁本体内の副々弁を開閉することにより非導通状態/導通状態を切り換えるようにしてもよい。   In the above embodiment, the switching means is constituted by the first communication hole 34, the second communication hole 35, and the secondary valve 5, and the rotating secondary valve 5 prevents the secondary valve back space 42A and the low pressure passage 31A from being disconnected. Since the conduction state / conduction state is switched, the rotation of the main valve 3 can be interlocked with the rotation of the sub-valve 5, and the structure is simplified. However, this switching means is not limited to that of the embodiment, and any switching means may be used as long as it switches the non-conduction state / conduction state between the auxiliary valve back space and the low-pressure path. For example, in the main valve body, a passage and a secondary valve communicating the secondary valve back space and the low pressure passage are provided, and the secondary valve in the main valve body is opened / closed so as to be in a non-conductive state / conductive state. May be switched.

本発明の実施形態に係る流路切換弁の冷房運転状態の縦断面図である。It is a longitudinal cross-sectional view of the cooling operation state of the flow-path switching valve concerning embodiment of this invention. 同流路切換弁の均圧弁の均圧時の縦断面図である。It is a longitudinal cross-sectional view at the time of pressure equalization of the pressure equalizing valve of the flow path switching valve. 図1のA−A位置断面図である。It is an AA position sectional view of FIG. 実施形態に係る流路切換弁の均圧弁の拡大断面図である。It is an expanded sectional view of the pressure equalizing valve of the flow path switching valve according to the embodiment. 同流路切換弁の副々弁の斜視図である。It is a perspective view of the secondary valve of the flow path switching valve. 同流路切換弁の動作説明図である。It is operation | movement explanatory drawing of the flow-path switching valve.

符号の説明Explanation of symbols

1 ケース部材
2 弁座部材
3 主弁
4 均圧弁
5 副々弁(切り換え手段)
6 駆動部
11 弁室
21 弁座
21D Dポート(高圧ポート)
21S Sポート(低圧ポート)
21C C切換ポート(切換ポート)
21E E切換ポート(切換ポート)
21a ストッパ管
31 低圧導通部
31A 低圧路
33 高圧路
34 第1連通孔(切り換え手段)
35 第2連通孔(切り換え手段)
36 ストッパ
41 副弁ポート
42 シリンダ
42A 副弁背空間
43 副弁
43a 副弁通路
44 コイルバネ(付勢手段)
51 スライド弁部
52 ボス部
511 導通凹部
51a ストッパ
1 Case member 2 Valve seat member 3 Main valve 4 Pressure equalizing valve 5 Secondary valve (switching means)
6 Drive unit 11 Valve chamber 21 Valve seat 21D D port (high pressure port)
21S S port (low pressure port)
21CC switching port (switching port)
21E E switching port (switching port)
21a Stopper pipe 31 Low-pressure conducting portion 31A Low-pressure passage 33 High-pressure passage 34 First communication hole (switching means)
35 Second communication hole (switching means)
36 Stopper 41 Sub valve port 42 Cylinder 42A Sub valve back space 43 Sub valve 43a Sub valve passage 44 Coil spring (biasing means)
51 Slide valve portion 52 Boss portion 511 Conductive recess 51a Stopper

Claims (2)

円筒状の弁室内に該弁室の軸回りに回動可能に主弁を収容するとともに、該主弁に対向する弁座に低圧ポート、高圧ポート及び2つの切換ポートを開口し、前記主弁に形成された低圧路により低圧ポートを一方の切換ポートに連通するとともに、高圧ポートを他方の切換ポートに連通するように、該主弁を回動して2つの切換ポートの連通先を切り換え、高圧ポートから流入する冷媒を一方の切換ポートに流出するとともに他方の切換ポートから流入する冷媒を低圧ポートに流出する流路切換弁であって、前記高圧ポートに通じる主弁の外側と前記主弁の低圧路との冷媒の差圧により、該主弁の着座状態を保持するようにした流路切換弁において、
前記主弁に均圧弁が設けられ、
該均圧弁は、前記低圧路に導通する副弁ポートと、該副弁ポートに連通するシリンダと、該シリンダ内に内挿されて該副弁ポートに着座及び離座が可能な副弁と、該副弁を前記副弁ポート側に付勢する付勢手段とから構成され、
前記主弁に、前記副弁の側部及び前記シリンダ部を該主弁の側面外側に導通する高圧路が形成されるとともに、該記副弁に、該高圧路を当該副弁の該副弁ポートと反対側の副弁背空間に導通する副弁通路が形成され、
前記主弁に、前記副弁背空間と前記低圧路との導通状態及び非導通状態を切り換える切り換え手段が設けられ、
前記切り換え手段により前記副弁背空間と前記低圧路を非導通状態として、前記高圧路と前記副弁通路を介して前記副弁背空間を高圧にすることで前記付勢手段により前記副弁を前記副弁ポートに着座させ、前記主弁の外側の空間と前記低圧路内との差圧により、該主弁の着座状態を保持し、
前記切り換え手段により前記副弁背空間と前記低圧路を導通状態として、該副弁背空間を低圧にすることで前記副弁を前記副弁ポートから離座させ、前記主弁の外側の空間と前記低圧路とを均圧させて、該主弁を回動させるようにしたことを特徴とする流路切換弁。
A main valve is accommodated in a cylindrical valve chamber so as to be rotatable about an axis of the valve chamber, and a low pressure port, a high pressure port and two switching ports are opened in a valve seat facing the main valve, and the main valve The low-pressure port is connected to one switching port by the low-pressure path formed at the same time, and the main valve is rotated to switch the communication destination of the two switching ports so that the high-pressure port is connected to the other switching port. A flow path switching valve for letting refrigerant flowing in from the high pressure port flow out to one switching port and flowing refrigerant flowing in from the other switching port to the low pressure port, outside the main valve leading to the high pressure port and the main valve In the flow path switching valve configured to maintain the seated state of the main valve by the differential pressure of the refrigerant with the low pressure path of
A pressure equalizing valve is provided in the main valve,
The pressure equalizing valve includes a sub-valve port that communicates with the low-pressure passage, a cylinder that communicates with the sub-valve port, a sub-valve that is inserted into the cylinder and can be seated and separated from the sub-valve port, Urging means for urging the sub valve toward the sub valve port side,
A high-pressure passage is formed in the main valve to connect the side portion of the sub-valve and the cylinder portion to the outside of the side surface of the main valve, and the high-pressure passage is connected to the sub-valve. A sub-valve passage communicating with the sub-valve back space on the opposite side of the port is formed,
The main valve is provided with switching means for switching between the conduction state and the non-conduction state between the sub-valve back space and the low-pressure path,
The sub-valve back space and the low-pressure passage are brought into a non-conducting state by the switching means, and the sub-valve back space is set to a high pressure through the high-pressure passage and the sub-valve passage so that the auxiliary valve Seated on the sub-valve port, the seated state of the main valve is maintained by the differential pressure between the space outside the main valve and the low pressure passage,
With the switching means, the auxiliary valve back space and the low pressure passage are in a conductive state, and the auxiliary valve back space is set to a low pressure so that the auxiliary valve is separated from the auxiliary valve port, and the space outside the main valve is A flow path switching valve characterized by equalizing the pressure of the low pressure path and rotating the main valve.
前記切り換え手段が、
前記低圧路を前記主弁の弁座と反対側端面に導通するよう該主弁に形成された第1連通孔と、
前記副弁背空間を該主弁の弁座と反対側端面に導通するよう該主弁に形成された第2連通孔と、
前記主弁の弁座と反対側端面に接して該主弁の軸回りに回動し、前記第1連通孔と第2連通孔の導通及び非導通を切り換える副々弁と、
から構成されていることを特徴とする請求項1に記載の流路切換弁。
The switching means is
A first communication hole formed in the main valve so as to conduct the low-pressure path to an end surface opposite to the valve seat of the main valve;
A second communication hole formed in the main valve so as to conduct the auxiliary valve back space to an end surface opposite to the valve seat of the main valve;
A sub-valve that contacts the end face opposite to the valve seat of the main valve and rotates about the axis of the main valve, and switches between conduction and non-conduction of the first communication hole and the second communication hole;
It is comprised from these, The flow-path switching valve of Claim 1 characterized by the above-mentioned.
JP2008128002A 2008-05-15 2008-05-15 Flow path selector valve Withdrawn JP2009275834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008128002A JP2009275834A (en) 2008-05-15 2008-05-15 Flow path selector valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008128002A JP2009275834A (en) 2008-05-15 2008-05-15 Flow path selector valve

Publications (1)

Publication Number Publication Date
JP2009275834A true JP2009275834A (en) 2009-11-26

Family

ID=41441452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008128002A Withdrawn JP2009275834A (en) 2008-05-15 2008-05-15 Flow path selector valve

Country Status (1)

Country Link
JP (1) JP2009275834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112879597A (en) * 2019-11-29 2021-06-01 株式会社鹭宫制作所 Rotary switching valve and refrigeration cycle system
CN112879596A (en) * 2019-11-29 2021-06-01 株式会社鹭宫制作所 Rotary switching valve and refrigeration cycle system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112879597A (en) * 2019-11-29 2021-06-01 株式会社鹭宫制作所 Rotary switching valve and refrigeration cycle system
CN112879596A (en) * 2019-11-29 2021-06-01 株式会社鹭宫制作所 Rotary switching valve and refrigeration cycle system
CN112879597B (en) * 2019-11-29 2023-09-22 株式会社鹭宫制作所 Rotary switching valve and refrigeration cycle system

Similar Documents

Publication Publication Date Title
JP5087677B2 (en) Flow path switching valve
JP3145048U (en) Electric expansion valve and refrigeration cycle
JP5080612B2 (en) Flow path switching valve
JP5389570B2 (en) Multi-way selector valve
JP6475778B2 (en) Flow path switching valve
EP2182260B1 (en) Multi-way selector valve
JP2018100682A (en) Flow path switching valve
JP2012031877A (en) Multi-directional control valve
JP6889685B2 (en) Electric valve and refrigeration cycle system
US8505580B2 (en) Reversing valve
KR20170128087A (en) Butterfly valve
JP5927913B2 (en) Rotary valve
JP2009270697A (en) Flow path selector valve
JP2009270639A (en) Flow path selector valve
JP2009275834A (en) Flow path selector valve
JP4440795B2 (en) Channel switching valve and air conditioner
JP2017223303A (en) Flow passage selector valve
JP4615995B2 (en) Channel switching valve, compressor with channel switching valve, and air conditioner
JP2005256853A (en) Flow passage change-over valve
JP6667687B2 (en) Flow path switching valve
JP2005076840A (en) Passage selector valve, and refrigerating cycle
JP5715772B2 (en) Electric valve and four-way switching valve
JP3150885B2 (en) Control valve
JP2017180638A (en) Motor valve
JPH06281024A (en) Four-way selector valve

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802