JP6475778B2 - Flow path switching valve - Google Patents

Flow path switching valve Download PDF

Info

Publication number
JP6475778B2
JP6475778B2 JP2017095677A JP2017095677A JP6475778B2 JP 6475778 B2 JP6475778 B2 JP 6475778B2 JP 2017095677 A JP2017095677 A JP 2017095677A JP 2017095677 A JP2017095677 A JP 2017095677A JP 6475778 B2 JP6475778 B2 JP 6475778B2
Authority
JP
Japan
Prior art keywords
pressure
valve body
port
flow path
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017095677A
Other languages
Japanese (ja)
Other versions
JP2018194037A (en
Inventor
木船 仁志
仁志 木船
紀幸 森田
紀幸 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2017095677A priority Critical patent/JP6475778B2/en
Priority to CN201810443516.1A priority patent/CN108869794B/en
Publication of JP2018194037A publication Critical patent/JP2018194037A/en
Application granted granted Critical
Publication of JP6475778B2 publication Critical patent/JP6475778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • F16K11/0743Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces with both the supply and the discharge passages being on one side of the closure plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/314Forms or constructions of slides; Attachment of the slide to the spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02792Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using reversing valve changing the refrigerant flow direction due to pressure differences of the refrigerant and not by external actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Multiple-Way Valves (AREA)

Description

本発明は、弁体を回転させることにより流路の切り換えを行うロータリー式の流路切換弁に係り、特に、ヒートポンプ式冷暖房システム等において流路切換を行うのに好適な流路切換弁に関する。   The present invention relates to a rotary flow path switching valve that switches a flow path by rotating a valve body, and more particularly to a flow path switching valve that is suitable for performing flow path switching in a heat pump air conditioning system or the like.

一般に、ルームエアコン、カーエアコン等のヒートポンプ式冷暖房システムは、圧縮機、室外熱交換器、室内熱交換器、及び膨張弁等に加えて、流路(流れ方向)切換手段としての四方切換弁等の流路切換弁を備えている。   In general, heat pump type air conditioning systems such as room air conditioners and car air conditioners have compressors, outdoor heat exchangers, indoor heat exchangers, expansion valves, etc., as well as four-way switching valves as flow path (flow direction) switching means, etc. The flow path switching valve is provided.

この種の流路切換弁(四方切換弁)としては、スライド式のものとロータリー式のものがあるが、ロータリー式の四方切換弁は、例えば、次のような構成のものがよく知られている(特許文献1等も参照)。すなわち、筒状の主弁ハウジング、該主弁ハウジングの下面側に設けられた弁シート面、該弁シート面に開口する4個のポート(第1、第2、第3、及び第4のポート)、及び前記主弁ハウジング内に回動可能に配在されてその下面が前記弁シート面に対面せしめられる回転弁体を有し、該回転弁体内に、前記ポート間を選択的に連通すべく、2本のUターン連通路が設けられ、前記回転弁体が第1の回転位置をとるとき、一方のUターン連通路により第1ポートと第2ポートとが連通するとともに、他方のUターン連通路により第3ポートと第4ポートとが連通し、前記回転弁体が第2の回転位置をとるとき、一方のUターン連通路により第1ポートと第3ポートとが連通するとともに、他方のUターン連通路により第2ポートと第4ポートとが連通するようにされているものが典型例として挙げられる。   As this type of flow path switching valve (four-way switching valve), there are a slide type and a rotary type. For example, a rotary type four-way switching valve having the following configuration is well known. (See also Patent Document 1). That is, a cylindrical main valve housing, a valve seat surface provided on the lower surface side of the main valve housing, and four ports (first, second, third, and fourth ports) opened in the valve seat surface ), And a rotary valve body rotatably disposed in the main valve housing and having a lower surface thereof facing the valve seat surface, and the ports are selectively communicated with each other in the rotary valve body. Accordingly, two U-turn communication paths are provided, and when the rotary valve body assumes the first rotational position, the first port and the second port communicate with each other through one U-turn communication path, and the other U-turn communication path When the third port and the fourth port communicate with each other through the turn communication path and the rotary valve body takes the second rotational position, the first port communicates with the third port through one U-turn communication path, 2nd port and 4th port by the other U-turn communication path Preparative may be mentioned as the typical example those that are adapted to be communicated.

より詳細には、2本のUターン連通路のうちの一方は、圧縮機の吐出側に接続されて高圧冷媒が流通する高圧側Uターン連通路とされ、他方は、圧縮機の吸入側に接続されて低圧冷媒が流通する低圧側Uターン連通路とされ、主弁ハウジング内(弁室)は高圧冷媒で満たされ、低圧側Uターン連通路の下端面(シール面)は、該低圧側Uターン連通路内の低圧と弁室内の高圧との差圧によって弁シート面に強く押し付けられ、これによって、低圧側Uターン連通路のシールがなされ、弁室内の高圧冷媒が低圧側に抜けること(弁洩れ)を防ぐようになっている。   More specifically, one of the two U-turn communication paths is a high-pressure side U-turn communication path that is connected to the discharge side of the compressor and through which high-pressure refrigerant flows, and the other is connected to the suction side of the compressor. A low-pressure side U-turn communication path through which low-pressure refrigerant flows is connected, the main valve housing (valve chamber) is filled with high-pressure refrigerant, and the lower end surface (seal surface) of the low-pressure side U-turn communication path is the low-pressure side Due to the pressure difference between the low pressure in the U-turn communication path and the high pressure in the valve chamber, it is strongly pressed against the valve seat surface, thereby sealing the low-pressure side U-turn communication path and allowing the high-pressure refrigerant in the valve chamber to escape to the low pressure side. (Valve leakage) is prevented.

特開平8−285113号公報JP-A-8-285113

前記した如くの従来の流路切換弁においては、次のような解決すべき課題がある。   The conventional flow path switching valve as described above has the following problems to be solved.

一般に、Uターン連通路を流通する流体の圧力損失を小さくするには、連通路の側面視をU字状、円弧状、かまぼこ状等にするとともに、断面形状を円形となし、かつ、連通路の一端から他端まで全長にわたって通路断面積が変わらないようにすればよいとされ、これが理想の通路形状とされている。より具体的には、理想の通路形状は、断面円形のチューブを断面形状(円形)を変えずにU字状、円弧状、かまぼこ状等に湾曲させた形状とされる。   In general, in order to reduce the pressure loss of the fluid flowing through the U-turn communication path, the side view of the communication path is made U-shaped, arc-shaped, kamaboko-shaped, etc., the cross-sectional shape is circular, and the communication path The cross-sectional area of the passage should not be changed over the entire length from one end to the other end, and this is an ideal passage shape. More specifically, an ideal passage shape is formed by bending a tube having a circular cross section into a U shape, an arc shape, a kamaboko shape or the like without changing the cross sectional shape (circular shape).

一方、ヒートポンプ式冷暖房システム等においては、圧縮機として斜板式のものが使用されることが多いが、この斜板式圧縮機から吐出されてくる高圧冷媒は脈動を伴う。そのため、高圧側Uターン連通路を高圧冷媒が流通すると、前記脈動によって回転弁体全体が振動し、この振動によって、同じ回転弁体に設けられている低圧側Uターン連通路のシール性が損なわれるおそれがある。より具体的には、回転弁体が振動することによって低圧側Uターン連通路のシール面と弁シート面との間に隙間が形成され、この隙間から弁室内の高圧冷媒が圧縮機吸入側に抜ける弁洩れが生じやすくなるという問題がある。   On the other hand, in a heat pump type air conditioning system or the like, a swash plate type is often used as a compressor, but the high-pressure refrigerant discharged from the swash plate type compressor is accompanied by pulsation. Therefore, when high-pressure refrigerant flows through the high-pressure side U-turn communication path, the entire rotary valve body vibrates due to the pulsation, and this vibration impairs the sealing performance of the low-pressure side U-turn communication path provided in the same rotary valve body. There is a risk of being. More specifically, when the rotary valve body vibrates, a gap is formed between the seal surface of the low pressure side U-turn communication path and the valve seat surface, and the high pressure refrigerant in the valve chamber passes from this gap to the compressor suction side. There is a problem that valve leakage is likely to occur.

特に、高圧側Uターン連通路を上記理想の通路形状に近づけた場合は、圧力損失は小さくなるものの、前記回転弁体の振動が大きくなって弁洩れしやすくなるのに対し、前記特許文献1に見られるように、高圧側Uターン連通路を理想通路形状ではない飯ごう形状(断面形状が矩形)とすると、圧力損失は大きくなるが、前記回転弁体の振動が小さくなる傾向がある。   In particular, when the high-pressure side U-turn communication path is brought close to the ideal path shape, the pressure loss is reduced, but the vibration of the rotary valve body is increased and valve leakage tends to occur. As can be seen from the above, when the high-pressure side U-turn communication path has a rice bowl shape (cross-sectional shape is rectangular) that is not an ideal path shape, the pressure loss increases, but the vibration of the rotary valve body tends to decrease.

上記のような回転弁体の振動を抑えるための一つの方策として、ばね力(セット荷重)がより大きなばね部材で回転弁体を弁シート面に押し付ける方向に付勢することが考えられる。しかし、この方策では、回転弁体と弁シート面との間の摩擦力が大きくなるため、回転弁体を回転させるのに大きな駆動力が必要となり、コスト等の面で問題がある。   As one measure for suppressing the vibration of the rotary valve body as described above, it is conceivable to bias the rotary valve body against the valve seat surface with a spring member having a larger spring force (set load). However, in this measure, since the frictional force between the rotary valve body and the valve seat surface becomes large, a large driving force is required to rotate the rotary valve body, which is problematic in terms of cost.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、圧力損失の低減等を図りながら、高圧冷媒に伴われる脈動に起因する回転弁体の振動を効果的に抑えることができ、もって、低圧側Uターン連通路のシール性を向上し得て弁洩れし難くできる流路切換弁を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to effectively suppress vibrations of the rotary valve body caused by pulsation accompanying high-pressure refrigerant while reducing pressure loss and the like. Accordingly, it is an object of the present invention to provide a flow path switching valve capable of improving the sealing performance of the low pressure side U-turn communication path and making it difficult for valve leakage.

前記の目的を達成すべく、本発明に係る流路切換弁は、基本的には、筒状の主弁ハウジング、該主弁ハウジングの上面側又は下面側に設けられた弁シート面、該弁シート面に開口する4個以上のポート、及び前記主弁ハウジング内に回動可能に配在されてその上面又は下面が前記弁シート面に対面せしめられる回転弁体を有し、該回転弁体内に、前記ポート間を選択的に連通すべく、低圧流体が流通する低圧側Uターン連通路が設けられるとともに、高圧流体が流通する高圧側Uターン連通路が設けられた高圧通路形成部材が上下方向に摺動自在に収容保持されていることを特徴としている。   In order to achieve the above object, a flow path switching valve according to the present invention basically includes a cylindrical main valve housing, a valve seat surface provided on an upper surface side or a lower surface side of the main valve housing, the valve There are four or more ports that open in the seat surface, and a rotary valve body that is rotatably disposed in the main valve housing and whose upper surface or lower surface faces the valve seat surface. In addition, in order to selectively communicate between the ports, a low-pressure side U-turn communication passage through which low-pressure fluid flows and a high-pressure passage forming member provided with a high-pressure side U-turn communication passage through which high-pressure fluid flows are vertically moved. It is characterized by being housed and held slidably in the direction.

好ましい態様では、前記回転弁体を前記弁シート面に押し付ける方向に付勢する第1付勢部材、及び、前記高圧通路形成部材を前記弁シート面とは反対側に付勢する第2付勢部材を備える。   In a preferred embodiment, a first urging member that urges the rotary valve body in a direction in which the rotary valve body is pressed against the valve seat surface, and a second urging member that urges the high-pressure passage forming member to the side opposite to the valve seat surface. A member is provided.

更に好ましい態様では、前記第2付勢部材は、前記高圧通路形成部材の周方向で両端部分に設けられる。   In a further preferred aspect, the second urging member is provided at both end portions in the circumferential direction of the high pressure passage forming member.

別の好ましい態様では、前記高圧通路形成部材の前記弁シート面に対面せしめられる面とは反対側の面に、回転時の摩擦抵抗を小さくするための突部が設けられる。   In another preferred embodiment, a protrusion for reducing the frictional resistance during rotation is provided on the surface of the high-pressure passage forming member opposite to the surface facing the valve seat surface.

他の具体的な好ましい態様では、前記弁シート面に第1、第2、第3及び第4ポートが開口し、前記回転弁体が第1の回転位置をとるとき、前記高圧側Uターン連通路により第1ポートと第2ポートとが連通するとともに、前記低圧側Uターン連通路により第3ポートと第4ポートとが連通し、前記回転弁体が第2の回転位置をとるとき、前記高圧側Uターン連通路により第1ポートと第3ポートとが連通するとともに、前記低圧側Uターン連通路により第2ポートと第4ポートとが連通するようにされる。   In another specific preferred aspect, when the first, second, third and fourth ports are opened in the valve seat surface and the rotary valve body assumes the first rotational position, the high-pressure side U-turn link The first port and the second port communicate with each other through the passage, and the third port and the fourth port communicate with each other through the low-pressure side U-turn communication passage, and when the rotary valve body takes the second rotational position, The first port and the third port communicate with each other through the high-pressure side U-turn communication path, and the second port and the fourth port communicate with each other through the low-pressure side U-turn communication path.

別の好ましい態様では、前記低圧側Uターン連通路は、前記回転弁体内に形成された弁体内通路部と、該弁体内通路部における前記弁シート面側に設けられた低圧通路画成部材とで分割構成され、前記弁体内通路部は、前記弁シート面側が開口した側面視概略円弧状ないしかまぼこ状を呈し、かつ、外周側が概ね半円形ないしそれに近い半楕円形の断面形状を持つようにされ、前記低圧通路画成部材は、前記弁シート面に対接するシール面を持ち、前記弁体内通路部と協同して、前記低圧側Uターン連通路の断面形状を円形ないしそれに近い楕円形とするとともに、一端から他端まで全長にわたって等しい断面積とするように形成される。   In another preferred embodiment, the low-pressure side U-turn communication passage includes a valve body passage portion formed in the rotary valve body, and a low-pressure passage defining member provided on the valve seat surface side in the valve body passage portion. The valve body passage portion has a generally arcuate shape or a semi-cylindrical shape in a side view with the valve seat surface side opened, and the outer peripheral side has a substantially semicircular or nearly semi-elliptical cross-sectional shape. The low-pressure passage defining member has a seal surface that is in contact with the valve seat surface, and cooperates with the valve body passage portion so that the cross-sectional shape of the low-pressure side U-turn communication passage is circular or an elliptical shape close thereto. In addition, the cross-sectional area is formed so as to be equal over the entire length from one end to the other end.

更に好ましい態様では、前記低圧通路画成部材には、前記低圧側Uターン連通路の一端及び他端を構成する開口が設けられるとともに、その中央部から両端の開口にかけて山状突部が設けられる。   In a more preferred aspect, the low-pressure passage defining member is provided with openings constituting one end and the other end of the low-pressure side U-turn communication passage, and a mountain-shaped protrusion is provided from the center to the openings at both ends. .

更に好ましい態様では、前記山状突部は、断面形状が半円状ないしそれに近い半楕円状の表面を有する。   In a further preferred aspect, the mountain-like protrusion has a semicircular surface or a semi-elliptical surface close to it.

本発明に係る流路切換弁では、回転弁体内に、高圧流体が流通する高圧側Uターン連通路が設けられた高圧通路形成部材が、上下方向に摺動自在の別体として収容されており、また、高圧通路形成部材は、主弁ハウジングに押圧された状態で回転弁体内に保持されているので、高圧冷媒に伴われる脈動による衝撃は、十分な強度を持った主弁ハウジングが受け止めるため、回転弁体には伝わらない。そのため、高圧冷媒に伴われる脈動に起因する回転弁体の振動を効果的に抑えることができ、その結果、圧力損失の低減等を図りながら、低圧側Uターン連通路のシール性を向上し得て弁洩れを生じ難くできる。   In the flow path switching valve according to the present invention, the high pressure passage forming member provided with the high pressure side U-turn communication passage through which the high pressure fluid flows is accommodated in the rotary valve body as a separate body that is slidable in the vertical direction. In addition, since the high pressure passage forming member is held in the rotary valve body while being pressed against the main valve housing, the main valve housing having sufficient strength receives the impact caused by the pulsation caused by the high pressure refrigerant. It is not transmitted to the rotating valve body. Therefore, it is possible to effectively suppress the vibration of the rotary valve body due to the pulsation accompanying the high-pressure refrigerant, and as a result, the sealing performance of the low-pressure side U-turn communication path can be improved while reducing the pressure loss. This can prevent valve leakage.

上記した以外の、課題、構成、及び作用効果は、以下の実施形態により明らかにされる。   Problems, configurations, and operational effects other than those described above will be clarified by the following embodiments.

本発明に係る流路切換弁の一実施形態の第1の連通状態を示す縦断面図であり、図3(A)のV−V矢視線に従う断面図。It is a longitudinal cross-sectional view which shows the 1st communication state of one Embodiment of the flow-path switching valve concerning this invention, and is sectional drawing which follows the VV arrow line of FIG. 3 (A). 本発明に係る流路切換弁の一実施形態の第2の連通状態を示す縦断面図であり、図3(B)のW−W矢視線に従う断面図。It is a longitudinal cross-sectional view which shows the 2nd communication state of one Embodiment of the flow-path switching valve concerning this invention, and is sectional drawing which follows the WW arrow line of FIG. 3 (B). 本実施形態の流路切換弁における流路切換動作の説明に供される図であり、(A)は回転弁体が第1の回転位置にある状態、(B)は回転弁体が第2の回転位置にある状態をそれぞれ示す下面配置図。It is a figure with which it uses for description of the flow-path switching operation | movement in the flow-path switching valve of this embodiment, (A) is a state in which a rotary valve body exists in a 1st rotation position, (B) is a rotary valve body being 2nd. The lower surface arrangement | positioning figure which respectively shows the state in the rotation position. 本実施形態の流路切換弁における、主として回転弁体を回動させるためのアクチュエータ部分を示す分解斜視図。The disassembled perspective view which shows the actuator part for mainly rotating the rotary valve body in the flow-path switching valve of this embodiment. 本実施形態の流路切換弁における、主として主弁ハウジング及び回転軸部材部分を示す分解斜視図。The disassembled perspective view which mainly shows the main valve housing and the rotating shaft member part in the flow-path switching valve of this embodiment. 本実施形態の流路切換弁における、主として回転弁体及び弁シート部材部分を示す分解斜視図。The disassembled perspective view which mainly shows a rotary valve body and a valve seat member part in the flow-path switching valve of this embodiment. 本実施形態の流路切換弁における回転弁体と高圧通路形成部材の詳細説明に供される分解斜視図。The disassembled perspective view with which the rotary valve body and high pressure channel | path formation member in the flow-path switching valve of this embodiment are provided for detailed description. (A)は、本実施形態の流路切換弁における回転弁体と低圧通路画成部材の詳細説明に供される分解斜視図、(B)は、回転弁体の下面配置図。(A) is a disassembled perspective view used for detailed description of the rotary valve body and the low-pressure passage defining member in the flow path switching valve of the present embodiment, and (B) is a bottom surface arrangement view of the rotary valve body. 本実施形態の流路切換弁の組み立て状態において概ね図6のU−U矢視線に従って切断した断面図。Sectional drawing cut | disconnected in general according to the UU arrow line of FIG. 6 in the assembly state of the flow-path switching valve of this embodiment.

以下、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1、図2は、それぞれ本発明に係る流路切換弁の一実施形態の第1の連通状態、第2の連通状態を示す縦断面図である。   1 and 2 are longitudinal sectional views showing a first communication state and a second communication state, respectively, of an embodiment of a flow path switching valve according to the present invention.

なお、本明細書において、上下、左右、前後等の位置、方向を表わす記述は、説明が煩瑣になるのを避けるために図面に従って便宜上付けたものであり、実際にヒートポンプ式冷暖房システム等に組み込まれた状態での位置、方向を指すとは限らない。   In the present specification, descriptions indicating positions, directions such as up and down, left and right, and front and rear are provided for the sake of convenience in accordance with the drawings in order to avoid complicated explanation, and are actually incorporated in a heat pump type air conditioning system or the like. It does not necessarily indicate the position and direction in the state of being pressed.

また、各図において、部材間に形成される隙間や部材間の離隔距離等は、発明の理解を容易にするため、また、作図上の便宜を図るため、各構成部材の寸法に比べて大きくあるいは小さく描かれている場合がある。   In each drawing, the gap formed between the members, the separation distance between the members, etc. are larger than the dimensions of each constituent member for easy understanding of the invention and for convenience of drawing. Or it may be drawn small.

図示実施形態の流路切換弁は、四方切換弁1であり、ヒートポンプ式冷暖房システムにおいて流路切換用として使用されるもので、ロータリー式の主弁5と、流体圧式のアクチュエータ7と、四方パイロット弁8を備える。   The flow path switching valve of the illustrated embodiment is a four-way switching valve 1, which is used for switching a flow path in a heat pump air conditioning system, and includes a rotary main valve 5, a fluid pressure actuator 7, and a four-way pilot. A valve 8 is provided.

以下においては、まず、主として主弁5について説明し、その後にアクチュエータ7、四方パイロット弁8について説明する。   In the following, first, the main valve 5 will be mainly described, and then the actuator 7 and the four-way pilot valve 8 will be described.

<主弁5の構成及び動作>
主弁5は、図1、図2に加えて、図6、図7を参照すればよくわかるように、主弁ハウジング10と、この主弁ハウジング10内に回動可能かつ上下動可能に配在された回転弁体20と、回転弁体20を回動させるための回転軸部材30を備える。
<Configuration and operation of main valve 5>
As shown in FIGS. 6 and 7 in addition to FIGS. 1 and 2, the main valve 5 is arranged in the main valve housing 10 and is rotatable and vertically movable in the main valve housing 10. The rotary valve body 20 is provided, and a rotary shaft member 30 for rotating the rotary valve body 20 is provided.

主弁ハウジング10は、アルミあるいはステンレス等の金属製とされ、円筒状の胴部10Cと、この胴部10Cの上面開口を気密的に封止するように圧入、ろう付け、溶接等により固定された厚肉円板状の蓋板部材10Aと、胴部10Cの下面開口を気密的に封止するように前記蓋部材10Aと同様に前記胴部10Cに固定された厚肉円板状の底板部材10Bとを有する。底板部材10Bは、弁シート部材を兼ねており、その上面(内面)は平坦で滑らかな弁シート面12となっている。底板部材10Bには、図3に示される如くに、回転弁体20の回転軸線Oを中心とした同一円周上に90°間隔で、円形開口と管継手からなる第1ポートpD、第2ポートpC、第3ポートpE、及び第4ポートpSが垂設されている。   The main valve housing 10 is made of metal such as aluminum or stainless steel, and is fixed by press fitting, brazing, welding or the like so as to hermetically seal the cylindrical body 10C and the upper surface opening of the body 10C. The thick disc-shaped lid plate member 10A and the thick disc-shaped bottom plate fixed to the barrel portion 10C in the same manner as the lid member 10A so as to hermetically seal the lower surface opening of the barrel portion 10C. Member 10B. The bottom plate member 10B also serves as a valve seat member, and its upper surface (inner surface) is a flat and smooth valve seat surface 12. As shown in FIG. 3, the bottom plate member 10B has a first port pD, a second port formed of a circular opening and a pipe joint at 90 ° intervals on the same circumference around the rotation axis O of the rotary valve body 20. A port pC, a third port pE, and a fourth port pS are provided vertically.

本実施形態の四方切換弁1では、ヒートポンプ式冷暖房システムに組み込まれた場合において、例えば、第1ポートpDは圧縮機吐出側に接続され、第2ポートpCは室外熱交換器に接続され、第3ポートpEは室内熱交換器に接続され、第4ポートpSは圧縮機吸入側に接続される。   In the four-way switching valve 1 of the present embodiment, when incorporated in a heat pump air conditioning system, for example, the first port pD is connected to the compressor discharge side, the second port pC is connected to the outdoor heat exchanger, The 3 port pE is connected to the indoor heat exchanger, and the fourth port pS is connected to the compressor suction side.

前記回転軸部材30は、図5、6を参照すればよくわかるように、上から順に、小径凸部31、上部大径部32、中間軸部33、角形係合部34、下端小径部36を有する。前記主弁ハウジング10における蓋板部材10Aの中央には、前記回転軸部材30が挿通せしめられる嵌挿穴13が形成され、底板部材10Bの上面側中央には、回転軸部材30の下端小径部36を回転自在に支持する凹部14が設けられている。   5 and 6, the rotary shaft member 30 has a small-diameter convex portion 31, an upper large-diameter portion 32, an intermediate shaft portion 33, a square engaging portion 34, and a lower-end small-diameter portion 36 in order from the top. Have A fitting insertion hole 13 through which the rotary shaft member 30 is inserted is formed in the center of the cover plate member 10A in the main valve housing 10, and a lower end small diameter portion of the rotary shaft member 30 is formed in the upper surface side center of the bottom plate member 10B. A recess 14 for rotatably supporting 36 is provided.

回転軸部材30において、その小径凸部31を含む上端部には、後述するアクチュエータ7の回転駆動体65の下端部が溶接等により一体に結合されている。中間軸部33の上部には、ばね受けを兼ねるC字状の止め具38が嵌着される環状溝33a(図5)が形成されるとともに、この止め具38により樹脂製のスラスト軸受37が回転軸部材30に対して回動自在に外嵌保持されている。   In the rotary shaft member 30, a lower end portion of a rotary drive body 65 of an actuator 7 described later is integrally coupled to an upper end portion including the small-diameter convex portion 31 by welding or the like. An annular groove 33a (FIG. 5) in which a C-shaped stopper 38 also serving as a spring receiver is fitted is formed on the upper portion of the intermediate shaft portion 33, and a thrust bearing 37 made of resin is formed by the stopper 38. The rotary shaft member 30 is externally fitted and held rotatably.

回転軸部材30の角形係合部34には、回転弁体20の下部中央に設けられた角形溝29に嵌め込まれた角形棒35が外挿されて嵌合せしめられており、これにより、回転弁体20は回転軸部材30と一体に回動せしめられる。なお、角形溝29に予めインサート成形された金属製の角形棒35に回転軸部材30の角形係合部34を嵌入してもよい。   A square bar 35 fitted in a square groove 29 provided at the center of the lower portion of the rotary valve body 20 is fitted to the square engagement portion 34 of the rotary shaft member 30 so as to be rotated. The valve body 20 is rotated integrally with the rotary shaft member 30. In addition, you may insert the square engaging part 34 of the rotating shaft member 30 in the metal square bar 35 insert-molded in the square groove | channel 29 previously.

回転軸部材30の上部大径部32と蓋板部材10Aの嵌挿穴13との間にはシール部材としてのOリング49が介装されている。   An O-ring 49 as a seal member is interposed between the upper large-diameter portion 32 of the rotary shaft member 30 and the fitting insertion hole 13 of the lid plate member 10A.

回転弁体20は、主弁ハウジング10内(弁室11)に回動可能に配在されてその下面が前記弁シート面12に対面せしめられる短円柱状の基体部21を有し、該基体部21には、図1、図2に加えて図6〜図9を参照すればよくわかるように、中央部に回転軸部材30を通す段付き貫通穴22が設けられ、この段付き貫通穴22の上部段差部と前記回転軸部材30に嵌着された止め具38との間に、回転弁体20(基体部21)を弁シート面12に押し付ける方向に付勢する圧縮コイルばね(第1付勢部材)39が縮装されている。   The rotary valve body 20 has a short columnar base portion 21 that is rotatably disposed in the main valve housing 10 (valve chamber 11) and whose lower surface faces the valve seat surface 12. As shown in FIGS. 6 to 9 in addition to FIGS. 1 and 2, the portion 21 is provided with a stepped through hole 22 through which the rotary shaft member 30 is passed. A compression coil spring (first coil) that urges the rotary valve body 20 (base portion 21) against the valve seat surface 12 between the upper stepped portion 22 and the stopper 38 fitted to the rotary shaft member 30. 1 biasing member) 39 is retracted.

また、回転弁体20の(回転軸線Oに対して)一端側には、その下部に高圧冷媒が流通する高圧側Uターン連通路41が設けられた飯ごう形状の高圧通路形成部材40が上下方向に摺動自在に嵌挿保持される収容部23が設けられ、他端側には、低圧冷媒が流通する低圧側Uターン連通路42が設けられている。   In addition, a rice bowl-shaped high-pressure passage forming member 40 having a high-pressure side U-turn communication passage 41 through which a high-pressure refrigerant flows is provided at one end side (with respect to the rotation axis O) of the rotary valve body 20 in the vertical direction. A housing portion 23 is provided that is slidably inserted and held at the other end, and a low-pressure side U-turn communication passage 42 through which the low-pressure refrigerant flows is provided at the other end side.

より詳細には、高圧通路形成部材40は、収容部23の下端の平面視飯ごう状外形を有する環状の内方突出端縁部23a上に配在されている。また、高圧通路形成部材40に形成された高圧側Uターン連通路41は、下面側が開口した側面視概略円弧(弓形)状ないしかまぼこ状とされており、内方突出端縁部23aの下面が高圧側Uターン連通路41の(弁シート面12に対する)当接面16(図8(B)、図9参照)となっている。高圧側Uターン連通路41の下面(開口)及び内方突出端縁部23aの下面は、前記第1ポートpDを含む隣り合うポート間(pD−pC、pD−pE)を選択的に連通させ得る大きさとされている。なお、高圧側Uターン連通路41に導入された高圧冷媒の一部は、高圧通路形成部材40と収容部23との隙間を介して弁室11内に導入されるため、前記当接面16はシール性を備える必要はない。   More specifically, the high-pressure passage forming member 40 is disposed on an annular inwardly projecting end edge portion 23 a having a rice bowl-like outer shape in plan view at the lower end of the housing portion 23. Further, the high-pressure side U-turn communication passage 41 formed in the high-pressure passage forming member 40 has a generally arcuate or arcuate shape in a side view opened on the lower surface side, and the lower surface of the inwardly projecting edge portion 23a is The contact surface 16 (refer to FIG. 8B and FIG. 9) of the high-pressure side U-turn communication passage 41 (to the valve seat surface 12). The lower surface (opening) of the high-pressure side U-turn communication path 41 and the lower surface of the inwardly projecting end edge 23a selectively communicate between adjacent ports (pD-pC, pD-pE) including the first port pD. It is the size to get. Note that a part of the high-pressure refrigerant introduced into the high-pressure side U-turn communication passage 41 is introduced into the valve chamber 11 through the gap between the high-pressure passage forming member 40 and the accommodating portion 23, and thus the contact surface 16. Need not have a sealing property.

また、高圧通路形成部材40における上面側の(周方向で)両端近くには、舌状把手部43が横方向に突設されている。一方、基体部21の上面側の対応する部位には収容部23に連なって舌状把手部43、43が上下動自在に嵌挿される凹部26、26が設けられ、さらにこの凹部26の下側に、高圧通路形成部材40を弁シート面12とは反対側(蓋板部材10A側)に付勢するための圧縮コイルばね(第2付勢部材)25が装填される収納穴27が形成されている。   Further, near the both ends on the upper surface side (in the circumferential direction) of the high-pressure passage forming member 40, a tongue-like handle portion 43 is provided so as to protrude in the lateral direction. On the other hand, the corresponding part on the upper surface side of the base part 21 is provided with recesses 26, 26 into which the tongue-like handle parts 43, 43 are inserted so as to be movable up and down. In addition, a storage hole 27 is formed in which a compression coil spring (second urging member) 25 for urging the high-pressure passage forming member 40 to the side opposite to the valve seat surface 12 (the cover plate member 10A side) is loaded. ing.

また、高圧通路形成部材40の上面には、該高圧通路形成部材40と蓋板部材10Aの下面との接触面積を減らして回転時の摩擦抵抗を小さくすべく、上に凸の球冠状の突部44が複数(図示例では、中央付近と両端付近の3箇所)設けられている。   Further, on the upper surface of the high-pressure passage forming member 40, an upward convex spherical crown-like protrusion is formed so as to reduce the frictional resistance during rotation by reducing the contact area between the high-pressure passage forming member 40 and the lower surface of the lid plate member 10A. A plurality of portions 44 are provided (in the illustrated example, three locations near the center and near both ends).

一方、回転弁体20に設けられた低圧側Uターン連通路42は、基体部21内に形成された弁体内通路部46と、該弁体内通路部46における下面側に設けられた低圧通路画成部材47とで構成される。   On the other hand, the low pressure side U-turn communication passage 42 provided in the rotary valve body 20 includes a valve body passage portion 46 formed in the base portion 21 and a low pressure passage image provided on the lower surface side of the valve body passage portion 46. It is comprised by the component member 47.

弁体内通路部46は、下面側(弁シート面12側)が開口した側面視概略円弧(弓形)状ないしかまぼこ形状を呈し、かつ、上部(外周側)が概ね半円形状ないしそれに近い半楕円形状を持つものとなっている。   The valve body passage portion 46 has a substantially arcuate shape with a substantially arcuate shape (bow shape) opened on the lower surface side (valve seat surface 12 side), and the upper portion (outer peripheral side) has a substantially semicircular shape or a semi-elliptical shape close thereto. It has a shape.

それに対し、低圧通路画成部材47は、両端に円形開口49を有する円環状部45を持つ平面視メガネ状とされ、該低圧通路画成部材47の上側に基体部21が被さるようにして、そのメガネ状の外枠部分の上面が基体部21の弁体内通路部46の下端周縁部に超音波溶着あるいはレーザ溶着等により合体接合されている。   On the other hand, the low pressure passage defining member 47 is in the shape of glasses in plan view having an annular portion 45 having circular openings 49 at both ends, and the base portion 21 is covered on the upper side of the low pressure passage defining member 47, The upper surface of the eyeglass-like outer frame portion is joined and joined to the peripheral edge of the lower end of the valve body passage portion 46 of the base portion 21 by ultrasonic welding or laser welding.

低圧通路画成部材47は、図8を参照すればよくわかるように、下面両端(円形開口49の下面外周)に弁シート面12に対接する円環状シール面17、17を有する。また、前記低圧側Uターン連通路42の断面形状を、弁体内通路部46と協同(合体)して、円形ないしそれに近い楕円形とするとともに、一端から他端まで全長にわたって略等しい断面積とすべく、その中央部から両端の円形開口49にかけて山状突部48が設けられている。山状突部48は、図9に示される如くに、断面形状が半円状ないしそれに近い半楕円状の表面(すなわち、円弧の部分)を有している。   The low-pressure passage defining member 47 has annular seal surfaces 17 and 17 that are in contact with the valve seat surface 12 at both ends of the lower surface (the outer periphery of the lower surface of the circular opening 49), as can be understood with reference to FIG. Further, the cross-sectional shape of the low-pressure side U-turn communication passage 42 is made into a circular shape or an oval shape close to it in cooperation with the valve body passage portion 46, and has substantially the same cross-sectional area over the entire length from one end to the other end. Therefore, a mountain-shaped protrusion 48 is provided from the central portion to the circular openings 49 at both ends. As shown in FIG. 9, the mountain-shaped protrusion 48 has a semicircular or nearly semi-elliptical surface (that is, a circular arc portion) in cross section.

つまり、前記低圧側Uターン連通路42は、その下側ないし内周側部分が低圧通路画成部材47で画成され、その上側ないし外周側部分が基体部21(の弁体内通路部46)で画成された、断面形状が円形ないしそれに近い楕円形かつ側面視概略逆U字状ないし円弧状を呈している。   That is, the low-pressure side U-turn communication passage 42 has a lower side or inner peripheral portion defined by the low-pressure passage defining member 47, and an upper side or outer peripheral side portion of the base portion 21 (the valve body passage portion 46). The cross-sectional shape defined in (1) is a circular shape or an elliptical shape close to the circular shape, and a substantially inverted U shape or an arc shape in side view.

本例では、低圧側Uターン連通路42の通路径と第2〜第4ポートpC、pE、pSの口径とは略同径とされており、低圧側Uターン連通路42の一端及び他端(低圧通路画成部材47の両端の円形開口49、49)が第2〜第4ポートpC、pE、pSの3つのポートの真上に選択的に位置せしめられ(つまり、低圧通路画成部材47の両端の円形開口49、49は、回転弁体20の回転軸線Oを中心とした同一円周上に90°離れて形成されている)、これにより、前記第4ポートpSを含む隣り合うポート間(pS−pE、pS−pC)を選択的に連通するようになっている。   In this example, the passage diameter of the low pressure side U-turn communication passage 42 and the diameter of the second to fourth ports pC, pE, and pS are substantially the same diameter. (The circular openings 49, 49 at both ends of the low-pressure passage defining member 47) are selectively positioned directly above the three ports of the second to fourth ports pC, pE, pS (that is, the low-pressure passage defining member 47). The circular openings 49 and 49 at both ends of 47 are formed 90 degrees apart on the same circumference centering on the rotation axis O of the rotary valve body 20), thereby adjacent to each other including the fourth port pS. Ports (pS-pE, pS-pC) are selectively communicated.

上記に加え、本実施形態では、回転弁体20の回転時において、回転弁体20側の当接面16及びシール面17を底板部材10Bの弁シート面12から離れさせるボール式シール面離隔機構が設けられている。   In addition to the above, in this embodiment, when the rotary valve body 20 rotates, the ball-type seal surface separation mechanism that separates the contact surface 16 and the seal surface 17 on the rotary valve body 20 side from the valve seat surface 12 of the bottom plate member 10B. Is provided.

ボール式シール面離隔機構は、図6、図9に示される如くに、ボール56、ケース57、及び蓋部材58で構成されるボール保持体55を複数(図示例では3個)備える。ボール保持体55は、ボール56を、その一部を下方に突出させた状態で、回転自在にかつ移動は実質的に阻止した状態で保持するもので、このボール保持体55は、回転弁体20の下部外周に3箇所、120°間隔で設けられた装着穴59に、前記ボール56の一部を下方に突出させた状態で装着されている。また、底板部材10Bには、回転弁体20の回転開始前及び回転終了時において、回転弁体20側の当接面16及びシール面17が底板部材10Bの弁シート面12から離れないように、前記ボール56の一部が嵌め込まれ、回転弁体20の回転時(流路切換中)においては、ボール56が回転弁体20を押し上げながら転がり出るような寸法形状とされた略円錐状の凹穴18が120°間隔で3個ずつ2組設けられている。本実施形態では、流路切換のための回転角度は90°とされているので、凹穴18の組同士の角度間隔は30°となっている。   As shown in FIGS. 6 and 9, the ball-type sealing surface separation mechanism includes a plurality (three in the illustrated example) of ball holders 55 including a ball 56, a case 57, and a lid member 58. The ball holding body 55 holds the ball 56 in a state in which a part of the ball 56 protrudes downward, in a state where the ball 56 is rotatable and substantially prevented from moving. The ball holding body 55 is a rotary valve body. The ball 56 is mounted in a mounting hole 59 provided at three positions on the outer periphery of the lower portion 20 at intervals of 120 ° with a part of the ball 56 protruding downward. In addition, the bottom plate member 10B is configured such that the contact surface 16 and the seal surface 17 on the rotary valve body 20 side are not separated from the valve seat surface 12 of the bottom plate member 10B before and after the rotation of the rotary valve body 20 is started. A part of the ball 56 is fitted, and when the rotary valve body 20 is rotated (while the flow path is switched), the ball 56 is formed in a substantially conical shape so that the ball 56 rolls while pushing up the rotary valve body 20. Two sets of three concave holes 18 are provided at intervals of 120 °. In the present embodiment, since the rotation angle for switching the flow path is 90 °, the angular interval between the sets of the recessed holes 18 is 30 °.

かかるシール面離隔機構では、回転弁体20の回転開始前及び回転終了時においては、図9に示される如くに、底板部材10Bの凹穴18内にボール56の一部が嵌り込んでいる。この状態から回転弁体20を90°回転させ始めると、ボール保持体55が周方向に移動(回転)し、これに伴ってボール56は、回転弁体20を、圧縮コイルばね39の付勢力に抗して押し上げながら凹穴18から転がり出る。これによって、回転弁体20の当接面16及びシール面17が底板部材10Bの弁シート面12から離れる。なお、回転弁体20が90°回転すると、ボール56が次の凹穴18に嵌り込むので、回転弁体20は圧縮コイルばね39の付勢力によって押し下げられ、回転弁体20の当接面16及びシール面17が弁シート面12に押し付けられる。   In such a seal surface separation mechanism, before the rotation of the rotary valve body 20 and at the end of the rotation, as shown in FIG. 9, a part of the ball 56 is fitted in the recessed hole 18 of the bottom plate member 10B. When the rotary valve body 20 starts to rotate 90 ° from this state, the ball holding body 55 moves (rotates) in the circumferential direction, and accordingly, the ball 56 causes the rotary valve body 20 to urge the compression coil spring 39. Rolls out of the recessed hole 18 while pushing up against the above. Thereby, the contact surface 16 and the seal surface 17 of the rotary valve body 20 are separated from the valve seat surface 12 of the bottom plate member 10B. When the rotary valve body 20 rotates 90 °, the ball 56 is fitted into the next concave hole 18, so that the rotary valve body 20 is pushed down by the urging force of the compression coil spring 39, and the contact surface 16 of the rotary valve body 20. And the sealing surface 17 is pressed against the valve seat surface 12.

<アクチュエータ7の構成及び動作>
次に、回転弁体20を回動させるための流体圧式のアクチュエータ7について説明する。
<Configuration and operation of actuator 7>
Next, the fluid pressure type actuator 7 for rotating the rotary valve body 20 will be described.

本実施形態のアクチュエータ7は、前記主弁5内を流通する高圧冷媒と低圧冷媒との差圧を利用した流体圧式のもので、図1、図2に加えて、図4を参照すればよくわかるように、前記主弁ハウジング10における蓋板部材10A上にその下端が溶接等により固定された上蓋62付き円筒部61と、該円筒部61内に摺動自在に嵌挿された天井部付き厚肉円筒状の受圧移動体60と、この受圧移動体60内に内挿された円柱状の回転駆動体65と、を備える。   The actuator 7 of the present embodiment is a fluid pressure type that utilizes the differential pressure between the high-pressure refrigerant and the low-pressure refrigerant that circulates in the main valve 5, and FIG. 4 may be referred to in addition to FIGS. As can be seen, a cylindrical portion 61 with an upper lid 62 whose lower end is fixed on the lid plate member 10A of the main valve housing 10 by welding or the like, and a ceiling portion that is slidably fitted in the cylindrical portion 61. A thick cylindrical pressure receiving moving body 60 and a columnar rotational driving body 65 inserted in the pressure receiving moving body 60 are provided.

受圧移動体60は、蓋板部材10Aの上面に嵌合固定されて受圧移動体60と円筒部61との間に嵌め込まれた弓形状断面の左右一対の回動阻止兼上下動案内部材63、63により、直線的に上下動するがその回転は阻止されるようになっている。   The pressure-receiving moving body 60 is fitted and fixed to the upper surface of the lid plate member 10A and is fitted between the pressure-receiving moving body 60 and the cylindrical portion 61. By 63, it moves up and down linearly, but its rotation is prevented.

受圧移動体60と回転駆動体65には、受圧移動体60の上下動を回転駆動体65の回転運動に変換するための運動変換機構として、送り用雌ねじ66と送り用雄ねじ67がそれぞれ設けられている(図4では図示省略)。回転駆動体65は、受圧移動体60に螺合しているので、受圧移動体60の上下方向の移動に伴って相対的に該受圧移動体60内で回動するようになっており、回転駆動体65が回転すると、該回転駆動体65に連結された回転軸部材30及び回転弁体20も一体に回転する。ここでは、受圧移動体60が上動すると、回転駆動体65、回転軸部材30、及び回転弁体20が(下から視て)反時計回りに回転し、受圧移動体60が下動すると、回転駆動体65、回転軸部材30、及び回転弁体20が(下から視て)時計回りに回転する。   The pressure receiving moving body 60 and the rotation driving body 65 are respectively provided with a feeding female screw 66 and a feeding male screw 67 as motion conversion mechanisms for converting the vertical movement of the pressure receiving moving body 60 into the rotation movement of the rotation driving body 65. (Not shown in FIG. 4). Since the rotation driving body 65 is screwed to the pressure receiving moving body 60, the rotation driving body 65 is relatively rotated in the pressure receiving moving body 60 as the pressure receiving moving body 60 moves in the vertical direction. When the drive body 65 rotates, the rotary shaft member 30 and the rotary valve body 20 connected to the rotary drive body 65 also rotate together. Here, when the pressure receiving moving body 60 moves upward, the rotation driving body 65, the rotary shaft member 30, and the rotary valve body 20 rotate counterclockwise (viewed from below), and when the pressure receiving moving body 60 moves downward, The rotary drive body 65, the rotary shaft member 30, and the rotary valve body 20 rotate clockwise (viewed from below).

前記受圧移動体60の外周上部には、円筒部61の内周面との間を気密的に封止して円筒部61内を容積可変の上室51と下室52とに仕切るシール部材(ここでは、Oリング71、例えばテフロン(登録商標)製の滑りリング72からなるシール部材)及び該シール部材を係止する例えば金属製のリング部材73がかしめ等により装着されている。   On the upper outer periphery of the pressure-receiving moving body 60, a sealing member (air-tightly sealing between the inner peripheral surface of the cylindrical portion 61 and partitioning the cylindrical portion 61 into an upper chamber 51 and a lower chamber 52 with variable volume) Here, an O-ring 71, for example, a seal member made of a sliding ring 72 made of Teflon (registered trademark), and a ring member 73 made of metal, for example, for locking the seal member are mounted by caulking or the like.

図1には、受圧移動体60が最下降位置にあり、回転弁体20が第1の回転位置をとっている状態が示され、図2には、受圧移動体60が最上昇位置にあり、回転弁体20が第2の回転位置をとっている状態が示されている。本例では、第1の回転位置と第2の回転位置との角度差、つまり、流路切換に要する回転角度は90°となっている。   FIG. 1 shows a state where the pressure receiving moving body 60 is in the lowest lowered position and the rotary valve body 20 is in the first rotating position, and FIG. 2 shows that the pressure receiving moving body 60 is in the highest raised position. The state which the rotary valve body 20 has taken the 2nd rotation position is shown. In this example, the angle difference between the first rotation position and the second rotation position, that is, the rotation angle required for the flow path switching is 90 °.

また、円筒部61の下部には、下室52に高圧流体を導入・排出するための下部ポート54が設けられるとともに、その上蓋62には、上室51に高圧流体を導入・排出するための上部ポート53が設けられている。   In addition, a lower port 54 for introducing and discharging a high pressure fluid to the lower chamber 52 is provided at the lower portion of the cylindrical portion 61, and an upper lid 62 for introducing and discharging the high pressure fluid to the upper chamber 51. An upper port 53 is provided.

なお、受圧移動体60の上下動を回転駆動体65の回転運動に変換するための運動変換機構としては、上記のような送りねじを用いたものに限定されず、例えば、特開2016−89901号公報に開示されているような、ボール、このボールの収容部、及び螺旋溝で構成されているもの等を採用することができる。   Note that the motion conversion mechanism for converting the vertical movement of the pressure-receiving moving body 60 into the rotational motion of the rotary drive body 65 is not limited to the one using the feed screw as described above. It is possible to employ a ball, a housing portion for the ball, and a spiral groove as disclosed in Japanese Patent Publication.

<四方パイロット弁8の構成及び動作>
次に、四方パイロット弁8について説明する。
<Configuration and operation of the four-way pilot valve 8>
Next, the four-way pilot valve 8 will be described.

本実施形態では、流路切換を、高圧部分である第1ポートpD、上部ポート53、下部ポート54、及び、低圧部分である第4ポートpSに細管#1〜#4で接続された電磁式の四方パイロット弁8により行うようにされている。   In the present embodiment, the flow path switching is performed by an electromagnetic type connected to the first port pD, which is the high pressure portion, the upper port 53, the lower port 54, and the fourth port pS, which is the low pressure portion, by the thin tubes # 1 to # 4. The four-way pilot valve 8 is used.

四方パイロット弁8は、その構造自体はよく知られているものであるので、その構造説明は省略する。必要なら、例えば特開2016−114133号公報等を参照されたい。   Since the structure of the four-way pilot valve 8 is well known, the description of the structure is omitted. If necessary, refer to, for example, JP-A-2006-114133.

この四方パイロット弁8においては、上部ポート53に細管#2を介して接続されるポートa、第4ポートpSに細管#4を介して接続される低圧ポートb、下部ポート54に細管#3を介して接続されるポートc、第1ポートpDに細管#1を介して接続される低圧ポートdが設けられている。   In this four-way pilot valve 8, the port a connected to the upper port 53 via the thin tube # 2, the low pressure port b connected to the fourth port pS via the thin tube # 4, and the thin tube # 3 to the lower port 54. And a low-pressure port d connected to the first port pD via the narrow tube # 1.

本例では、通電ON時には、高圧ポートdとポートcが連通するとともに、ポートaと低圧ポートbが連通するので、ポートpD(吐出側高圧ポート)に流入する高圧流体が下部ポート54を介して下室52に導入されるとともに、上室51の高圧流体が上部ポート53から第4ポートpS(吸入側低圧ポート)へ排出される。   In this example, when energization is ON, the high pressure port d and the port c communicate with each other, and the port a and the low pressure port b communicate with each other, so that the high pressure fluid flowing into the port pD (discharge side high pressure port) passes through the lower port 54. While being introduced into the lower chamber 52, the high pressure fluid in the upper chamber 51 is discharged from the upper port 53 to the fourth port pS (suction side low pressure port).

それに対し、通電をOFFにすると、高圧ポートdとポートaが連通するとともに、ポートcと低圧ポートbが連通するので、ポートpD(吐出側高圧ポート)に流入する高圧流体が上部ポート53を介して上室51に導入されるとともに、下室52の高圧流体が下部ポート54から第4ポートpS(吸入側低圧ポート)へ排出される。   On the other hand, when the energization is turned off, the high pressure port d and the port a communicate with each other, and the port c and the low pressure port b communicate with each other, so that the high pressure fluid flowing into the port pD (discharge side high pressure port) passes through the upper port 53. The high pressure fluid in the lower chamber 52 is discharged from the lower port 54 to the fourth port pS (suction side low pressure port).

したがって、四方パイロット弁8への通電をONにすると、受圧移動体60が上動し、これによって、回転駆動体65、回転軸部材30、及び回転弁体20が(下から視て)反時計回りに90°(第1の回転位置から第2の回転位置へと)回転し、図2、図3(B)に示される如くに、高圧側Uターン連通路41により第1ポートpDと第3ポートpEとが連通するとともに、低圧側Uターン連通路42により第2ポートpCと第4ポートpSとが連通する(回転弁体20が第2の回転位置にある第2の連通状態)。   Therefore, when energization to the four-way pilot valve 8 is turned ON, the pressure receiving moving body 60 moves up, and thereby the rotation driving body 65, the rotation shaft member 30, and the rotation valve body 20 are counterclockwise (as viewed from below). 90 ° (from the first rotation position to the second rotation position), and as shown in FIG. 2 and FIG. 3 (B), the first port pD and the first port are connected by the high-pressure side U-turn communication path 41. The third port pE communicates with the second port pC and the fourth port pS through the low pressure side U-turn communication passage 42 (second communication state in which the rotary valve body 20 is in the second rotational position).

一方、四方パイロット弁8への通電をOFFにすると、受圧移動体60が下動し、回転駆動体65、回転軸部材30、及び回転弁体20が(下から視て)時計回りに90°(第2の回転位置から第1の回転位置へと)回転し、図1、図3(A)に示される如くに、高圧側Uターン連通路41により第1ポートpDと第2ポートpCとが連通するとともに、低圧側Uターン連通路42により第3ポートpEと第4ポートpSとが連通する(回転弁体20が第1の回転位置にある第1の連通状態)。   On the other hand, when the energization to the four-way pilot valve 8 is turned off, the pressure receiving moving body 60 moves downward, and the rotation driving body 65, the rotation shaft member 30, and the rotation valve body 20 are rotated 90 ° clockwise (viewed from below). As shown in FIGS. 1 and 3A, the first port pD and the second port pC are rotated by the high-pressure side U-turn communication passage 41 as shown in FIGS. Are communicated with each other, and the third port pE and the fourth port pS are communicated with each other by the low pressure side U-turn communication passage 42 (first communication state in which the rotary valve body 20 is in the first rotation position).

<四方切換弁(流路切換弁)1の作用効果>
上記のような構成とされた本実施形態の四方切換弁1では、回転弁体20の一端側に収容部23が設けられ、この収容部23に、高圧冷媒が流通する高圧側Uターン連通路41が設けられた高圧通路形成部材40が上下方向に摺動自在に嵌挿保持され、かつ、高圧通路形成部材40は圧縮コイルばね25により蓋板部材10Aに押し付ける方向(反弁シート面12側)に付勢されているので、当該高圧側Uターン連通路41を流れる高圧冷媒に伴われる脈動は、低圧側Uターン連通路42が設けられた回転弁体20の基体部21に対して高圧通路形成部材40が主弁ハウジング10の蓋板部材10Aに抑え込まれて吸収減衰される。
<Effects of the four-way switching valve (channel switching valve) 1>
In the four-way switching valve 1 of the present embodiment configured as described above, a housing portion 23 is provided on one end side of the rotary valve body 20, and a high-pressure side U-turn communication path through which high-pressure refrigerant flows in the housing portion 23. The high pressure passage forming member 40 provided with 41 is slidably inserted and held in the up and down direction, and the high pressure passage forming member 40 is pressed against the cover plate member 10A by the compression coil spring 25 (on the counter valve seat surface 12 side). ), The pulsation caused by the high-pressure refrigerant flowing through the high-pressure side U-turn communication path 41 is higher than the base portion 21 of the rotary valve body 20 provided with the low-pressure side U-turn communication path 42. The passage forming member 40 is held by the cover plate member 10A of the main valve housing 10 and absorbed and attenuated.

そのため、高圧冷媒に伴われる脈動に起因する回転弁体20の振動を効果的に抑えることができ、そのため、高圧冷媒が脈動を伴っていても、低圧側Uターン連通路42のシール面17と弁シート面12との間に隙間が形成され難くなり、その結果、主弁ハウジング10内(弁室11)の高圧冷媒が圧縮機吸入側に抜ける弁洩れの発生を効果的に抑えることができる。   Therefore, the vibration of the rotary valve body 20 due to the pulsation accompanying the high-pressure refrigerant can be effectively suppressed. Therefore, even if the high-pressure refrigerant is accompanied by the pulsation, the seal surface 17 of the low-pressure side U-turn communication path 42 It is difficult to form a gap between the valve seat surface 12 and, as a result, it is possible to effectively suppress the occurrence of valve leakage in which high-pressure refrigerant in the main valve housing 10 (valve chamber 11) escapes to the compressor suction side. .

また、高圧通路形成部材40に設けられた高圧側Uターン連通路41は、下面側が開口した側面視概略円弧(弓形)状ないしかまぼこ状とされ、かつ、その断面は、図9を参照すればよくわかるように、上部(外周側)が半円形状とされているので、前述した特許文献1に見られるような飯ごう形状(断面形状が矩形)のものに比して、圧力損失を低減できる。   Further, the high-pressure side U-turn communication passage 41 provided in the high-pressure passage forming member 40 has a generally arcuate or arcuate shape in a side view when the lower surface side is opened, and a cross section thereof is shown in FIG. As can be clearly understood, since the upper part (outer peripheral side) has a semicircular shape, the pressure loss can be reduced as compared with the rice bowl shape (cross-sectional shape is rectangular) as described in Patent Document 1 described above. .

したがって、本実施形態の四方切換弁1では、圧力損失の低減等を図りながら、低圧側Uターン連通路42のシール性を向上し得て弁洩れを生じ難くできる。   Therefore, in the four-way switching valve 1 of the present embodiment, it is possible to improve the sealing performance of the low pressure side U-turn communication path 42 and reduce valve leakage while reducing pressure loss and the like.

上記に加え、本実施形態の四方切換弁1では、回転弁体20に設けられた低圧側Uターン連通路42は、基体部21内に形成された弁体内通路部46と、該弁体内通路部46における下面側に溶着固定された低圧通路画成部材47とで分割構成され、低圧側Uターン連通路42は、側面視が円弧(弓形)状ないしかまぼこ状とされるとともに、断面形状が円形ないしそれに近い楕円形状とされ、かつ、一端から他端まで全長にわたって通路断面積が変わらないようされる。   In addition to the above, in the four-way switching valve 1 of the present embodiment, the low-pressure side U-turn communication passage 42 provided in the rotary valve body 20 includes a valve body passage portion 46 formed in the base portion 21 and the valve body passage. The low pressure side U-turn communication passage 42 is divided into a semi-cylindrical shape having a circular arc shape (bow shape) when viewed from the side, and has a cross-sectional shape. The cross-sectional area of the passage is not changed over the entire length from one end to the other end.

つまり、低圧側Uターン連通路42は、断面円形のチューブを断面形状(円形)を変えずに円弧状ないしかまぼこ状に湾曲させた理想の通路形状とされ、角部、段差、引っ掛かり等が全くないものとされるので、圧力損失を増大させる原因となる渦流を発生し難くできる。   In other words, the low-pressure side U-turn communication passage 42 has an ideal passage shape in which a tube having a circular cross section is curved in an arc shape without changing its cross sectional shape (circular shape), and has no corners, steps, catches, or the like. Therefore, it is difficult to generate a vortex that causes an increase in pressure loss.

また、耐圧強度が増大するので、断面形状がかまぼこ形状、角丸矩形、あるいは比較的扁平な楕円状で断面積が一様ではない従来の弁体に比して、内外の高低圧力差が大きくなっても、変形し難くなり、そのため、コストアップ、大型化等を招くことなく、低圧側Uターン連通路42のシール性を向上し得て弁洩れを生じ難くできる。   In addition, since the pressure resistance increases, the difference in pressure between the inside and outside is large compared to conventional valve bodies with a cross-sectional shape of a semi-cylindrical shape, a rounded rectangular shape, or a relatively flat elliptical shape and a non-uniform cross-sectional area. Even if it becomes, it becomes difficult to deform | transform. Therefore, the sealing property of the low voltage | pressure side U-turn communication path 42 can be improved, and it is hard to produce a valve leak, without causing a cost increase, an enlargement, etc.

さらに、低圧通路画成部材47は、回転弁体20の補強部材の役割も果たすので、高低圧力差が大きい場合でも、回転弁体20を変形し難くできる。   Furthermore, since the low pressure passage defining member 47 also serves as a reinforcing member for the rotary valve body 20, the rotary valve body 20 can be hardly deformed even when the high and low pressure difference is large.

また、低圧側Uターン連通路42の通路径と第2〜第4ポートpC、pE、pSの口径とが略同径とされるので、低圧側Uターン連通路42内での流体の膨張や収縮が発生せず、それによっても、圧力損失を効果的に低減できる。   Further, since the passage diameter of the low pressure side U-turn communication passage 42 and the diameters of the second to fourth ports pC, pE, and pS are substantially the same diameter, Shrinkage does not occur, which can effectively reduce pressure loss.

なお、上記実施形態では、本発明を四方切換弁に適用した場合の例を説明したが、本発明は六方切換弁等にも同様に適用できることは言うまでも無い。   In the above embodiment, an example in which the present invention is applied to a four-way switching valve has been described, but it goes without saying that the present invention can be similarly applied to a six-way switching valve or the like.

また、上述した本発明に係る流路切換弁は、ヒートポンプ式冷暖房システムのみならず、他のシステム、装置、機器類にも組み込めることは勿論である。   Of course, the above-described flow path switching valve according to the present invention can be incorporated not only in the heat pump air conditioning system but also in other systems, devices, and devices.

1 四方切換弁(流路切換弁)
5 主弁
7 アクチュエータ
8 四方パイロット弁
10 主弁ハウジング
10A 蓋板部材
10B 底板部材
10C 胴部
11 弁室
12 弁シート面
16 当接面(高圧側Uターン連通路)
17 シール面(低圧側Uターン連通路)
20 回転弁体
21 基体部
23 収容部
25 圧縮コイルばね(第2付勢部材)
30 回転軸部材
39 圧縮コイルばね(第1付勢部材)
40 高圧通路形成部材
41 高圧側Uターン連通路
42 低圧側Uターン連通路
43 舌状把手部
45 円環状部
46 弁体内通路部
47 低圧通路画成部材
48 山状突部
49 円形開口
51 上室
52 下室
53 上部ポート
54 下部ポート
55 ボール保持体
60 受圧移動体
65 回転駆動体
pD 第1ポート(吐出側高圧ポート)
pC 第2ポート(室外側入出ポート)
pE 第3ポート(室内側入出ポート)
pS 第4ポート(吸入側低圧ポート)
1 Four-way switching valve (channel switching valve)
5 Main valve 7 Actuator 8 Four-way pilot valve 10 Main valve housing 10A Cover plate member 10B Bottom plate member 10C Body 11 Valve chamber 12 Valve seat surface 16 Contact surface (high-pressure side U-turn communication path)
17 Seal surface (low pressure side U-turn communication path)
20 Rotating valve body 21 Base part 23 Housing part 25 Compression coil spring (second urging member)
30 Rotating shaft member 39 Compression coil spring (first biasing member)
40 High-pressure passage forming member 41 High-pressure side U-turn communication passage 42 Low-pressure side U-turn communication passage 43 Tongue-shaped handle portion 45 Annular portion 46 Valve body passage portion 47 Low-pressure passage defining member 48 Mountain-shaped protrusion 49 Circular opening 51 Upper chamber 52 Lower chamber 53 Upper port 54 Lower port 55 Ball holder 60 Pressure receiving moving body 65 Rotation drive body pD First port (discharge side high pressure port)
pC 2nd port (outdoor entrance / exit port)
pE 3rd port (inside / outside port)
pS 4th port (suction side low pressure port)

Claims (8)

筒状の主弁ハウジング、該主弁ハウジングの上面側又は下面側に設けられた弁シート面、該弁シート面に開口する4個以上のポート、及び前記主弁ハウジング内に回動可能に配在されてその上面又は下面が前記弁シート面に対面せしめられる回転弁体を有し、該回転弁体内に、前記ポート間を選択的に連通すべく、低圧流体が流通する低圧側Uターン連通路が設けられるとともに、高圧流体が流通する高圧側Uターン連通路が設けられた高圧通路形成部材が上下方向に摺動自在に収容保持されていることを特徴とする流路切換弁。   A cylindrical main valve housing, a valve seat surface provided on the upper surface side or the lower surface side of the main valve housing, four or more ports opened to the valve seat surface, and a pivotable arrangement in the main valve housing A low pressure side U-turn link through which a low pressure fluid flows to selectively communicate between the ports in the rotary valve body, the rotary valve body having an upper surface or a lower surface facing the valve seat surface. A flow path switching valve characterized in that a high pressure passage forming member provided with a high pressure side U-turn communication passage through which a high pressure fluid flows is accommodated and held slidably in the vertical direction. 前記回転弁体を前記弁シート面に押し付ける方向に付勢する第1付勢部材、及び、前記高圧通路形成部材を前記弁シート面とは反対側に付勢する第2付勢部材を備えていることを特徴とする請求項1に記載の流路切換弁。   A first urging member that urges the rotary valve body in a direction in which the rotary valve body is pressed against the valve seat surface; and a second urging member that urges the high-pressure passage forming member to the side opposite to the valve seat surface. The flow path switching valve according to claim 1, wherein: 前記第2付勢部材は、前記高圧通路形成部材の周方向で両端部分に設けられていることを特徴とする請求項2に記載の流路切換弁。   The flow path switching valve according to claim 2, wherein the second urging member is provided at both end portions in the circumferential direction of the high-pressure passage forming member. 前記高圧通路形成部材の前記弁シート面に対面せしめられる面とは反対側の面に、回転時の摩擦抵抗を小さくするための突部が設けられていることを特徴とする請求項1から3のいずれか一項に記載の流路切換弁。   The protrusion for reducing the frictional resistance at the time of rotation is provided in the surface on the opposite side to the surface facing the said valve seat surface of the said high pressure channel | path formation member, The Claim 1 to 3 characterized by the above-mentioned. The flow path switching valve according to any one of the above. 前記弁シート面に第1、第2、第3及び第4ポートが開口し、
前記回転弁体が第1の回転位置をとるとき、前記高圧側Uターン連通路により第1ポートと第2ポートとが連通するとともに、前記低圧側Uターン連通路により第3ポートと第4ポートとが連通し、
前記回転弁体が第2の回転位置をとるとき、前記高圧側Uターン連通路により第1ポートと第3ポートとが連通するとともに、前記低圧側Uターン連通路により第2ポートと第4ポートとが連通するようにされていることを特徴とする請求項1から4のいずれか一項に記載の流路切換弁。
First, second, third and fourth ports open on the valve seat surface,
When the rotary valve body assumes the first rotational position, the first port and the second port communicate with each other through the high-pressure side U-turn communication path, and the third port and the fourth port communicate with each other through the low-pressure side U-turn communication path. Communicated with
When the rotary valve body assumes the second rotational position, the first port and the third port communicate with each other through the high pressure side U-turn communication path, and the second port and the fourth port communicate with each other through the low pressure side U-turn communication path. The flow path switching valve according to any one of claims 1 to 4, wherein the flow path switching valve is configured to communicate with each other.
前記低圧側Uターン連通路は、前記回転弁体内に形成された弁体内通路部と、該弁体内通路部における前記弁シート面側に設けられた低圧通路画成部材とで分割構成され、前記弁体内通路部は、前記弁シート面側が開口した側面視概略円弧状ないしかまぼこ状を呈し、かつ、外周側が概ね半円形ないしそれに近い半楕円形の断面形状を持つようにされ、前記低圧通路画成部材は、前記弁シート面に対接するシール面を持ち、前記弁体内通路部と協同して、前記低圧側Uターン連通路の断面形状を円形ないしそれに近い楕円形とするとともに、一端から他端まで全長にわたって等しい断面積とするように形成されていることを特徴とする請求項1から5のいずれか一項に記載の流路切換弁。   The low-pressure side U-turn communication path is divided into a valve body passage portion formed in the rotary valve body and a low-pressure passage defining member provided on the valve seat surface side in the valve body passage portion, The valve body passage portion has a generally arcuate shape that is substantially arcuate in side view with the valve seat surface side opened, and has a semicircular or substantially semicircular cross-sectional shape on the outer peripheral side. The component member has a seal surface that is in contact with the valve seat surface, and in cooperation with the valve body passage portion, the low-pressure side U-turn communication passage has a circular or nearly elliptical cross-sectional shape, and the other end from one end. The flow path switching valve according to any one of claims 1 to 5, wherein the flow path switching valve is formed to have an equal cross-sectional area over the entire length to the end. 前記低圧通路画成部材には、前記低圧側Uターン連通路の一端及び他端を構成する開口が設けられるとともに、その中央部から両端の開口にかけて山状突部が設けられていることを特徴とする請求項6に記載の流路切換弁。   The low-pressure passage defining member is provided with an opening that constitutes one end and the other end of the low-pressure side U-turn communication passage, and is provided with a mountain-shaped protrusion from the center to the opening at both ends. The flow path switching valve according to claim 6. 前記山状突部は、断面形状が半円状ないしそれに近い半楕円状の表面を有していることを特徴とする請求項7に記載の流路切換弁。   8. The flow path switching valve according to claim 7, wherein the mountain-shaped protrusion has a semicircular surface or a semi-elliptical surface close to the cross-sectional shape.
JP2017095677A 2017-05-12 2017-05-12 Flow path switching valve Active JP6475778B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017095677A JP6475778B2 (en) 2017-05-12 2017-05-12 Flow path switching valve
CN201810443516.1A CN108869794B (en) 2017-05-12 2018-05-10 Flow path switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017095677A JP6475778B2 (en) 2017-05-12 2017-05-12 Flow path switching valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019016652A Division JP6667687B2 (en) 2019-02-01 2019-02-01 Flow path switching valve

Publications (2)

Publication Number Publication Date
JP2018194037A JP2018194037A (en) 2018-12-06
JP6475778B2 true JP6475778B2 (en) 2019-02-27

Family

ID=64333704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017095677A Active JP6475778B2 (en) 2017-05-12 2017-05-12 Flow path switching valve

Country Status (2)

Country Link
JP (1) JP6475778B2 (en)
CN (1) CN108869794B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11892095B2 (en) 2019-06-11 2024-02-06 Denso Corporation Valve device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006525B2 (en) * 2018-06-28 2022-01-24 株式会社デンソー Valve device and vehicle cleaning system
JP7301350B2 (en) * 2019-06-20 2023-07-03 株式会社不二工機 Flow switching valve
JP6999184B2 (en) * 2019-08-23 2022-01-18 株式会社不二工機 Flow switching valve
WO2022059054A1 (en) * 2020-09-15 2022-03-24 東芝キヤリア株式会社 Refrigeration cycle device
JP7425719B2 (en) * 2020-12-25 2024-01-31 株式会社鷺宮製作所 Rotary type switching valve
EP4293254A1 (en) * 2021-02-15 2023-12-20 Eagle Industry Co., Ltd. Selector valve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979397A (en) * 1995-09-08 1997-03-25 Shimpo Ind Co Ltd Four-way switching valve
JPH1047812A (en) * 1996-08-06 1998-02-20 Saginomiya Seisakusho Inc Control for valve and control for refrigerating cycle
JPH1137332A (en) * 1997-07-23 1999-02-12 Pacific Ind Co Ltd Electromagnetic pilot type four-way valve
CN101230928B (en) * 2007-01-26 2010-09-22 浙江三花制冷集团有限公司 Electric switching valve and refrigerator refrigerating cycle device
CN102047014B (en) * 2008-06-02 2013-12-11 株式会社鹭宫制作所 Flow path selector valve
CN201772103U (en) * 2010-07-08 2011-03-23 宁波光华气动工业有限公司 Three-position four-way hand-operated rotary valve
JP5927913B2 (en) * 2011-12-28 2016-06-01 ダイキン工業株式会社 Rotary valve
JP2014211291A (en) * 2013-04-19 2014-11-13 ダイキン工業株式会社 Refrigerant flow path switching valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11892095B2 (en) 2019-06-11 2024-02-06 Denso Corporation Valve device

Also Published As

Publication number Publication date
CN108869794B (en) 2021-12-28
JP2018194037A (en) 2018-12-06
CN108869794A (en) 2018-11-23

Similar Documents

Publication Publication Date Title
JP6475778B2 (en) Flow path switching valve
JP6625584B2 (en) Flow switching valve
US8813784B2 (en) Flow path switching valve
KR101640253B1 (en) Multi direction changeover valve
CN109114237B (en) Electric valve and refrigeration cycle system
JP6465619B2 (en) Flow path switching valve
US8327883B2 (en) Multi-way selector valve
CN107366754B (en) Butterfly valve
US20120024398A1 (en) Multi-way reversing valve
KR20160074674A (en) Ball valve with internal seal arrangement
JP6667687B2 (en) Flow path switching valve
JP2020180630A (en) Passage switch valve
WO2020039889A1 (en) Flow passage switching valve
JP2016191403A (en) Channel switching valve
JP2009270639A (en) Flow path selector valve
JP7095914B2 (en) Flow switching valve
JP6585514B2 (en) 6-way switching valve
JP6491861B2 (en) Flow path switching valve
JP6689418B2 (en) Flow path switching valve
JP6947401B2 (en) Flow switching valve
JP6954855B2 (en) Electric valve
JP2021089023A (en) Slide type selector valve and refrigeration cycle system
JP6453040B2 (en) Flow path switching valve
CN113167396B (en) Flow path switching valve
JP6823864B2 (en) Six-way switching valve

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190201

R150 Certificate of patent or registration of utility model

Ref document number: 6475778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250