JP7425719B2 - Rotary type switching valve - Google Patents

Rotary type switching valve Download PDF

Info

Publication number
JP7425719B2
JP7425719B2 JP2020216483A JP2020216483A JP7425719B2 JP 7425719 B2 JP7425719 B2 JP 7425719B2 JP 2020216483 A JP2020216483 A JP 2020216483A JP 2020216483 A JP2020216483 A JP 2020216483A JP 7425719 B2 JP7425719 B2 JP 7425719B2
Authority
JP
Japan
Prior art keywords
valve
main
main valve
sub
rotary type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020216483A
Other languages
Japanese (ja)
Other versions
JP2022102022A (en
Inventor
宏光 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2020216483A priority Critical patent/JP7425719B2/en
Priority to CN202111531541.3A priority patent/CN114688304B/en
Publication of JP2022102022A publication Critical patent/JP2022102022A/en
Application granted granted Critical
Publication of JP7425719B2 publication Critical patent/JP7425719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)
  • Sliding Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

本発明は、ヒートポンプ式の冷凍サイクル等に用いられ、冷媒の流路を切り換えるロータリー式切換弁に関する。 The present invention relates to a rotary switching valve that is used in a heat pump type refrigeration cycle or the like and switches a refrigerant flow path.

従来、この種のロータリー式切換弁(四方切換弁)として例えば特開2005-256853号公報(特許文献1)に開示されたものがある。特許文献1のものは、冷房から暖房または暖房から冷房に切り換えるとき、主弁の上部の空間(弁室)の圧力を低減させて弁座の高圧ポートからの圧力により主弁を弁座から上昇させ、主弁を回転させて所定位置で弁座に着座させるよう構成されている。そして、この主弁を浮かせるとき、主弁に接する副弁を弁本体に当接させるようにしている。 Conventionally, as this type of rotary switching valve (four-way switching valve), there is one disclosed in, for example, Japanese Patent Laid-Open No. 2005-256853 (Patent Document 1). In Patent Document 1, when switching from cooling to heating or from heating to cooling, the pressure in the space above the main valve (valve chamber) is reduced and the pressure from the high pressure port of the valve seat raises the main valve from the valve seat. The main valve is rotated and seated on the valve seat at a predetermined position. When the main valve is floated, the sub-valve in contact with the main valve is brought into contact with the valve body.

特開2005-256853号公報Japanese Patent Application Publication No. 2005-256853

特許文献1のものでは、主弁を上昇して回転するとき、主弁の上昇力を副弁を介して本体の広い面で受けることとなるため、大きな摩擦トルクが発生し、大きな駆動トルクを確保する必要がある。このため駆動部も大型化するという問題がある。 In Patent Document 1, when the main valve is raised and rotated, the rising force of the main valve is received by the wide surface of the main body via the auxiliary valve, so a large friction torque is generated and a large driving torque is generated. It is necessary to secure it. Therefore, there is a problem that the drive section also becomes larger.

本発明は、流路切換時に主弁を上昇して回転するロータリー式切換弁において、主弁の上昇力を受ける部位での摩擦トルクを低減し、消費電力を低減するとともに駆動部の小型化を図ることを課題とする。 The present invention is a rotary type switching valve that lifts the main valve and rotates when switching flow paths.The present invention reduces frictional torque at the part receiving the lifting force of the main valve, reduces power consumption, and downsizes the drive unit. The task is to achieve this goal.

本発明のロータリー式切換弁は、弁室を有するケース部材と、前記弁室に対向して設けられた弁座と、前記弁室内で前記弁座上に軸線を中心として回転可能に配設された主弁と、前記ケース部材と前記弁座との間に配設されるとともに、前記主弁を前記軸線上に保持して前記主弁と共に回転可能に配設された前記主弁と別体の主軸とを備え、前記主弁を前記弁座から上昇させて回転させることで、前記弁座のポートに連通する流路を切り換えるロータリー式切換弁において、前記主弁の上昇時の上昇力を、前記主軸で受けるとともに該主軸の前記ケース部材側の端部を介して前記ケース部材で受けるよう構成されていることを特徴とする。 The rotary switching valve of the present invention includes a case member having a valve chamber, a valve seat provided opposite to the valve chamber, and rotatably disposed on the valve seat within the valve chamber about an axis. a separate body from the main valve, which is disposed between the case member and the valve seat and is rotatably arranged together with the main valve while holding the main valve on the axis; A rotary type switching valve that switches a flow path communicating with a port of the valve seat by lifting the main valve from the valve seat and rotating it, the main shaft of the rotary type switching valve comprising: a main shaft; It is characterized in that it is configured to be received by the main shaft and received by the case member via an end of the main shaft on the case member side.

この際に、前記主軸の前記ケース部材側の端部が、点接触により前記上昇力を前記ケース部材側に伝達するよう構成されていることを特徴とするロータリー式切換弁が好ましい。 In this case, a rotary type switching valve is preferable, wherein the end of the main shaft on the case member side is configured to transmit the lifting force to the case member side through point contact.

また、前記主軸の前記ケース部材側の端部において、球面により前記点接触を構成していることを特徴とするロータリー式切換弁が好ましい。 Preferably, the rotary switching valve is characterized in that the point contact is formed by a spherical surface at the end of the main shaft on the case member side.

また、前記主軸の中央部の段差部にて前記主弁を受けるよう構成されていることを特徴とするロータリー式切換弁が好ましい。 Preferably, the rotary switching valve is configured to receive the main valve at a stepped portion in the center of the main shaft.

また、前記主軸の段差部と前記主弁との間にワッシャが配設されていることを特徴とするロータリー式切換弁が好ましい。 Further, a rotary type switching valve is preferable, characterized in that a washer is disposed between the stepped portion of the main shaft and the main valve.

本発明のロータリー式切換弁によれば、主弁の上昇力を受ける部位での摩擦トルクが低減し、消費電力を低減できるとともに駆動部の小型化を図ることができる。 According to the rotary type switching valve of the present invention, friction torque at a portion receiving the upward force of the main valve is reduced, power consumption can be reduced, and the drive unit can be downsized.

本発明の実施形態におけるロータリー式切換弁の主弁の着座状態の要部縦断面図である。FIG. 2 is a longitudinal cross-sectional view of a main part of the main valve of the rotary switching valve in the seated state according to the embodiment of the present invention. 実施形態におけるロータリー式切換弁の均圧孔開状態の要部縦断面図である。FIG. 2 is a longitudinal cross-sectional view of a main part of the rotary switching valve according to the embodiment in a state where the pressure equalizing hole is open. 実施形態におけるロータリー式切換弁の中心軸端部の拡大図である。FIG. 3 is an enlarged view of the central shaft end of the rotary switching valve in the embodiment. 実施形態におけるロータリー式切換弁の初期状態を示す図である。It is a figure showing an initial state of a rotary type switching valve in an embodiment. 実施形態におけるロータリー式切換弁の流路切換中の前段の状態を示す図である。It is a figure showing the state of the front stage of the rotary type switching valve in the embodiment during flow path switching. 実施形態におけるロータリー式切換弁の流路切換中の後段の状態を示す図である。It is a figure which shows the state of the latter stage during flow path switching of the rotary type switching valve in embodiment. 実施形態におけるロータリー式切換弁の流路切換の完了状態を示す図である。It is a figure which shows the completion state of flow path switching of the rotary type switching valve in embodiment. 実施形態におけるロータリー式切換弁の中心軸端部の変形例を示す図である。It is a figure which shows the modification of the center-axis end part of the rotary type switching valve in embodiment. 実施形態の冷凍サイクルシステムを示す図である。It is a figure showing a refrigeration cycle system of an embodiment.

次に、本発明のロータリー式切換弁及び冷凍サイクルシステムの実施形態について図面を参照して説明する。図1は本発明の実施形態におけるロータリー式切換弁の均圧孔閉状態(主弁の着座状態)の要部縦断面図、図2は同ロータリー式切換弁の均圧孔開状態(主弁の浮上状態)の要部縦断面図、図3は同ロータリー式切換弁の中心軸端部の拡大図、図4乃至図7は同ロータリー式切換弁の流路切換時の動作に応じた状態変化を示す図である。図4(C)乃至図7の(C)図において斜線(ハッチング)を付けた部位は主弁が弁座に着座して接触している部分を示している。なお、以下の説明における「上下」の概念は図1及び図2の図面における上下に対応する。 Next, embodiments of the rotary switching valve and refrigeration cycle system of the present invention will be described with reference to the drawings. FIG. 1 is a vertical cross-sectional view of the main part of the rotary type switching valve according to an embodiment of the present invention when the pressure equalizing hole is closed (the main valve is seated), and FIG. Figure 3 is an enlarged view of the central shaft end of the rotary type switching valve, and Figures 4 to 7 are the states of the rotary type switching valve according to its operation when switching the flow path. It is a figure showing a change. In FIGS. 4(C) to 7(C), the hatched area indicates the area where the main valve is seated and in contact with the valve seat. Note that the concept of "up and down" in the following description corresponds to the up and down in the drawings of FIGS. 1 and 2.

この実施形態のロータリー式切換弁100は、主弁1と、副弁2と、弁座部材3と、ケース部材4と、駆動部5と、「主軸」としての中心軸6とを有している。弁座部材3は薄型円柱状の弁座31とこの弁座31の外周に形成されたフランジ部32とで構成されている。また、ケース部材4には略円筒状の弁室4Aが形成されている。弁室4A内には、主弁1、副弁2、駆動部5及び中心軸6が収容されており、中心軸6が、主弁1、副弁2及び駆動部5を貫通して、弁座部材3とケース部材4との間に配設されている。そして、ケース部材4の弁室4Aの開口部に弁座31が嵌合され、フランジ部32をケース部材4の下端に当接させるようにして、弁座部材3がケース部材4に取り付けられている。 The rotary type switching valve 100 of this embodiment has a main valve 1, a sub-valve 2, a valve seat member 3, a case member 4, a drive section 5, and a central shaft 6 as a "main shaft". There is. The valve seat member 3 includes a thin cylindrical valve seat 31 and a flange portion 32 formed on the outer periphery of the valve seat 31. Furthermore, a substantially cylindrical valve chamber 4A is formed in the case member 4. A main valve 1, a sub-valve 2, a driving part 5, and a central shaft 6 are housed in the valve chamber 4A, and the central shaft 6 passes through the main valve 1, the sub-valve 2, and the driving part 5, and It is arranged between the seat member 3 and the case member 4. Then, the valve seat 31 is fitted into the opening of the valve chamber 4A of the case member 4, and the flange portion 32 is brought into contact with the lower end of the case member 4, so that the valve seat member 3 is attached to the case member 4. There is.

主弁1は樹脂で形成された外周が円形の部材であり、弁座31側の袴部11と円筒状のピストン部12と軸受け部13とを一体に形成して構成され、ピストン部12の周囲にはピストンリング12aが配設されている。そして、中心の軸受け部13を中心軸6が貫通することで、主弁1は中心軸6の軸線Xの回りに回動自在に配設されている。また、弁室4Aの上部のピストン部12が収容される空間は円柱状のガイド孔41となっており、主弁1はピストンリング12aをガイド孔41の側面に摺動させて中心軸6の軸線X方向に移動可能となっている。また、主弁1の軸受け部13の上端には、中心軸6を挿通してワッシャ14が配設されている。そして、主弁1が軸線X方向に上昇すると、主弁1はワッシャ14を介して中心軸6の上下方向長さの中央部の段差部6aに当接する。したがって、この主弁1が上昇するときの上昇力は、ワッシャ14を介して中心軸6に伝達される。 The main valve 1 is a resin member with a circular outer periphery, and is constructed by integrally forming a skirt part 11 on the valve seat 31 side, a cylindrical piston part 12, and a bearing part 13. A piston ring 12a is arranged around the circumference. Since the central shaft 6 passes through the central bearing portion 13, the main valve 1 is rotatably disposed around the axis X of the central shaft 6. Further, the space in which the piston part 12 is accommodated in the upper part of the valve chamber 4A is a cylindrical guide hole 41, and the main valve 1 is configured by sliding the piston ring 12a on the side surface of the guide hole 41 so that the central shaft 6 It is movable in the axis X direction. Further, a washer 14 is disposed at the upper end of the bearing portion 13 of the main valve 1 so that the central shaft 6 is inserted therethrough. Then, when the main valve 1 rises in the direction of the axis X, the main valve 1 comes into contact with the stepped portion 6a at the center of the vertical length of the central shaft 6 via the washer 14. Therefore, the rising force when the main valve 1 rises is transmitted to the central shaft 6 via the washer 14.

また、主弁1の袴部11には、軸線Xの片側においてドーム状に穿たれた低圧流路11Aが形成されるとともに、低圧流路11Aの天井の中央より軸線X寄りには、ピストン部12の内側の副弁収容室12Aに連通する均圧孔11aが形成されている(貫通孔11bを介して均圧孔11aが形成されている)。また、袴部11の弁座部材3側の底面には低圧流路11Aの外周を囲うように摺動リブ111が形成されるとともに、摺動リブ111の軸線Xとは反対側の2か所に摺動リブ112,112が形成されている。さらに、袴部11は、低圧流路11Aに対して軸線Xの反対側に後述のDポート31Dが常時開放している高圧空間11Bが形成され、この高圧空間11Bの外側は略90°の範囲において開口されており、この開口部分の軸線X周り方向の両端は、それぞれストップピン当接部113となっている。このストップピン当接部113は弁座31に設けられたストップピン31aに当接する。 In addition, a dome-shaped low-pressure passage 11A is formed in the hakama part 11 of the main valve 1 on one side of the axis X, and a piston portion is formed closer to the axis X than the center of the ceiling of the low-pressure passage 11A. A pressure equalizing hole 11a is formed which communicates with the sub-valve housing chamber 12A inside the valve 12 (the pressure equalizing hole 11a is formed through the through hole 11b). Furthermore, a sliding rib 111 is formed on the bottom surface of the hakama portion 11 on the valve seat member 3 side so as to surround the outer periphery of the low pressure flow path 11A, and two sliding ribs 111 are formed on the opposite side of the axis X of the sliding rib 111. Sliding ribs 112, 112 are formed on the sides. Further, in the hakama portion 11, a high pressure space 11B is formed on the opposite side of the axis X with respect to the low pressure flow path 11A, and a D port 31D, which will be described later, is always open. Both ends of this opening in the direction around the axis X serve as stop pin abutting portions 113, respectively. This stop pin contact portion 113 contacts a stop pin 31a provided on the valve seat 31.

また、ピストン部12の内側は略円柱状の副弁収容室12Aとなっており、この副弁収容室12Aの底部には、軸線X周りの周上で副弁2側に凸となる主弁凸部121が形成されている。この主弁凸部121が円周回りの断面形状が台形状であり、円周回り方向の左右両方の端部はテーパ面となっている。そして、この主弁凸部121には、副弁収容室12Aに開口する前記均圧孔11aが形成されている。この主弁凸部121は一つでもよいが、この実施形態では、この主弁凸部121の他に、外形が主弁凸部121と同様で均圧孔のない主弁凸部が3つ、円周回りに等間隔(等角度)で形成されいる。また、副弁収容室12Aの内周面の2カ所には軸線X側に突出する副弁ストッパ122,122が形成されている。 Moreover, the inside of the piston part 12 is a substantially cylindrical sub-valve housing chamber 12A, and the bottom of this sub-valve housing chamber 12A is provided with a main valve that is convex toward the secondary valve 2 side on the circumference around the axis X. A convex portion 121 is formed. The main valve convex portion 121 has a trapezoidal cross-sectional shape around the circumference, and both left and right ends in the circumferential direction are tapered surfaces. The main valve convex portion 121 is formed with the pressure equalizing hole 11a that opens into the sub-valve housing chamber 12A. Although there may be only one main valve protrusion 121, in this embodiment, in addition to this main valve protrusion 121, there are three main valve protrusions that have the same external shape as the main valve protrusion 121 and have no pressure equalizing hole. , are formed at equal intervals (equal angles) around the circumference. Further, sub-valve stoppers 122, 122 protruding toward the axis X side are formed at two locations on the inner circumferential surface of the sub-valve housing chamber 12A.

副弁2は、主弁1のピストン部12の副弁収容室12A内に収納される略半円盤状のフランジ部21とその中央のボス部22とを有しており、このボス部22の中心には上から見て略長方形の角孔22aが形成されている。また、フランジ部21の主弁1側の面には、主弁凸部121と同一円周上で主弁1側に凸となる2つの副弁凸部211,211が形成されている。この2つの副弁凸部211,211は、円周回りの断面形状が台形状であり、円周回り方向の左右両方向の端部はテーパ面となっている。そして、この2つの副弁凸部211,211は、主弁凸部121を挟みうるように円周回りで離間して形成されている。そして、この2つの副弁凸部211,211の間(中間位置)には、主弁1の均圧孔11aに連通可能な均圧流路21aが形成されている。また、副弁凸部211,211の軸線X方向の端部は、主弁1の主弁凸部121の均圧孔11aを封止する副弁シール部となっている。さらに、フランジ部21の軸線X回りの端部は、主弁当接部212,212となっており、この主弁当接部212,212は主弁1の副弁ストッパ122,122に択一的に当接する。 The sub-valve 2 has a substantially semi-disc-shaped flange portion 21 housed in the sub-valve housing chamber 12A of the piston portion 12 of the main valve 1 and a boss portion 22 at the center of the flange portion 21. A square hole 22a, which is approximately rectangular when viewed from above, is formed in the center. Further, on the surface of the flange portion 21 on the main valve 1 side, two sub-valve protrusions 211, 211 are formed on the same circumference as the main valve protrusion 121 and protrude toward the main valve 1 side. The two sub-valve convex portions 211, 211 have a trapezoidal cross-sectional shape around the circumference, and both left and right end portions in the circumferential direction are tapered surfaces. The two sub-valve protrusions 211, 211 are formed so as to be spaced apart from each other around the circumference so as to sandwich the main valve protrusion 121 therebetween. A pressure equalizing passage 21a that can communicate with the pressure equalizing hole 11a of the main valve 1 is formed between the two sub-valve convex portions 211, 211 (at an intermediate position). Further, the ends of the sub-valve convex portions 211, 211 in the axis X direction serve as sub-valve seal portions that seal the pressure equalizing hole 11a of the main valve convex portion 121 of the main valve 1. Further, the ends of the flange portion 21 around the axis X are main valve contact portions 212, 212, and the main valve contact portions 212, 212 are alternatively connected to the sub valve stoppers 122, 122 of the main valve 1. come into contact with

図4乃至図7の(C)図に示すように、弁座31には、弁室4Aと圧縮機の冷媒の吐出側に連通されるDポート31D、低圧流路11Aと圧縮機の冷媒の吸入側に連通されるSポート31S、室外熱交換器側に連通されるC切換ポート31C及び室内熱交換器側に連通されるE切換ポート31Eが、それぞれ形成されている。なお、これらのポートはそれぞれ90°づつ離間する位置に開口されている。 As shown in FIGS. 4 to 7 (C), the valve seat 31 includes a D port 31D that communicates with the valve chamber 4A and the refrigerant discharge side of the compressor, and a low-pressure flow path 11A that communicates with the refrigerant discharge side of the compressor. An S port 31S communicating with the suction side, a C switching port 31C communicating with the outdoor heat exchanger side, and an E switching port 31E communicating with the indoor heat exchanger side are each formed. Note that these ports are opened at positions spaced apart from each other by 90 degrees.

図1に示すように、駆動部5は、中心軸6に回動可能に配置されたウォームホイール51と、このウォームホイール51に歯合されたウォーム歯車52とを有し、このウォーム歯車52は図示しないモータの駆動軸に固定されている。ウォームホイール51は副弁2側に突出するカム部51aを有しており、ウォームホイール51は、このカム部51aによって中心軸6に回転可能に配置されている。また、このカム部51aは副弁2の前記略長方形の角孔22aに嵌合されている。これにより、副弁2はウォームホイール51に対して軸線X周りの回動が規制された状態で軸線X方向にのみ摺動可能となり、この副弁2はウォームホイール51と共に協働して回動する。また、ウォームホイール51と副弁2との間には、副弁2を主弁1側に付勢するコイルバネ53が配設されている。 As shown in FIG. 1, the drive unit 5 includes a worm wheel 51 rotatably disposed around the central shaft 6, and a worm gear 52 meshed with the worm wheel 51. It is fixed to the drive shaft of a motor (not shown). The worm wheel 51 has a cam portion 51a that protrudes toward the sub-valve 2 side, and the worm wheel 51 is rotatably disposed on the central shaft 6 by the cam portion 51a. Further, this cam portion 51a is fitted into the substantially rectangular square hole 22a of the sub-valve 2. As a result, the sub valve 2 can slide only in the direction of the axis X with respect to the worm wheel 51 while its rotation around the axis X is restricted, and the sub valve 2 can rotate in cooperation with the worm wheel 51. do. Further, a coil spring 53 is disposed between the worm wheel 51 and the sub-valve 2 to bias the sub-valve 2 toward the main valve 1 side.

図4は流路切換の初期状態を示し、図5は流路切換中の前段の状態、図6は流路切換中の後段の状態、図7は流路切換の完了状態をそれぞれ示している。また、図4乃至図7において、(B)図は(A)図に示す矢印Aの方向から見た一部破砕図である。 4 shows the initial state of channel switching, FIG. 5 shows the state of the previous stage during channel switching, FIG. 6 shows the state of the latter stage during channel switching, and FIG. 7 shows the completed state of channel switching. . In addition, in FIGS. 4 to 7, (B) is a partially exploded view seen from the direction of arrow A shown in (A).

まず、図1及び図4の状態では、副弁2の副弁凸部211が主弁凸部121の均圧孔11aを閉じている。そして、駆動部5が作動(図1の上から見て反時計回りに回転)すると、ウォーム歯車52とウォームホイール51の駆動力が、ウォームホイール51のカム部51aを介して副弁2に回転力が加わり、副弁2が軸線X周りの反時計回りに回転する。なお、このときは均圧孔11aが閉じられて主弁1は圧力差により弁座31に押しつけられた状態であるため副弁2が回転しても主弁1は弁座31との摩擦力により回転できず、副弁2だけが回転する。副弁2が回転すると、副弁凸部211が主弁凸部121上をスライドして、主弁凸部121の均圧孔11aが均圧流路21aにより開かれる。これにより、主弁1の上部の流体の圧力が低圧流路11A内(低圧側)へ逃げる。これにより、主弁1の上部側が低圧となるため、高圧空間11Bと弁室4Aの高圧との差圧により、主弁1には上向きの力が発生し、図2及び図5に示すように主弁1が弁座31から浮上し、副弁凸部211と主弁凸部121が互い違いに噛み合う。 First, in the state shown in FIGS. 1 and 4, the sub-valve convex portion 211 of the sub-valve 2 closes the pressure equalizing hole 11a of the main valve convex portion 121. When the drive section 5 is activated (rotates counterclockwise when viewed from above in FIG. 1), the driving force of the worm gear 52 and the worm wheel 51 is transmitted to the sub valve 2 via the cam section 51a of the worm wheel 51. The force is applied, and the sub-valve 2 rotates counterclockwise around the axis X. Note that at this time, the pressure equalization hole 11a is closed and the main valve 1 is pressed against the valve seat 31 due to the pressure difference, so even if the sub valve 2 rotates, the main valve 1 is not affected by the frictional force with the valve seat 31. Therefore, only the sub-valve 2 rotates. When the sub-valve 2 rotates, the sub-valve protrusion 211 slides on the main valve protrusion 121, and the pressure equalization hole 11a of the main valve protrusion 121 is opened by the pressure equalization flow path 21a. As a result, the pressure of the fluid above the main valve 1 escapes into the low pressure flow path 11A (low pressure side). As a result, the upper side of the main valve 1 becomes low pressure, and an upward force is generated in the main valve 1 due to the pressure difference between the high pressure space 11B and the high pressure in the valve chamber 4A, as shown in FIGS. 2 and 5. The main valve 1 floats up from the valve seat 31, and the sub-valve protrusions 211 and the main valve protrusions 121 engage with each other alternately.

そして、さらに反時計回りに回転させることで、副弁2の他方の副弁凸部211が軸線X回りの周方向の左右両端部であるテーパ面(斜面)の一方(反時計回転の為、右端部のテーパ面)が主弁凸部121の周方向の左右両端部であるテーパ面(斜面)の一方(反時計回転の為、左端部のテーパ面)に当接し、主弁1が副弁2と共に回転し、図6のように、主弁1のストップピン当接部113がストップピン31aに当接する。この状態で副弁2をさらに反時計回転で回転させると、主弁1はストップピン31aと当接している為、これ以上反時計回り方向に回転できない為、副弁凸部211が、主弁凸部121と当接している互いのテーパ面の傾斜を使って主弁凸部121に乗り上がり、さらに回転させることにより、図7のように、副弁2の主弁当接部212は主弁1の副弁ストッパ122に周方向に当接し副弁2が回転停止するとともに、他方の副弁凸部211が主弁凸部121の均圧孔11aを閉じる。これにより、ピストンリング12a(及びピストン部12)とガイド孔41とのクリアランスを介して高圧の流体がピストン部12の上部へ流れ込んだ流れが、均圧孔11aから低圧流路11Aに逃げることが出来ない為、主弁1の上側が高圧となり、図7のように、主弁1の上部と低圧流路11A内(低圧側)との圧力差により、主弁1が弁座31に着座する。 Then, by further rotating counterclockwise, the other sub-valve convex portion 211 of the sub-valve 2 becomes one of the tapered surfaces (slopes) which are the left and right ends in the circumferential direction around the axis X (due to the counter-clockwise rotation). The tapered surface at the right end) contacts one of the tapered surfaces (slanted surfaces) at both left and right ends in the circumferential direction of the main valve convex portion 121 (the tapered surface at the left end due to counterclockwise rotation), and the main valve 1 It rotates together with the valve 2, and as shown in FIG. 6, the stop pin contact portion 113 of the main valve 1 comes into contact with the stop pin 31a. When the sub valve 2 is further rotated counterclockwise in this state, the main valve 1 is in contact with the stop pin 31a and cannot be rotated counterclockwise any further, so the sub valve protrusion 211 By riding on the main valve protrusion 121 using the slopes of the tapered surfaces that are in contact with the protrusion 121 and further rotating it, the main valve abutment part 212 of the sub valve 2 becomes the main valve as shown in FIG. The sub-valve 2 comes into contact with one sub-valve stopper 122 in the circumferential direction and stops rotating, and the other sub-valve convex portion 211 closes the pressure equalizing hole 11a of the main valve convex portion 121. This prevents the flow of high-pressure fluid flowing into the upper part of the piston part 12 through the clearance between the piston ring 12a (and the piston part 12) and the guide hole 41 from escaping from the pressure equalizing hole 11a to the low-pressure flow path 11A. As a result, the upper side of the main valve 1 becomes high pressure, and as shown in Fig. 7, the main valve 1 seats on the valve seat 31 due to the pressure difference between the upper part of the main valve 1 and the inside of the low pressure flow path 11A (low pressure side). .

図3は図2に「P」で示す一点鎖線の丸の部分(中心軸6の端部)の拡大図である。ケース部4の天部の中央には中心軸6の外径に整合する内径を有する円筒孔42が形成されている。また、中心軸6の端部には、円環状のリム部をかしめることによりボール61が固着されている。ケース部4の円筒孔42の底面42aは研磨等により平面状に形成されており、前記主弁1及び中心軸6が上昇したとき、ボール61が底面42aに当接する。すなわち、ボール61が円筒孔42の底面42aに点接触することで、主弁1の上昇力を中心軸6を介してケース部材4で受けるようになっている。したがって、この中心軸6のボール61とケース部材4(底面42a)の間の軸線X回りの摩擦力が殆どなく、主弁1を回転させるための回転トルクが小さくてよい。したがって、駆動部5を小型化することができる。 FIG. 3 is an enlarged view of the portion circled by the dashed-dotted line (the end of the central shaft 6) indicated by "P" in FIG. A cylindrical hole 42 having an inner diameter matching the outer diameter of the central shaft 6 is formed in the center of the top of the case portion 4 . Further, a ball 61 is fixed to the end of the central shaft 6 by caulking an annular rim portion. The bottom surface 42a of the cylindrical hole 42 of the case portion 4 is formed into a planar shape by polishing or the like, and when the main valve 1 and the central shaft 6 rise, the ball 61 comes into contact with the bottom surface 42a. That is, the ball 61 makes point contact with the bottom surface 42a of the cylindrical hole 42, so that the upward force of the main valve 1 is received by the case member 4 via the central shaft 6. Therefore, there is almost no frictional force around the axis X between the ball 61 of the central shaft 6 and the case member 4 (bottom surface 42a), and the rotational torque for rotating the main valve 1 may be small. Therefore, the drive unit 5 can be downsized.

図8は中心軸6の端部の変形例を示す図である。図8(A)の変形例1は、ケース部4の円筒孔42の底面42aに研磨等を施さずに円筒孔42の切削加工によりできたバリを削除したものであり、底面42aにバリの削除により凹部42bが形成されている。そして、この変形例1では中心軸6のボール61を円錐状の凹部42bの開口円周上部に線状に当接させたものである。従って、前記点接触時よりも多少摩擦力が大きくなる。これに対し、図8(B)の変形例2は、円筒孔42の奥にさらに円筒孔42′を形成し、この円筒孔42′内の凹部42b′と中心軸6のボール61との間に第2のボール61′を配設したものである。この変形例2ではボール61と第2のボール61′とが軸線X上で点接触する。点接触となる為、変形例1の円錐状凹部42bを形成したときの線接触よりも摩擦力が少なく、回転トルクも小さくなる。 FIG. 8 is a diagram showing a modification of the end portion of the central shaft 6. As shown in FIG. Modification 1 in FIG. 8(A) is one in which the burr created by cutting the cylindrical hole 42 is removed without polishing the bottom surface 42a of the cylindrical hole 42 of the case part 4, and the burr is removed from the bottom surface 42a. A recess 42b is formed by the deletion. In the first modification, the ball 61 of the central shaft 6 is brought into linear contact with the upper circumference of the opening of the conical recess 42b. Therefore, the frictional force becomes somewhat larger than that at the point contact. On the other hand, in the modification 2 of FIG. 8(B), a cylindrical hole 42' is further formed deep inside the cylindrical hole 42, and a gap between the recess 42b' in the cylindrical hole 42' and the ball 61 of the central shaft 6 is shown. A second ball 61' is disposed at the second ball 61'. In this second modification, the ball 61 and the second ball 61' make point contact on the axis X. Since it is a point contact, the frictional force is smaller than the line contact when the conical recess 42b of Modification 1 is formed, and the rotational torque is also smaller.

また、図3の点接触の実施形態のものでは、ケース4は通常は硬度の高い(SUS440C等)ボール61よりも硬度が低い材質で作られている為、使用時間の増加につれて、ケース4側が摩耗、変形し、ボール61とケース4の接触面積が増加し、摩擦力が大きくなっていくが、この変形例2の構成では、通常、硬度の高いボール同士での点接触であり、図3の実施形態のものよりも摩耗しにくく、耐久性に優れ、回転トルク小を維持できる。なお、主弁1及び中心軸6が軸線X方向に上昇したとき、中心軸6の上下方向長さの中央部の段差部6aにて、主弁1を受ける様に構成されているため、中心軸6の下方部(の段差部等)で主弁1を受ける構成の場合よりも中心軸6の左右へのふらつきがなく、安定した回転作動となる。また、中心軸6の段差部6aと主弁1との間にワッシャ14が配設されていることにより、主弁1及び中心軸6が軸X方向に上昇したときの上昇力を、中心軸6の段差部6aよりも面積の広いワッシャ面で受け、中心軸6に伝達する事が出来る。従って、主弁1の上昇力を中心軸6に伝える当接面の面圧が、ワッシャなしの段差部6aとの面圧よりも下がり、主弁1の表面当接部の食い込みが防止でき、作動安定性向上となる。また、安価なワッシャ14を間に配設するだけで食い込み防止となる為、ワッシャなしで中心軸6の段差部6aの面積を広くする為の軸の大径化や、軸にフランジ部加工を施すなどの切削加工等によるコストアップを回避する事が出来る。 In addition, in the point contact embodiment shown in FIG. 3, the case 4 is made of a material that is lower in hardness than the ball 61, which usually has a high hardness (such as SUS440C), so as the usage time increases, the case 4 side becomes As the ball 61 wears and deforms, the contact area between the ball 61 and the case 4 increases, and the frictional force increases. However, in the configuration of this modification example 2, the ball 61 is usually in point contact with each other, which is highly hard. It is less likely to wear than the embodiment described above, has excellent durability, and can maintain a small rotational torque. Note that when the main valve 1 and the central shaft 6 rise in the axis X direction, the main valve 1 is received at the stepped portion 6a at the center of the vertical length of the central shaft 6. Compared to a configuration in which the main valve 1 is received at the lower part (steps, etc.) of the shaft 6, the center shaft 6 does not wobble to the left or right, resulting in stable rotational operation. In addition, by disposing the washer 14 between the stepped portion 6a of the central shaft 6 and the main valve 1, the lifting force when the main valve 1 and the central shaft 6 rise in the axis X direction is reduced. It can be received by the washer surface, which has a wider area than the stepped portion 6a of 6, and can be transmitted to the central shaft 6. Therefore, the contact pressure of the contact surface that transmits the lifting force of the main valve 1 to the central shaft 6 is lower than the contact pressure with the step portion 6a without a washer, and it is possible to prevent the surface contact portion of the main valve 1 from digging into the surface. Improves operational stability. In addition, since biting can be prevented simply by placing an inexpensive washer 14 in between, it is possible to increase the diameter of the shaft to increase the area of the stepped portion 6a of the central shaft 6 without using a washer, or to machine a flange on the shaft. It is possible to avoid an increase in cost due to cutting work such as applying.

以上のように、主弁1の上昇時の上昇力を、中心軸6(主軸)で受けるとともに中心軸6(主軸)のケース部材4側の端部で受けるよう構成されているので、ボール61がある場合は勿論であるが、ボール61をなくした場合の中心軸6と円筒孔42の底面42aとの接触面積は、少なくとも中心軸6の軸線Xと直交する面の断面積以下の大きさしかなく、かつその接触面積は軸線Xに極めて近い範囲にあるので、摩擦トルクを極めて小さく低減できる。 As described above, since the structure is such that the rising force when the main valve 1 rises is received by the central shaft 6 (main shaft) and also by the end of the central shaft 6 (main shaft) on the case member 4 side, the ball 61 Of course, if the ball 61 is removed, the contact area between the central shaft 6 and the bottom surface 42a of the cylindrical hole 42 is at least as large as the cross-sectional area of the surface perpendicular to the axis X of the central shaft 6. However, since the contact area is extremely close to the axis X, the friction torque can be reduced to an extremely small amount.

なお、図1のように、均圧孔11aは貫通孔11bの上部で導通しており、主弁凸部121の均圧孔11aは低圧流路11Aから軸線X方向(上方向)に開いた貫通孔11bに対して軸線Xに近い位置(軸線X側にシフトした位置)に形成されている。すなわち、主弁凸部121と副弁凸部211も軸線Xに近い位置(軸線X側にシフトした位置)に形成されている。したがって、貫通孔11bの位置(軸線Xからの位置)に均圧孔を開けた場合よりも、副弁凸部211が主弁凸部121に乗り上げる際の回転トルクが小さくなり、駆動部5の動力を小さくできる。また、図1等の実施形態では、貫通孔11bは軸線方向(上方向)に開いた孔としたが、軸線方向に開く穴に限定するものではなく、軸線方向に対し、傾いた斜め孔としても良い。また、本実施形態に於いて、副弁2における2つの副弁凸部211の間に、主弁凸部121の均圧孔11aに連通可能な均圧流路21aが形成されていることによる効果は以下の通りである。均圧流路21aが形成されていない場合でも、均圧孔11aが開いた時に、主弁と副弁の狭い隙間を流れ、低圧流路11Aと副弁収容室12Aとを均圧することは可能ではあるが、均圧流路21aが形成されていることで、より確実に、早く、低圧流路11Aと副弁収容室12Aとを均圧をすることができる。 In addition, as shown in FIG. 1, the pressure equalization hole 11a is electrically connected to the upper part of the through hole 11b, and the pressure equalization hole 11a of the main valve convex part 121 opens in the axis X direction (upward) from the low pressure flow path 11A. It is formed at a position close to the axis X (a position shifted toward the axis X side) with respect to the through hole 11b. That is, the main valve protrusion 121 and the sub-valve protrusion 211 are also formed at positions close to the axis X (positions shifted toward the axis X side). Therefore, the rotational torque when the auxiliary valve protrusion 211 rides on the main valve protrusion 121 is smaller than when the pressure equalization hole is opened at the position of the through hole 11b (position from the axis X), and the rotational torque of the drive unit 5 is reduced. Power can be reduced. In addition, in the embodiment shown in FIG. 1, the through hole 11b is a hole that opens in the axial direction (upward direction), but it is not limited to a hole that opens in the axial direction, and may be an oblique hole that is inclined with respect to the axial direction. Also good. Further, in this embodiment, the effect of forming a pressure equalizing passage 21a that can communicate with the pressure equalizing hole 11a of the main valve protrusion 121 between the two sub-valve protrusions 211 in the sub-valve 2 is achieved. is as follows. Even if the pressure equalization channel 21a is not formed, when the pressure equalization hole 11a is opened, it is possible to flow through the narrow gap between the main valve and the sub valve and equalize the pressure in the low pressure flow channel 11A and the sub valve storage chamber 12A. However, by forming the pressure equalizing passage 21a, the pressures in the low pressure passage 11A and the sub-valve housing chamber 12A can be equalized more reliably and quickly.

図9は実施形態の冷凍サイクルシステムを示す図であり、空気調和機の冷凍サイクルシステムの例である。空気調和機は、圧縮機50、室外熱交換器60,膨張弁70、室内熱交換器80、実施形態のロータリー式切換弁100を有しており、これらの各要素は、それぞれ導管によって図示のように接続され、ヒートポンプ式の冷凍サイクルシステムを構成している。 FIG. 9 is a diagram showing a refrigeration cycle system according to an embodiment, and is an example of a refrigeration cycle system for an air conditioner. The air conditioner includes a compressor 50, an outdoor heat exchanger 60, an expansion valve 70, an indoor heat exchanger 80, and a rotary switching valve 100 according to the embodiment, and each of these elements is connected to the illustrated part by a conduit. They are connected to form a heat pump type refrigeration cycle system.

冷凍サイクルシステムの流路は実施形態のロータリー式切換弁100により冷房運転および暖房運転の2通りの流路に切換えられ、冷房運転時には主弁1を上記説明のように反時計回りに回転させることで、図9(A)の状態となり、暖房運転時には主弁1を上記説明とは逆の時計回りに回転させることで、図9(B)の状態となる。なお、この図9に示すロータリー式切換弁100は弁座部3の裏側から見た状態として、要部の位置関係のみを示し、主弁1の一部の破線表示と実線は弁座と当接した部分を図示してある。また、前記Sポート31S、Dポート31D、E切換ポート31E、C切換ポート31Cは符号を省略し、それぞれ「S」、「D」、「E」、「C」の記号で示してある。 The flow path of the refrigeration cycle system is switched between two flow paths, cooling operation and heating operation, by the rotary type switching valve 100 of the embodiment, and during cooling operation, the main valve 1 is rotated counterclockwise as described above. The state shown in FIG. 9(A) is obtained, and by rotating the main valve 1 clockwise in the opposite direction to that described above during heating operation, the state shown in FIG. 9(B) is obtained. Note that the rotary type switching valve 100 shown in FIG. 9 shows only the positional relationship of the main parts as seen from the back side of the valve seat part 3, and the broken line and solid line for a part of the main valve 1 indicate the valve seat and the corresponding part. The touching parts are shown. Further, the S port 31S, D port 31D, E switching port 31E, and C switching port 31C are indicated by the symbols "S", "D", "E", and "C", respectively, without the reference numerals.

図9(A)の冷房運転時には、ロータリー式切換弁100において主弁の低圧流路11AによりSポート「S」がE切換ポート「E」に接続され、高圧空間11BによりDポート「D」がC切換ポート「C」に接続される。そして、図に矢印で示すように、圧縮機50で圧縮された流体としての冷媒がロータリー式切換弁100のDポート「D」に流入してC切換ポート「C」から室外熱交換器60に流入され、室外熱交換器60から流出する冷媒が、膨張弁70に流入される。そして、この膨張弁70で冷媒が膨張され、室内熱交換器80に供給される。この室内熱交換器80から流出する冷媒は、ロータリー式切換弁100でE切換ポート「E」からSポート「S」に流れ、Sポート「S」から圧縮機50へ循環される。 During cooling operation in FIG. 9(A), in the rotary type switching valve 100, the S port "S" is connected to the E switching port "E" by the low pressure passage 11A of the main valve, and the D port "D" is connected by the high pressure space 11B. Connected to C switching port "C". Then, as shown by the arrow in the figure, the refrigerant as a fluid compressed by the compressor 50 flows into the D port "D" of the rotary type switching valve 100 and flows into the outdoor heat exchanger 60 from the C switching port "C". The refrigerant flowing in and flowing out from the outdoor heat exchanger 60 flows into the expansion valve 70 . Then, the refrigerant is expanded by the expansion valve 70 and supplied to the indoor heat exchanger 80. The refrigerant flowing out from the indoor heat exchanger 80 flows from the E switching port "E" to the S port "S" at the rotary type switching valve 100, and is circulated from the S port "S" to the compressor 50.

図9(B)の暖房運転時には、ロータリー式切換弁100において主弁の低圧流路11AによりSポート「S」がC切換ポート「C」に接続され、高圧空間11BによりDポート「D」がE切換ポート「E」に接続される。そして、図に矢印で示すように、圧縮機50で圧縮された冷媒がロータリー式切換弁100のDポート「D」に流入してE切換ポート「E」から室内熱交換器80に流入され、室内熱交換器80から流出する冷媒が、膨張弁70に流入される。そして、この膨張弁70で冷媒が膨張され、室外熱交換器60に供給される。この室外熱交換器60から流出する冷媒は、ロータリー式切換弁100でC切換ポート「C」からSポート「S」に流れ、Sポート「S」から圧縮機50へ循環される。 During heating operation in FIG. 9(B), in the rotary type switching valve 100, the S port "S" is connected to the C switching port "C" by the low pressure passage 11A of the main valve, and the D port "D" is connected by the high pressure space 11B. Connected to E switching port "E". Then, as shown by the arrow in the figure, the refrigerant compressed by the compressor 50 flows into the D port "D" of the rotary type switching valve 100, and then flows into the indoor heat exchanger 80 from the E switching port "E", Refrigerant flowing out of indoor heat exchanger 80 flows into expansion valve 70 . Then, the refrigerant is expanded by this expansion valve 70 and supplied to the outdoor heat exchanger 60. The refrigerant flowing out from the outdoor heat exchanger 60 flows from the C switching port "C" to the S port "S" at the rotary type switching valve 100, and is circulated from the S port "S" to the compressor 50.

以上の実施形態では、中心軸(主軸)の端部にボールを設けることで点接触を実現しているが、中心軸の端部を単に球面加工したものでもよい。また、実施形態では、主弁凸部と副弁凸部との係合により主弁を回転させるようにした例を説明したが、主弁を回転させる構造は他の構成でもよい。 In the embodiments described above, point contact is achieved by providing a ball at the end of the central shaft (main shaft), but the end of the central shaft may be simply machined into a spherical surface. Further, in the embodiment, an example has been described in which the main valve is rotated by engagement between the main valve convex portion and the auxiliary valve convex portion, but the structure for rotating the main valve may be other configurations.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the design may be changed without departing from the gist of the present invention. Even if there is, it is included in the present invention.

1 主弁
11A 低圧流路
11B 高圧空間
11a 均圧孔
11b 貫通孔
113 ストップピン当接部
12 ピストン部
121 主弁凸部
2 副弁
21 フランジ部
211 副弁凸部
3 弁座部材
31 弁座
31D Dポート
31S Sポート
31E E切換ポート
31C C切換ポート
31a ストップピン
4 ケース部材
4A 弁室
42 円筒孔
5 駆動部
51 ウォームホイール
51a カム部
52 ウォーム歯車
53 コイルバネ
6 中心軸
61 ボール
X 軸線
50 圧縮機
60 室外熱交換器
70 膨張弁
80 室内熱交換器
100 ロータリー式切換弁
1 Main valve 11A Low pressure passage 11B High pressure space 11a Pressure equalization hole 11b Through hole 113 Stop pin contact part 12 Piston part 121 Main valve protrusion 2 Sub valve 21 Flange part 211 Sub valve protrusion 3 Valve seat member 31 Valve seat 31D D port 31S S port 31E E switching port 31C C switching port 31a Stop pin 4 Case member 4A Valve chamber 42 Cylindrical hole 5 Drive section 51 Worm wheel 51a Cam section 52 Worm gear 53 Coil spring 6 Central shaft 61 Ball X Axis 50 Compressor 60 Outdoor heat exchanger 70 Expansion valve 80 Indoor heat exchanger 100 Rotary switching valve

Claims (5)

弁室を有するケース部材と、前記弁室に対向して設けられた弁座と、前記弁室内で前記弁座上に軸線を中心として回転可能に配設された主弁と、前記ケース部材と前記弁座との間に配設されるとともに、前記主弁を前記軸線上に保持して前記主弁と共に回転可能に配設された前記主弁と別体の主軸とを備え、前記主弁を前記弁座から上昇させて回転させることで、前記弁座のポートに連通する流路を切り換えるロータリー式切換弁において、
前記主弁の上昇時の上昇力を、前記主軸で受けるとともに該主軸の前記ケース部材側の端部を介して前記ケース部材で受けるよう構成されていることを特徴とするロータリー式切換弁。
a case member having a valve chamber, a valve seat provided opposite to the valve chamber, a main valve rotatably disposed on the valve seat in the valve chamber, and the case member; a main shaft separate from the main valve, which is disposed between the valve seat and is rotatable together with the main valve while holding the main valve on the axis; A rotary type switching valve that switches a flow path communicating with a port of the valve seat by lifting the valve from the valve seat and rotating the valve,
A rotary type switching valve characterized in that the lifting force when the main valve rises is received by the main shaft and received by the case member via an end of the main shaft on the case member side.
前記主軸の前記ケース部材側の端部が、点接触により前記上昇力を前記ケース部材側に伝達するよう構成されていることを特徴とする請求項1に記載のロータリー式切換弁。 2. The rotary switching valve according to claim 1, wherein an end of the main shaft on the case member side is configured to transmit the lifting force to the case member side through point contact. 前記主軸の前記ケース部材側の端部において、球面により前記点接触を構成していることを特徴とする請求項2に記載のロータリー式切換弁。 3. The rotary type switching valve according to claim 2, wherein the point contact is formed by a spherical surface at an end of the main shaft on the side of the case member. 前記主軸の中央部の段差部にて前記主弁を受けるよう構成されていることを特徴とする請求項1乃至3に記載のロータリー式切換弁。 4. The rotary type switching valve according to claim 1, wherein the rotary type switching valve is configured to receive the main valve at a stepped portion in the center of the main shaft. 前記主軸の段差部と前記主弁との間にワッシャが配設されていることを特徴とする請求項4に記載のロータリー式切換弁。 5. The rotary switching valve according to claim 4, wherein a washer is disposed between the stepped portion of the main shaft and the main valve.
JP2020216483A 2020-12-25 2020-12-25 Rotary type switching valve Active JP7425719B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020216483A JP7425719B2 (en) 2020-12-25 2020-12-25 Rotary type switching valve
CN202111531541.3A CN114688304B (en) 2020-12-25 2021-12-14 Rotary switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020216483A JP7425719B2 (en) 2020-12-25 2020-12-25 Rotary type switching valve

Publications (2)

Publication Number Publication Date
JP2022102022A JP2022102022A (en) 2022-07-07
JP7425719B2 true JP7425719B2 (en) 2024-01-31

Family

ID=82136098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020216483A Active JP7425719B2 (en) 2020-12-25 2020-12-25 Rotary type switching valve

Country Status (2)

Country Link
JP (1) JP7425719B2 (en)
CN (1) CN114688304B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173812A (en) 1999-12-20 2001-06-29 Saginomiya Seisakusho Inc Flow passage switching valve
JP2002089739A (en) 2000-09-11 2002-03-27 Saginomiya Seisakusho Inc Passage selector valve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295951A (en) * 2000-02-10 2001-10-26 Fuji Koki Corp Four-way selector valve
JP2002022041A (en) * 2000-07-11 2002-01-23 Saginomiya Seisakusho Inc Four way valve
JP2005076840A (en) * 2003-09-03 2005-03-24 Saginomiya Seisakusho Inc Passage selector valve, and refrigerating cycle
JP2009270697A (en) * 2008-05-12 2009-11-19 Saginomiya Seisakusho Inc Flow path selector valve
JP5087677B2 (en) * 2008-06-02 2012-12-05 株式会社鷺宮製作所 Flow path switching valve
JP5907506B2 (en) * 2013-03-22 2016-04-26 株式会社鷺宮製作所 Rotary valve device
JP6475778B2 (en) * 2017-05-12 2019-02-27 株式会社不二工機 Flow path switching valve
JP2020180630A (en) * 2019-04-24 2020-11-05 株式会社不二工機 Passage switch valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173812A (en) 1999-12-20 2001-06-29 Saginomiya Seisakusho Inc Flow passage switching valve
JP2002089739A (en) 2000-09-11 2002-03-27 Saginomiya Seisakusho Inc Passage selector valve

Also Published As

Publication number Publication date
CN114688304B (en) 2024-03-08
JP2022102022A (en) 2022-07-07
CN114688304A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
KR101974854B1 (en) A compressor including a capacity modulation system
US8763640B2 (en) Rotary valve
JP5087677B2 (en) Flow path switching valve
US20070110604A1 (en) Scroll machine
JP6810929B2 (en) Flow switching valve
JP4256692B2 (en) Electric switching valve
JP7425719B2 (en) Rotary type switching valve
JP2009270697A (en) Flow path selector valve
CN113202953B (en) Rotary switching valve
JP2022103053A (en) Rotary switching valve
JP2024001696A (en) valve device
WO2022070838A1 (en) Valve device
JP5404456B2 (en) Multi-way selector valve
JP7187427B2 (en) Rotary switching valve and refrigeration cycle system
EP2781752B1 (en) Scroll compressor having a scroll support and/or movement limiter
JP2022166528A (en) valve device
JP7187428B2 (en) Rotary switching valve and refrigeration cycle system
JP7405781B2 (en) Flow control valve and refrigeration cycle system
CN114688305B (en) Rotary switching valve
JP6191533B2 (en) Compressor
JP2023178756A (en) Rotary selector valve
US11655813B2 (en) Compressor modulation system with multi-way valve
WO2023190048A1 (en) Screw compressor and freezer
JP2024002028A (en) Rotary switching valve
JP2022025520A (en) Selector valve and refrigeration cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240119

R150 Certificate of patent or registration of utility model

Ref document number: 7425719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150