JP6453040B2 - Flow path switching valve - Google Patents

Flow path switching valve Download PDF

Info

Publication number
JP6453040B2
JP6453040B2 JP2014223201A JP2014223201A JP6453040B2 JP 6453040 B2 JP6453040 B2 JP 6453040B2 JP 2014223201 A JP2014223201 A JP 2014223201A JP 2014223201 A JP2014223201 A JP 2014223201A JP 6453040 B2 JP6453040 B2 JP 6453040B2
Authority
JP
Japan
Prior art keywords
port
main valve
flow path
valve body
path switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014223201A
Other languages
Japanese (ja)
Other versions
JP2016089902A (en
Inventor
木船 仁志
仁志 木船
浩次 樋口
浩次 樋口
紀幸 森田
紀幸 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2014223201A priority Critical patent/JP6453040B2/en
Publication of JP2016089902A publication Critical patent/JP2016089902A/en
Application granted granted Critical
Publication of JP6453040B2 publication Critical patent/JP6453040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、弁体を回転させることにより流路の切り換えを行うロータリー式の流路切換弁に係り、特に、ヒートポンプ式冷暖房システム等において流路切換を行うのに好適な流路切換弁に関する。   The present invention relates to a rotary flow path switching valve that switches a flow path by rotating a valve body, and more particularly to a flow path switching valve that is suitable for performing flow path switching in a heat pump air conditioning system or the like.

一般に、ルームエアコン、カーエアコン等のヒートポンプ式冷暖房システムは、圧縮機、室外熱交換器、室内熱交換器、及び膨張弁等に加えて、流路(流れ方向)切換手段としての流路切換弁を備えている。   Generally, a heat pump type air conditioning system such as a room air conditioner or a car air conditioner has a flow path switching valve as a flow path (flow direction) switching means in addition to a compressor, an outdoor heat exchanger, an indoor heat exchanger, an expansion valve, and the like. It has.

この流路切換弁を備えたヒートポンプ式冷暖房システムの一例を図24を参照しながら簡単に説明する。図示例のヒートポンプ式冷暖房システム100は、運転モード(冷房運転と暖房運転)の切り換えを流路切換弁(四方切換弁)140で行うようになっており、基本的には、圧縮機110、室外熱交換器120、室内熱交換器130、及び膨張弁160を備え、前記の圧縮機110、室外熱交換器120、室内熱交換器130、及び膨張弁160の四者の間に4つのポート、すなわち、吐出側高圧ポートD、室外側入出ポートC、室内側入出ポートE、及び吸入側低圧ポートSを有する流路切換弁140が配在されている。   An example of a heat pump air conditioning system equipped with this flow path switching valve will be briefly described with reference to FIG. In the illustrated heat pump type air conditioning system 100, the operation mode (cooling operation and heating operation) is switched by the flow path switching valve (four-way switching valve) 140. Basically, the compressor 110, the outdoor A heat exchanger 120, an indoor heat exchanger 130, and an expansion valve 160; four ports between the compressor 110, the outdoor heat exchanger 120, the indoor heat exchanger 130, and the expansion valve 160; That is, a flow path switching valve 140 having a discharge side high pressure port D, an outdoor side input / output port C, an indoor side input / output port E, and a suction side low pressure port S is arranged.

前記各機器間は導管(パイプ)等で形成される流路で接続されており、冷房運転モードが選択されたときには、図24において実線矢印で示される如くに、流路切換弁140の吐出側高圧ポートDが室外側入出ポートCに、また、室内側入出ポートEが吸入側低圧ポートSにそれぞれ連通せしめられる。これにより、冷媒が圧縮機110に吸入されるとともに、圧縮機110から高温高圧の冷媒が流路切換弁140を介して室外熱交換器120に導かれ、ここで室外空気と熱交換して凝縮し、高圧の二相冷媒となって膨張弁160に導入される。この膨張弁160により高圧の冷媒が減圧され、減圧された低圧の冷媒は、室内熱交換機130に導入され、ここで室内空気と熱交換(冷房)して蒸発し、室内熱交換機130からは低温低圧の冷媒が流路切換弁140を介して圧縮機110の吸入側に戻される。   The devices are connected by a flow path formed by a conduit (pipe) or the like, and when the cooling operation mode is selected, as shown by a solid arrow in FIG. 24, the discharge side of the flow path switching valve 140 The high pressure port D is connected to the outdoor side input / output port C, and the indoor side input / output port E is connected to the suction side low pressure port S. As a result, the refrigerant is sucked into the compressor 110, and the high-temperature and high-pressure refrigerant is led from the compressor 110 to the outdoor heat exchanger 120 through the flow path switching valve 140, where it is condensed by exchanging heat with outdoor air. The high-pressure two-phase refrigerant is introduced into the expansion valve 160. The high-pressure refrigerant is decompressed by the expansion valve 160, and the decompressed low-pressure refrigerant is introduced into the indoor heat exchanger 130, where it heats (cools) the indoor air and evaporates, and the indoor heat exchanger 130 has a low temperature. The low-pressure refrigerant is returned to the suction side of the compressor 110 via the flow path switching valve 140.

それに対し、暖房運転モードが選択されたときには、図24において破線矢印で示される如くに、流路切換弁140の吐出側高圧ポートDが室内側入出ポートEに、また、室外側入出ポートCが吸入側低圧ポートSにそれぞれ連通せしめられ、圧縮機110から高温高圧の冷媒が室内熱交換機130に導かれ、ここで室内空気と熱交換(暖房)して凝縮し、高圧の二相冷媒となって膨張弁160に導入される。この膨張弁160により高圧の冷媒が減圧され、減圧された低圧の冷媒は、室外熱交換器120に導入され、ここで室外空気と熱交換して蒸発し、室外熱交換器120からは低温低圧の冷媒が流路切換弁140を介して圧縮機110の吸入側に戻される。   On the other hand, when the heating operation mode is selected, the discharge side high-pressure port D of the flow path switching valve 140 is set to the indoor side input / output port E and the outdoor side input / output port C is set as shown by the broken line arrow in FIG. The high-pressure and high-pressure refrigerant is communicated to the suction-side low-pressure port S, respectively, and the high-temperature and high-pressure refrigerant is led from the compressor 110 to the indoor heat exchanger 130. Are introduced into the expansion valve 160. The expansion valve 160 decompresses the high-pressure refrigerant, and the decompressed low-pressure refrigerant is introduced into the outdoor heat exchanger 120 where it evaporates by exchanging heat with the outdoor air, and the outdoor heat exchanger 120 generates a low-temperature and low-pressure refrigerant. The refrigerant is returned to the suction side of the compressor 110 through the flow path switching valve 140.

前記した如くのヒートポンプ式冷暖房システムに組み込まれる四方切換弁として、従来、スライド式主弁体を内蔵する弁本体(弁ハウジング)と、電磁式のパイロット弁とを備えたものが知られている(例えば特許文献1参照)。この特許文献1に所載の流路切換弁は、弁ハウジングに、吐出側高圧ポートD、室外側入出ポートC、吸入側低圧ポートS、及び室内側入出ポートEが形成されるとともに、前記したポートD→C及びE→S、又は、ポートD→E及びC→Sの連通状態を作り出す(流路切換を行う)べくスライド式主弁体が左右方向に摺動可能に配在されている。弁ハウジングにおけるスライド式主弁体の左右には、パイロット弁を介して圧縮機吐出側の高圧冷媒及び圧縮機吸入側の低圧冷媒が導入される、それぞれスライド式主弁体に結合された左右一対のピストン型パッキンにより画成される高圧室及び低圧室が設けられ、この高圧室と低圧室の圧力差を利用して前記スライド式主弁体を左右方向に摺動させることで前記流路切換を行うようにされている。   As a four-way switching valve incorporated in a heat pump type air conditioning system as described above, there has been conventionally known a valve body (valve housing) incorporating a slide type main valve body and an electromagnetic pilot valve ( For example, see Patent Document 1). In the flow path switching valve described in Patent Document 1, a discharge-side high-pressure port D, an outdoor-side input / output port C, a suction-side low-pressure port S, and an indoor-side input / output port E are formed in the valve housing. A sliding main valve body is slidably arranged in the left-right direction so as to create a communication state of ports D → C and E → S or ports D → E and C → S (switching the flow path). . The left and right sides of the sliding main valve body in the valve housing are introduced with a high pressure refrigerant on the compressor discharge side and a low pressure refrigerant on the suction side of the compressor via a pilot valve, respectively. The high-pressure chamber and the low-pressure chamber defined by the piston type packing are provided, and the flow path is switched by sliding the sliding main valve body in the left-right direction using the pressure difference between the high-pressure chamber and the low-pressure chamber. Have been to do.

一方、特許文献2には、パイロット弁を備えたロータリー式の四方切換弁が提案されている。この四方切換弁は、円筒状胴体(主弁ハウジング)内を区劃片(回転軸部に片持ち支持された板状主弁体)により2つに区画するとともに、主弁ハウジングの外周部に前記吐出側高圧ポートDと吸入側低圧ポートSとを、また、室外側入出ポートCと室内側入出ポートEとを、それぞれ180°前後離して対向配置させ、板状主弁体を回転させることにより、流路の切り換え、すなわち、吐出側高圧ポートDが室外側入出ポートCに、また、室内側入出ポートEが吸入側低圧ポートSにそれぞれ連通する第1連通状態と、吐出側高圧ポートDが室内側入出ポートEに、また、室外側入出ポートCが吸入側低圧ポートSにそれぞれ連通する第2連通状態とを作り出すようにされ、また、主弁体の回転(流路切換)は、主弁ハウジングの上側に設けられた、システム内の高圧冷媒と低圧冷媒の差圧を利用する流体圧式のアクチュエータ(板状主弁体の回転軸部の延長軸部に片持ち支持された板状体で仕切られた二つ作動室)への高圧冷媒導入・排出をパイロット弁で選択的に行うことによりなされる。   On the other hand, Patent Document 2 proposes a rotary type four-way switching valve provided with a pilot valve. This four-way switching valve divides the inside of the cylindrical body (main valve housing) into two parts by a partition piece (a plate-like main valve body that is cantilevered and supported by the rotating shaft), and at the outer periphery of the main valve housing. The discharge-side high-pressure port D and the suction-side low-pressure port S and the outdoor-side inlet / outlet port C and the indoor-side inlet / outlet port E are arranged opposite each other by about 180 ° to rotate the plate-shaped main valve body. By switching the flow path, that is, the first communication state in which the discharge-side high-pressure port D communicates with the outdoor-side input / output port C and the indoor-side input / output port E communicates with the suction-side low-pressure port S, and the discharge-side high-pressure port D Is created in the second communication state in which the outdoor input / output port C and the outdoor input / output port C communicate with the suction side low pressure port S, respectively. Installed on the upper side of the main valve housing Fluid pressure type actuator that utilizes the pressure difference between the high-pressure refrigerant and low-pressure refrigerant in the system (two separated by a plate-like body that is cantilevered on the extension shaft part of the rotary shaft part of the plate-like main valve body) This is done by selectively introducing and discharging high-pressure refrigerant into the working chamber using a pilot valve.

特開2009−41636号公報JP 2009-41636 A 特開2001−82834号公報JP 2001-82834 A

前記した如くの従来の流路切換弁においては、次のような解決すべき課題がある。   The conventional flow path switching valve as described above has the following problems to be solved.

すなわち、特許文献1に所載のスライド式の流路切換弁では、内容積が比較的小さな弁ハウジング内において高圧流体(冷媒)が内壁面等に衝突するとともに、その流れ方向が大きく変わるので、圧力損失が大きくなる嫌いがあり、また、左右一対のピストン型パッキンを伴うスライド式主弁体を摺動させて流路切換を行う構成であるので、スティックスリップ等により摺動部分が摩耗しやすく、それに伴い、摺動部分のシール性が悪くなって、弁洩れしやすいという問題もある。   That is, in the slide type flow path switching valve described in Patent Document 1, a high-pressure fluid (refrigerant) collides with an inner wall surface or the like in a valve housing having a relatively small internal volume, and its flow direction changes greatly. I don't like to increase the pressure loss, and the slide-type main valve body with a pair of left and right piston type packings slides to switch the flow path, so the sliding part is easily worn by stick-slip etc. As a result, there is a problem that the sealing performance of the sliding portion is deteriorated and valve leakage is likely to occur.

また、特許文献2に所載のロータリー式の流路切換弁では、主弁体を回転(流路切換)させるための流体圧式のアクチュエータは、高圧を受ける部分が主弁体の回転軸部の延長軸部に片持ち支持された、板厚に対して受圧面積の大きな板状体であるので、変形(撓み)等が生じやすく、強度や耐久性に問題があるとともに、流路切換の確実性や迅速性にも欠ける嫌いがある。   Further, in the rotary flow path switching valve described in Patent Document 2, the hydraulic pressure actuator for rotating the main valve body (flow path switching) is such that the portion that receives the high pressure is the rotation shaft portion of the main valve body. Since it is a plate-like body that is cantilevered on the extension shaft and has a large pressure receiving area with respect to the plate thickness, deformation (bending) is likely to occur, there is a problem in strength and durability, and channel switching is reliable. I hate lacking in sexuality and quickness.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、圧力損失や摺動部分の摩耗を可及的に抑えることができ、シール性を向上させ得て、弁洩れし難くできるとともに、高圧に耐えられる十分な強度を確保できて耐久性を向上させることができ、流路切換を確実かつ迅速に行うことができるとともに、ヒートポンプ式冷暖房システム等の高温高圧環境下にも組み込むことのできる流路切換弁を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress pressure loss and wear of sliding parts as much as possible, improve sealability, and prevent valve leakage. In addition to ensuring sufficient strength to withstand high pressure and improving durability, it is possible to switch the flow path reliably and quickly, and in high-temperature and high-pressure environments such as heat pump air conditioning systems. It is to provide a flow path switching valve that can be incorporated.

前記の目的を達成すべく、本発明に係る流路切換弁は、基本的には、主弁ハウジング及び該主弁ハウジング内に回動可能に配在された主弁体を備える主弁と、前記主弁体を回動させるための流体圧式のアクチュエータとを備え、前記主弁体を回転させることにより、流路が切り換えられるようにされ、前記アクチュエータは、前記主弁に供給される高圧流体が導入される作動室が設けられた本体部を有し、前記作動室に、前記高圧流体の圧力を利用して、往復直線運動を正逆両方向の回転運動に変換する運動変換機構が設けられ、前記運動変換機構は、前記作動室にその回転は阻止された状態で上下動可能に収容された受圧移動体と、該受圧移動体の上下動に対応して相対的に回動可能に該受圧移動体に内挿又は外挿される回転駆動体とを有し、前記受圧移動体及び回転駆動体のうちの一方に、ボールと、該ボールを、その一部を半径方向に突出させた状態で、回転自在にかつ移動は実質的に阻止した状態で収容する収容部とが設けられ、他方に、前記収容部から半径方向に突出する前記ボールの一部が嵌め込まれる、周方向に曲がりながら上下方向に伸びる螺旋溝が設けられている構成であることを特徴としている。 In order to achieve the above object, a flow path switching valve according to the present invention basically includes a main valve housing and a main valve including a main valve body rotatably disposed in the main valve housing, A fluid pressure type actuator for rotating the main valve body, the flow path is switched by rotating the main valve body, and the actuator is a high-pressure fluid supplied to the main valve. And a motion converting mechanism for converting a reciprocating linear motion into a rotational motion in both forward and reverse directions using the pressure of the high-pressure fluid is provided in the working chamber. The movement converting mechanism is configured such that the pressure receiving moving body accommodated in the working chamber so as to be able to move up and down in a state in which the rotation thereof is blocked, and to be relatively rotatable corresponding to the vertical movement of the pressure receiving moving body. Rotating drive that is inserted or extrapolated into the pressure-receiving moving body The ball and the ball are accommodated in one of the pressure-receiving moving body and the rotational drive body in a state where a part of the ball protrudes in the radial direction, and the movement is substantially prevented. a housing portion is provided, on the other hand, a portion of the ball projects radially from the receiving portion is fitted, the structure der Rukoto the helical grooves extending in the vertical direction while bending in the circumferential direction are provided It is a feature.

好ましい態様では、前記受圧移動体の外周に、前記作動室の内周面との間を気密的に封止して前記作動室を容積可変の上部と下部とに仕切るパッキンが装着され、前記本体部に、前記作動室上部に高圧流体を導入・排出するための上部ポートが設けられるとともに、前記作動室下部に高圧流体を導入・排出するための下部ポートが設けられる。   In a preferred aspect, a packing is provided on the outer periphery of the pressure receiving moving body so as to hermetically seal a space between the inner peripheral surface of the working chamber and partition the working chamber into a variable volume upper and lower portions, An upper port for introducing and discharging high-pressure fluid is provided in the upper portion of the working chamber, and a lower port for introducing and discharging high-pressure fluid is provided in the lower portion of the working chamber.

前記アクチュエータは、好ましくは、前記作動室下部に前記下部ポートを介して高圧流体を導入するとともに、前記作動室上部から前記上部ポートを介して高圧流体を排出することにより、前記受圧移動体を上動させて前記回転駆動体を一方向に回転させる上動行程と、前記作動室上部に前記上部ポートを介して高圧流体を導入するとともに、前記作動室下部から前記下部ポートを介して高圧流体を排出することにより、前記受圧移動体を下動させて前記回転駆動体を他方向に回転させる下動行程とを選択的にとり得るように構成される。   The actuator preferably introduces the high-pressure fluid into the lower portion of the working chamber via the lower port and discharges the high-pressure fluid from the upper portion of the working chamber via the upper port, thereby raising the pressure-receiving movable body. An upper stroke of rotating the rotary drive body in one direction, and introducing high-pressure fluid into the upper portion of the working chamber via the upper port, and supplying high-pressure fluid from the lower portion of the working chamber via the lower port. By discharging, the pressure receiving movable body is moved downward to selectively take a downward stroke in which the rotary drive body is rotated in the other direction.

他の好ましい態様では、前記上動行程と前記下動行程との切り換えを、前記上部ポートと前記下部ポート、及び、前記主弁内の高圧部分と低圧部分とに接続された四方パイロット弁により行うようにされる。    In another preferred embodiment, switching between the upper stroke and the lower stroke is performed by a four-way pilot valve connected to the upper port and the lower port, and a high pressure portion and a low pressure portion in the main valve. To be done.

前記回転駆動体の回転軸線は、好ましくは、前記主弁体の回転軸線に対して偏心するとともに、前記主弁体の回転軸線に平行に配在される。   The rotation axis of the rotary drive body is preferably eccentric with respect to the rotation axis of the main valve body and is arranged in parallel to the rotation axis of the main valve body.

他の好ましい態様では、前記アクチュエータの回転駆動体と前記主弁体との間に前記回転駆動体の回転を前記主弁体に伝達する回転伝達機構が設けられる。   In another preferred aspect, a rotation transmission mechanism for transmitting the rotation of the rotary drive body to the main valve body is provided between the rotary drive body of the actuator and the main valve body.

前記回転伝達機構は、好ましくは、前記回転駆動体の駆動軸部に連結固定された駆動アームと、前記主弁体の回転軸部に連結固定され、その先端付近が前記駆動アームの先端付近に連れ回される従動アームとで構成される。   Preferably, the rotation transmission mechanism is connected and fixed to a drive shaft connected to the drive shaft portion of the rotary drive body, and connected to the rotary shaft portion of the main valve body, and the vicinity of the tip thereof is close to the tip of the drive arm. It is composed of a driven arm that is rotated.

前記回転伝達機構は、好ましくは、前記回転駆動体の駆動軸部に連結固定された駆動ギアと、前記主弁体の回転軸部に連結固定され、前記駆動ギアに噛合する従動ギアとで構成される。   Preferably, the rotation transmission mechanism includes a drive gear connected and fixed to the drive shaft portion of the rotary drive body, and a driven gear connected and fixed to the rotary shaft portion of the main valve body and meshing with the drive gear. Is done.

他の好ましい態様では、前記回転駆動体の駆動軸部と前記主弁体の回転軸部とが共通の軸線上に配置されて、前記主弁体と前記回転駆動体とが一体的に回動するようにされる。   In another preferred aspect, the drive shaft portion of the rotary drive body and the rotary shaft portion of the main valve body are disposed on a common axis, and the main valve body and the rotary drive body rotate integrally. To be done.

本発明に係る流路切換弁では、主弁内を流通する高圧流体と低圧流体との差圧を利用した流体圧式アクチュエータにより、主弁体を回動させるようにされているので、電動モータ等で主弁体を回動させる場合に比べて、コスト削減、消費電力の低減、省エネ化等を図ることができ、また、スライド式のものに比べて、圧力損失や摺動部分の摩耗を可及的に抑えることができ、シール性を向上させ得て、弁洩れし難くできる。   In the flow path switching valve according to the present invention, the main valve body is rotated by a fluid pressure type actuator that uses the differential pressure between the high pressure fluid and the low pressure fluid flowing through the main valve. Compared with the case where the main valve body is rotated, the cost, power consumption, and energy saving can be reduced, and pressure loss and sliding part wear can be achieved compared to the slide type. As a result, the sealing performance can be improved and the valve can hardly leak.

また、主弁体を回動させるアクチュエータは、流体圧により受圧移動体を上下動させ、この上下動を回転運動に変換して主弁体に伝達する構成なので、従来例のように高圧を受ける部分が主弁体の回転軸部の延長軸部に片持ち支持された、板厚に対して受圧面積の大きな板状体であるものに比べて、高圧を受ける部分(受圧移動体)に、十分な強度を確保でき、耐久性を向上させることができるとともに、十分な強度を確保できることから、受圧面積を大きくすることができ、そのため、流路切換を確実かつ迅速に行うことができる。   In addition, the actuator that rotates the main valve body is configured to move the pressure-receiving moving body up and down by fluid pressure, convert this up-and-down movement into a rotational motion, and transmit it to the main valve body. Compared to the part that is cantilevered by the extension shaft part of the rotating shaft part of the main valve body and has a large pressure receiving area relative to the plate thickness, the part that receives high pressure (pressure receiving moving body) Sufficient strength can be ensured, durability can be improved, and sufficient strength can be ensured, so that the pressure receiving area can be increased, and therefore the flow path can be switched reliably and quickly.

また、直線運動を回転運動に変換する機構としては、一般にボールねじ機構が知られているが、通常のボールねじ機構は、ボールを多数使用し、リターン構造も必要であるため、本発明の運動変換機構に比べて、構造が複雑で高価であり、また、高温高圧環境下での使用は考慮されていないため、ヒートポンプ式冷暖房システム等に組み込まれる流路切換弁に採用することは難しい。それに対し、本発明の運動変換機構を備えた流体圧式のアクチュエータは、部品点数が少なく極めてシンプルな構成であるので、コスト的に有利であるとともに、高温高圧環境下で使用する場合の対策(受圧移動体の肉厚を厚くする等)を容易にとることができ、そのため、本発明に係る流路切換弁は、特に、ヒートポンプ式冷暖房システム等の高温高圧環境下に組み込まれる流路切換弁として費用対効果に極めて優れるものとなる。   As a mechanism for converting linear motion into rotational motion, a ball screw mechanism is generally known. However, since a normal ball screw mechanism uses a large number of balls and requires a return structure, the motion of the present invention is also known. Compared to the conversion mechanism, the structure is complicated and expensive, and use in a high-temperature and high-pressure environment is not considered. Therefore, it is difficult to employ it for a flow path switching valve incorporated in a heat pump air conditioning system or the like. On the other hand, the fluid pressure type actuator provided with the motion conversion mechanism of the present invention has an extremely simple configuration with a small number of parts, so that it is advantageous in terms of cost and measures for use in a high temperature and high pressure environment (pressure receiving) For example, the flow path switching valve according to the present invention can be used as a flow path switching valve incorporated in a high-temperature and high-pressure environment such as a heat pump type air conditioning system. It is extremely cost effective.

上記した以外の、課題、構成、及び作用効果は、以下の実施形態により明らかにされる。   Problems, configurations, and operational effects other than those described above will be clarified by the following embodiments.

(A)は、本発明に係る流路切換弁の第1実施例における一側面図、(B)は、(A)に示される流路切換弁の上面側配置図、(C)は、(A)に示される流路切換弁の下面側配置図。(A) is a side view in the first embodiment of the flow path switching valve according to the present invention, (B) is a top side layout diagram of the flow path switching valve shown in (A), (C) is ( The lower surface side arrangement drawing of the flow-path switching valve shown to A). 図1(B)のA−A矢視線に従って部分的に破断した他側面図。The other side view partially fractured | ruptured according to the AA arrow line of FIG. 1 (B). 図1(B)のB−B矢視線に従って部分的に破断した他側面図。The other side view which fractured | ruptured partially according to the BB arrow line of FIG. 1 (B). 図1(B)のC−C矢視線に従う主弁部分の拡大断面図。The expanded sectional view of the main valve part which follows the CC arrow line of FIG. 1 (B). 第1実施例の流路切換弁に設けられたシール面離隔機構の構成及び動作説明に供される拡大断面図。The expanded sectional view with which the structure and operation | movement description of the seal surface separation mechanism provided in the flow-path switching valve of 1st Example are provided. (A)は、第1実施例の流路切換弁において主弁体が第1の回転位置にある状態を示し、(1)は上面側配置図、(2)は(1)のX−X矢視線に従う断面図、(B)は、第1実施例の流路切換弁において主弁体が第2の回転位置にある状態を示し、(1)は上面側配置図、(2)は(1)のX−X矢視線に従う断面図。(A) shows the state in which the main valve body is in the first rotational position in the flow path switching valve of the first embodiment, (1) is a top surface arrangement diagram, and (2) is XX of (1). A sectional view taken along the line of sight, (B) shows a state where the main valve body is in the second rotational position in the flow path switching valve of the first embodiment, (1) is a top side arrangement view, and (2) is ( Sectional drawing which follows the XX arrow line of 1). (A)は、第1実施例における主弁体の第1層部材が第1の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図、(B)は、第1実施例における主弁体の第1層部材が第2の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図。(A) shows the state in which the first layer member of the main valve body in the first embodiment is in the first rotational position, (1) is a plan view, and (2) is a view taken along line XX in (1). (B) shows a state in which the first layer member of the main valve body in the first embodiment is in the second rotational position, (1) is a plan view, and (2) is X in (1). -Sectional drawing which follows a X arrow line of sight. (A)は、第1実施例における主弁体の第2層部材が第1の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図、(B)は、第1実施例における主弁体の第2層部材が第2の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図。(A) shows the state in which the second layer member of the main valve body in the first embodiment is in the first rotational position, (1) is a plan view, and (2) is a view taken along the line XX of (1). (B) shows a state in which the second layer member of the main valve body in the first embodiment is in the second rotational position, (1) is a plan view, and (2) is an X of (1). -Sectional drawing which follows a X arrow line of sight. (A)は、第1実施例における主弁体の第3層部材が第1の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図、(B)は、第1実施例における主弁体の第3層部材が第2の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図。(A) shows the state which has the 3rd layer member of the main valve body in the 1st example in the 1st rotation position, (1) is a top view, (2) is a XX arrow line of (1). (B) shows a state in which the third layer member of the main valve body in the first embodiment is in the second rotational position, (1) is a plan view, and (2) is X in (1). -Sectional drawing which follows a X arrow line of sight. (A)は、第1実施例における主弁体の第4層部材が第1の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図、(B)は、第1実施例の主弁体の第4層部材が第2の回転位置にある状態を示し、(1)は平面図、(2)は(1)のX−X矢視線に従う断面図。(A) shows the state in which the 4th layer member of the main valve body in the 1st example is in the 1st rotation position, (1) is a top view, (2) is a XX arrow line of (1). (B) shows a state in which the fourth layer member of the main valve body of the first embodiment is in the second rotational position, (1) is a plan view, and (2) is an X of (1). -Sectional drawing which follows a X arrow line of sight. 第1実施例の主弁体の上半部と下半部をそれぞれ一体物とした例を示し、(A)は第1の回転位置にある状態、(B)は第2の回転位置にある状態をそれぞれ示す断面図。The example which made the upper half part and the lower half part of the main valve body of 1st Example integrated respectively is shown, (A) is in the state in the 1st rotation position, (B) is in the 2nd rotation position. Sectional drawing which shows a state, respectively. 第1実施例の主弁体の上半部と下半部を一体物とした例を示し、(A)は第1の回転位置にある状態、(B)は第2の回転位置にある状態をそれぞれ示す断面図。The example which made the upper half part and lower half part of the main valve body of 1st Example integrated is shown, (A) is in the state in the 1st rotation position, (B) is in the state in the 2nd rotation position Sectional drawing which shows each. 第2実施例の流路切換弁を示し、(A)は主弁体が第1の回転位置にある状態を、(B)は主弁体が第1の回転位置から時計回りに90°回転した第2の回転位置にある状態であり、(1)は上面側配置図、(2)は各状態における連通路構成を示す概略図、(3)は下面側配置図。The flow-path switching valve of 2nd Example is shown, (A) shows the state in which the main valve body exists in the 1st rotation position, (B) rotates the main valve body 90 degrees clockwise from the 1st rotation position. 2 is a top view of the arrangement, (2) is a schematic diagram showing the configuration of the communication path in each state, and (3) is a bottom view. (A)は、第2実施例における主弁体が第1の回転位置にある状態の、(1)第1層部材、(2)第2層部材、(3)第3層部材、(4)第4層部材のそれぞれの平面図、(B)は、主弁体が第1の回転位置にある状態における連通路構成を示し、(B)の(1)〜(4)は、(A)の(1)〜(4)のX−X矢視線に従う断面図。(A) is (1) 1st layer member, (2) 2nd layer member, (3) 3rd layer member in the state which has the main valve body in 2nd Example in a 1st rotation position, (4) ) Each plan view of the fourth layer member, (B) shows the communication path configuration in the state where the main valve body is in the first rotation position, (B) (1) ~ (4) is (A) Sectional drawing which follows the XX arrow line of (1)-(4). (A)は、第2実施例における主弁体が第2の回転位置にある状態の、(1)第1層部材、(2)第2層部材、(3)第3層部材、(4)第4層部材のそれぞれの平面図、(B)は、主弁体が第2の回転位置にある状態における連通路構成を示し、(B)の(1)の上段側、下段側は、それぞれ(A)の(1)におけるU−U矢視線、V−V矢視線に従う部分断面図、(B)の(2)及び(3)は、(A)の(2)及び(3)のY−Y矢視線に従う断面図、(B)の(4)の上段側、下段側は、それぞれ(A)の(4)におけるJ−J矢視線、K−K矢視線に従う部分断面図。(A) is (1) 1st layer member, (2) 2nd layer member, (3) 3rd layer member in the state which has the main valve body in 2nd Example in a 2nd rotation position, (4) ) Each plan view of the fourth layer member, (B) shows the communication path configuration in a state in which the main valve body is in the second rotational position, (B) (1) upper side, lower side, (A) (1) in U1 U line of sight, VV arrow line of partial cross-sectional view, (B) (2) and (3) of (A) (2) and (3) Sectional drawing according to YY arrow line, (B) (4) upper side and lower side are respectively JJ arrow line and (KK) arrow line in (4) of (A). 第3実施例の流路切換弁を示し、(A)は主弁体が第1の回転位置にある状態、(B)は主弁体が第2の回転位置にある状態であり、(1)は上面側配置図、(2)は(1)のX−X矢視線に従う断面図。The flow-path switching valve of 3rd Example is shown, (A) is the state which has a main valve body in a 1st rotation position, (B) is the state which has a main valve body in a 2nd rotation position, (1 ) Is a top surface side arrangement view, and (2) is a cross-sectional view taken along the line XX of (1). 本発明に係る流路切換弁の第1実施例におけるアクチュエータ部分を示す、図2の下部の部分切欠拡大図。The partial notch enlarged view of the lower part of FIG. 2 which shows the actuator part in 1st Example of the flow-path switching valve based on this invention. (A)は、図17に示されるアクチュエータの主要部を示す部分拡大断面図、(B)は、(A)に示される運動変換機構の主要部の分解斜視図。(A) is the elements on larger scale which show the principal part of the actuator shown by FIG. 17, (B) is a disassembled perspective view of the principal part of the motion conversion mechanism shown by (A). 図17に示されるアクチュエータに用いられる回転伝達機構の一例を示す概略構成図。The schematic block diagram which shows an example of the rotation transmission mechanism used for the actuator shown by FIG. 図17に示されるアクチュエータに用いられる回転伝達機構の他の例を示す概略構成図。The schematic block diagram which shows the other example of the rotation transmission mechanism used for the actuator shown by FIG. 図17に示されるアクチュエータの動作説明に供される図。FIG. 18 is a diagram which is used for explaining the operation of the actuator shown in FIG. 17. 図17に示されるアクチュエータに備えられる四方パイロット弁を示し、(A)は通電OFF時を、(B)は通電ON時をそれぞれ示す拡大断面図。FIG. 18 is an enlarged cross-sectional view illustrating a four-way pilot valve provided in the actuator illustrated in FIG. 本発明に係る流路切換弁の他の実施例を示す部分切欠拡大図。The partial notch enlarged view which shows the other Example of the flow-path switching valve concerning this invention. ヒートポンプ式冷暖房システムの一例を示す概略構成図。The schematic block diagram which shows an example of a heat pump type | formula air conditioning system.

以下、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明に係る流路切換弁の第1実施例を示し、(A)は一側面図、(B)は上面側配置図、(C)は下面側配置図である。また、図2、図3、図4は、それぞれ図1(B)のA−A矢視線に従って部分的に破断した他側面図、B−B矢視線に従って部分的に破断した他側面図、C−C矢視線に従う主弁部分の拡大断面図である。   1A and 1B show a first embodiment of a flow path switching valve according to the present invention, in which FIG. 1A is a side view, FIG. 1B is a top view, and FIG. 1C is a bottom view. 2, 3, and 4 are other side views partially broken along the line AA in FIG. 1B, and other side views partially broken along the line BB, C It is an expanded sectional view of the main valve part which follows a -C arrow line.

なお、本明細書において、上下、左右、前後等の位置、方向を表わす記述は、説明が煩瑣になるのを避けるために図面に従って便宜上付けたものであり、実際にヒートポンプ式冷暖房システム等に組み込まれた状態での位置、方向を指すとは限らない。   In the present specification, descriptions indicating positions, directions such as up and down, left and right, and front and rear are provided for the sake of convenience in accordance with the drawings in order to avoid complicated explanation, and are actually incorporated in a heat pump type air conditioning system or the like. It does not necessarily indicate the position and direction in the state of being pressed.

また、各図において、部材間に形成される隙間や部材間の離隔距離等は、発明の理解を容易にするため、また、作図上の便宜を図るため、各構成部材の寸法に比べて大きくあるいは小さく描かれている場合がある。   In each drawing, the gap formed between the members, the separation distance between the members, etc. are larger than the dimensions of each constituent member for easy understanding of the invention and for convenience of drawing. Or it may be drawn small.

[主弁の第1実施例]
図示実施例の流路切換弁1は、四方切換弁であり、例えば前述した図24に示されるヒートポンプ式冷暖房システム100における四方切換弁140として用いられるもので、ロータリー式の主弁5と、流体圧式のアクチュエータ7とを備える。
[First embodiment of main valve]
The flow path switching valve 1 in the illustrated embodiment is a four-way switching valve, and is used as, for example, the four-way switching valve 140 in the heat pump air conditioning system 100 shown in FIG. 24 described above. And a pressure type actuator 7.

以下においては、まず、主として主弁5について説明し、その後にアクチュエータ7について説明する。   In the following, first, the main valve 5 will be mainly described, and then the actuator 7 will be described.

主弁5は、主弁ハウジング10と、この主弁ハウジング10内に回動可能かつ上下動可能に配在された主弁体20とを備える。   The main valve 5 includes a main valve housing 10 and a main valve body 20 disposed in the main valve housing 10 so as to be rotatable and vertically movable.

主弁ハウジング10は、アルミあるいはステンレス等の金属製とされ、円筒状の胴部10Cと、この胴部10Cの上面開口を気密的に封止するようにかしめ固定され、さらにはんだ付け、ろう付け、溶接等により固定された厚肉円板状の上側弁シート10Aと、胴部10Cの下面開口を閉塞するように前記上側弁シート10Aと同様に前記胴部10Cに固定された厚肉円板状の下側弁シート10Bとを有し、上側弁シート10Aの左右には、管継手からなる第1ポート11、第2ポート12が垂設され、下側弁シート10Bの左右には、管継手からなる第3ポート13、第4ポート14が垂設されている。各ポート11〜14は同一円周上に設けられており、第1ポート11と第3ポート13及び第2ポート12と第4ポート14は平面視同一位置に配在されている。上側弁シート10Aの下面及び下側弁シート10Bの上面は、平坦で滑らかな弁シート面17、17となっている。   The main valve housing 10 is made of metal such as aluminum or stainless steel, and is fixed by caulking so as to hermetically seal a cylindrical body portion 10C and an upper surface opening of the body portion 10C, and further soldered and brazed. A thick disc-shaped upper valve seat 10A fixed by welding or the like, and a thick disc fixed to the trunk portion 10C in the same manner as the upper valve seat 10A so as to close the lower surface opening of the trunk portion 10C. A first valve 11 and a second port 12 made of pipe joints are provided vertically on the left and right sides of the upper valve seat 10A, and pipes are provided on the left and right sides of the lower valve seat 10B. A third port 13 and a fourth port 14 made of a joint are provided vertically. The ports 11 to 14 are provided on the same circumference, and the first port 11 and the third port 13 and the second port 12 and the fourth port 14 are arranged at the same position in plan view. The lower surface of the upper valve seat 10A and the upper surface of the lower valve seat 10B are flat and smooth valve seat surfaces 17 and 17, respectively.

本実施例では、図24に示される如くのヒートポンプ式冷暖房システム100に組み込まれた場合において、例えば、第1ポート11は圧縮機吐出側に接続される吐出側高圧ポートDとされ、第2ポート12は室内熱交換機に接続される室内側入出ポートEとされ、第3ポート13は室外熱交換器に接続される室外側入出ポートCとされ、第4ポート14は圧縮機吸入側に接続される吸入側低圧ポートSとされる(図1参照)。   In the present embodiment, when incorporated in a heat pump type air conditioning system 100 as shown in FIG. 24, for example, the first port 11 is a discharge side high-pressure port D connected to the compressor discharge side, and the second port 12 is an indoor input / output port E connected to the indoor heat exchanger, a third port 13 is an outdoor input / output port C connected to the outdoor heat exchanger, and a fourth port 14 is connected to the compressor suction side. A suction side low pressure port S (see FIG. 1).

前記主弁ハウジング10における上側弁シート10Aの下面側中央(主弁ハウジング10の中心線O上)には、主弁体20の上側回転軸部30A(後述)を回転自在に支持する軸受穴15Aが設けられ、また、下側弁シート10Bの下面側中央付近には、下向きに凹部19(後述する回転伝達機構70の収容部)が設けられ、この凹部19における前記中心線O上に、主弁体20の下側回転軸部30B(後述)を回転自在に支持する軸受穴15Bが設けられている。   A bearing hole 15A that rotatably supports an upper rotary shaft portion 30A (described later) of the main valve body 20 is provided at the lower surface side center of the upper valve seat 10A in the main valve housing 10 (on the center line O of the main valve housing 10). In the vicinity of the center of the lower surface side of the lower valve seat 10B, a concave portion 19 (a housing portion for a rotation transmission mechanism 70 described later) is provided downward. A bearing hole 15B that rotatably supports a lower rotating shaft portion 30B (described later) of the valve body 20 is provided.

また、下側弁シート10Bの下面側の前後にはアクチュエータ7の本体部50及びパイロット弁80が設けられている。前記本体部50及びパイロット弁80は、平面視で主弁ハウジング10から側方には突出しないようになっている(下側弁シート10Bの径内に収まっている)。   Further, the main body 50 and the pilot valve 80 of the actuator 7 are provided in the front and rear of the lower valve seat 10B. The main body 50 and the pilot valve 80 do not protrude laterally from the main valve housing 10 in a plan view (contained within the diameter of the lower valve seat 10B).

主弁体20は、短円柱状の上半部20Aと下半部20Bとの二分割構成となっている。詳しくは、比較的厚みのある第1層部材21と該第1層部材21の下面側に溶接等により一体的に接合された第2層部材22とで上半部20Aが構成され、厚肉円板状の第3層部材23と該第3層部材23の下面側に溶接等により一体的に接合された比較的厚みのある第4層部材24とで下半部20Bが構成されている。   The main valve body 20 has a bifurcated configuration of a short columnar upper half 20A and a lower half 20B. Specifically, the upper half portion 20A is constituted by a relatively thick first layer member 21 and a second layer member 22 integrally joined to the lower surface side of the first layer member 21 by welding or the like, and is thick. The lower half portion 20B is composed of a disk-shaped third layer member 23 and a relatively thick fourth layer member 24 integrally joined to the lower surface side of the third layer member 23 by welding or the like. .

前記上半部20A(の第2層部材22)と下半部20B(の第3層部材23)との間に、それらを相互に逆方向に付勢する付勢手段としての4本の圧縮コイルばね29が縮装されている(図2参照)。4本の圧縮コイルばね29は、第3層部材23の上面側の同一円周上に等角度間隔で設けられた4個のばね収納穴23h(図9参照)に、その一部を上方に突出させた状態で装填されている。   Four compressions as urging means for urging the upper half 20A (second layer member 22) and the lower half 20B (third layer member 23) in opposite directions to each other The coil spring 29 is contracted (see FIG. 2). The four compression coil springs 29 are partly upward in four spring housing holes 23h (see FIG. 9) provided at equal angular intervals on the same circumference on the upper surface side of the third layer member 23. It is loaded in a protruding state.

主弁体20の第1層部材21の上面側及び第4層部材24の下面側の平面視同一位置には、主弁体20の中心線O(主弁ハウジング10と共通)を通る断面矩形の横断溝27、27が形成されており、この横断溝27、27の両端近くには、主弁体20の上半部20Aと下半部20Bとを一体回動可能かつ上下動可能とすべく、図3に示される如くに、2本の貫通孔26が形成されるとともに、この2本の貫通孔26に上下端部に小径部25aを備えた段付きの一体回動棒25が挿入されている。   A rectangular cross section passing through the center line O of the main valve body 20 (common to the main valve housing 10) at the same position in plan view on the upper surface side of the first layer member 21 of the main valve body 20 and the lower surface side of the fourth layer member 24. The upper half 20A and the lower half 20B of the main valve body 20 are integrally rotatable and vertically movable near both ends of the transverse grooves 27, 27. Therefore, as shown in FIG. 3, two through holes 26 are formed, and a stepped integral rotating rod 25 having small diameter portions 25a at the upper and lower ends is inserted into the two through holes 26. Has been.

主弁体20の回転軸部は、図2〜4に示される如くに、主弁体20の本体部分(上半部20A、下半部20B)と一体的に挙動可能な上側回転軸部30Aと下側回転軸部30Bとに分けられている。上側回転軸部30Aは、前記軸受穴15Aに挿入される枢軸部30aと、前記横断溝27に嵌合する断面矩形の角棒部30bとからなっている。下側回転軸部30Bは、前記軸受穴15Bに挿入される枢軸部30cと、前記横断溝27に嵌合する断面矩形の角棒部30dと、中間大径部30eとからなっている。角棒部30b、30dの両端近くには挿通穴が設けられ、該挿通穴に、前記一体回動棒25の上下端部に設けられた小径部25aが嵌挿されることで、前記一体回動棒25は、上側回転軸部30Aと下側回転軸部30Bとに固定される。   As shown in FIGS. 2 to 4, the rotary shaft portion of the main valve body 20 is an upper rotary shaft portion 30 </ b> A that can behave integrally with the main body portion (the upper half portion 20 </ b> A and the lower half portion 20 </ b> B) of the main valve body 20. And the lower rotary shaft portion 30B. The upper rotary shaft portion 30 </ b> A includes a pivot portion 30 a that is inserted into the bearing hole 15 </ b> A and a rectangular bar portion 30 b that has a rectangular cross section that fits into the transverse groove 27. The lower rotary shaft portion 30B includes a pivot portion 30c inserted into the bearing hole 15B, a rectangular bar portion 30d having a rectangular cross section that fits into the transverse groove 27, and an intermediate large diameter portion 30e. Insertion holes are provided near both ends of the square bar portions 30b and 30d, and the small-diameter portions 25a provided at the upper and lower ends of the integral rotation rod 25 are fitted into the insertion holes. The rod 25 is fixed to the upper rotary shaft portion 30A and the lower rotary shaft portion 30B.

したがって、上下の回転軸部30A、30Bと左右の一体回動棒25、25は、相互に若干の相対移動可能かつ一体回動可能に井形状ないし矩形状に組まれた枠状体28を構成しており、この枠状体28により、二分割構成とされた主弁体20(上半部20A、下半部20B)の上下動、傾き、位置ずれ等に柔軟に対応できる。   Therefore, the upper and lower rotary shaft portions 30A and 30B and the left and right integral rotating rods 25 and 25 constitute a frame-like body 28 assembled in a well shape or a rectangular shape so as to be slightly movable relative to each other and integrally rotatable. Thus, the frame-like body 28 can flexibly cope with vertical movement, inclination, positional deviation, and the like of the main valve body 20 (upper half 20A, lower half 20B) having a two-part configuration.

流路切換にあたり、主弁体20は、後述するアクチュエータ7により、正逆両方方向に回転せしめられ、図6(A)に示される如くの第1の回転位置と、この第1の回転位置から時計回りに60°回転させた、図6(B)に示される如くの第2の回転位置とを選択的にとり得るようにされている。   When the flow path is switched, the main valve body 20 is rotated in both forward and reverse directions by an actuator 7 described later, and from the first rotational position as shown in FIG. 6A and the first rotational position. The second rotation position as shown in FIG. 6B, which is rotated 60 ° clockwise, can be taken selectively.

主弁体20には、第1の回転位置をとるとき、第1ポート11と第3ポート13とを連通させる第1連通路31及び第2ポート12と第4ポート14とを連通させる第2連通路32とが設けられるとともに、第2の回転位置をとるとき、第1ポート11と第2ポート12とを連通させる第3連通路33及び第3ポート13と第4ポート14とを連通させる第4連通路34とが設けられている。   When the main valve body 20 is in the first rotational position, the first communication path 31 for communicating the first port 11 and the third port 13 and the second port 12 for communicating the second port 12 and the fourth port 14 are provided. The communication path 32 is provided, and when the second rotational position is taken, the third communication path 33 and the third port 13 and the fourth port 14 are connected to communicate the first port 11 and the second port 12. A fourth communication path 34 is provided.

詳細には、前記第1〜第4連通路31〜34を構成する、第1〜第4層部材21〜24に設けられた各通路部の上面開口又は下面開口は、第1〜第4ポート11〜14と同一円周上に配在されており、また、その口径は各ポート11〜14の口径と略同じとされ、さらに、第1連通路31と第2連通路32は、各ポート11〜14の口径と略同じ通路径となっている。   Specifically, the upper surface opening or the lower surface opening of each passage portion provided in the first to fourth layer members 21 to 24 constituting the first to fourth communication passages 31 to 34 is the first to fourth ports. 11 to 14 are arranged on the same circumference, the diameter of each port is substantially the same as the diameter of each port 11 to 14, and the first communication path 31 and the second communication path 32 are connected to each port. The passage diameter is substantially the same as the diameter of 11-14.

主弁体上半部20Aの上部を構成する第1層部材21には、図7に示される如くに、180°間隔をあけて2つの直線貫通路部21A、21Bが設けられるとともに、第2層部材22によりその下面開口が閉塞される、平面視波状の横穴21Eにより結ばれた2つの横穴付き通路部21C、21Dが設けられている。横穴付き通路部21Cと21Dは、180°間隔をあけて配在されており、2つ合わせてU字状の比較的容積の大きな連通路(第3連通路33)を形成する。直線貫通路部21A、21Bと横穴付き通路部21C、21Dとの角度間隔は60°とされている。   As shown in FIG. 7, the first layer member 21 constituting the upper part of the upper half 20A of the main valve body is provided with two straight through-passage portions 21A and 21B with an interval of 180 °, as well as the second Two lateral hole passage portions 21 </ b> C and 21 </ b> D connected by a horizontal hole 21 </ b> E having a planar view wave shape, the lower surface opening of which is closed by the layer member 22, are provided. The passage portions 21C and 21D with the horizontal holes are arranged with an interval of 180 °, and together, they form a U-shaped communication path with a relatively large volume (third communication path 33). The angle interval between the straight through passage portions 21A and 21B and the passage portions 21C and 21D with side holes is 60 °.

したがって、主弁体20が第1の回転位置にあるときには、直線貫通路部21A、21Bが第1ポート11、第2ポート12の真下に位置し、主弁体20を第1の回転位置から時計回りに60°回転させると、直線貫通路部21A、21Bの上面開口が上側弁シート10Aにより閉塞されるとともに、横穴付き通路部21C、21Dの上面開口が第1ポート11、第2ポート12の真下に位置する。   Therefore, when the main valve body 20 is in the first rotation position, the straight through-passage portions 21A and 21B are positioned directly below the first port 11 and the second port 12, and the main valve body 20 is moved from the first rotation position. When rotated clockwise by 60 °, the upper surface openings of the straight through-passage portions 21A, 21B are closed by the upper valve seat 10A, and the upper surface openings of the passage portions 21C, 21D with side holes are the first port 11 and the second port 12. Located directly below.

主弁体上半部20Aの下部を構成する第2層部材22には、図8に示される如くに、180°間隔をあけて2つの直線貫通路部22A、22Bが設けられている。直線貫通路部22A、22Bは第1層部材21の直線貫通路部21A、21Bの真下に位置している。   As shown in FIG. 8, the second layer member 22 constituting the lower part of the upper half 20A of the main valve body is provided with two straight through passage portions 22A and 22B with an interval of 180 °. The straight through passage portions 22A and 22B are located directly below the straight through passage portions 21A and 21B of the first layer member 21.

主弁体下半部20Bの上部を構成する第3層部材23には、図9に示される如くに、180°間隔をあけて2つの直線貫通路部23A、23Bが設けられている。直線貫通路部23A、23Bは第2層部材22の直線貫通路部22A、22Bの真下に位置している。   As shown in FIG. 9, the third layer member 23 that forms the upper part of the lower half 20B of the main valve body is provided with two linear through-passage portions 23A and 23B with an interval of 180 °. The straight through passage portions 23 </ b> A and 23 </ b> B are located directly below the straight through passage portions 22 </ b> A and 22 </ b> B of the second layer member 22.

主弁体下半部20Bの下部を構成する第4層部材24には、図10に示される如くに、第1層部材21と同様に、180°間隔をあけて2つの直線貫通路部24A、24Bが設けられるとともに、第3層部材23によりその上面開口が閉塞される、平面視波状の横穴24Eにより結ばれた2つの横穴付き通路部24C、24Dが設けられている。直線貫通路部24A、24Bは第3層部材23の直線貫通路部23A、23Bの真下に位置している。横穴付き通路部24Cと24Dは、180°間隔をあけて配在されており、2つ合わせてU字状の比較的容積の大きな連通路(第4連通路34)を形成する。直線貫通路部24A、24Bと横孔付き通路部24C、24Dとの角度間隔は60°とされている。   As shown in FIG. 10, the fourth layer member 24 that forms the lower part of the lower half 20B of the main valve body has two linear through-passage portions 24A spaced apart by 180 °, as in the first layer member 21. , 24B, and two side hole passage portions 24C, 24D connected by a horizontal hole 24E having a wave shape in plan view, the upper surface opening of which is closed by the third layer member 23. The straight through passage portions 24 </ b> A and 24 </ b> B are located directly below the straight through passage portions 23 </ b> A and 23 </ b> B of the third layer member 23. The passage portions 24C and 24D with the horizontal holes are arranged with an interval of 180 °, and together, they form a U-shaped communication path with a relatively large volume (fourth communication path 34). The angular interval between the straight through passage portions 24A and 24B and the passage portions 24C and 24D with lateral holes is 60 °.

したがって、主弁体20が第1の回転位置にあるときには、直線貫通路部24A、24Bが第3ポート13、第4ポート14の真上に位置し、主弁体20を第1の回転位置から時計回りに60°回転させると、直線貫通路部24A、24Bの下面開口が下側弁シート10Bにより閉塞されるとともに、横穴付き通路部24C、24Dの下面開口が第3ポート13、第4ポート14の真上に位置する。   Therefore, when the main valve body 20 is in the first rotation position, the straight through-passage portions 24A and 24B are positioned immediately above the third port 13 and the fourth port 14, and the main valve body 20 is moved to the first rotation position. When rotating clockwise by 60 °, the lower surface openings of the straight through-passage portions 24A, 24B are closed by the lower valve seat 10B, and the lower surface openings of the side holes 24C, 24D with the third holes 13, 4 Located just above port 14.

第1層部材21と第2層部材22の2つの部材を合わせて連通路(第3連通路33)を形成したため、断面視で視て、横穴付き通路部21C、21Dの間には、横穴21E側に膨出した案内部が、中心線Oに垂直な方向に比較的長く設けられている。この案内部により、流体(冷媒)がU字状に曲がる部分に発生する渦流を防止することができ、また、横穴21Eの口径と各ポート11〜14の口径とがほぼ同じ通路径となるので、流路の体積を一様にすることができるため、主弁5内で流体の膨張や縮小が発生せず、圧力損失を低減できる。仮に、後述する3Dプリンターを用いずに成形品にて主弁体上半部20Aを作成した場合には、前記連通路は、案内部の無い椀型とせざるを得ず、渦流が発生したり、流路の体積を一様にできないため、圧力損失が大きくなる。   Since the two members of the first layer member 21 and the second layer member 22 are combined to form the communication path (third communication path 33), the horizontal hole is formed between the horizontal hole-shaped passage portions 21C and 21D when viewed in cross section. The guide portion bulged toward the 21E side is provided relatively long in the direction perpendicular to the center line O. This guide part can prevent the vortex generated at the portion where the fluid (refrigerant) bends in a U-shape, and the diameter of the side hole 21E and the diameter of each port 11-14 have substantially the same passage diameter. Since the volume of the flow path can be made uniform, fluid expansion or contraction does not occur in the main valve 5, and pressure loss can be reduced. If the main valve body upper half 20A is made of a molded product without using a 3D printer, which will be described later, the communication path must be a saddle type without a guide, and vortex may be generated. Since the flow path volume cannot be made uniform, the pressure loss increases.

前記した各連通路31、32、33、34の両端部には、図4、図5、図7を参照すればよくわかるように、上側弁シート10A、下側弁シート10Bの弁シート面17、17における各ポート11〜14の開口周りに密接する円環状シール面37、37を持つ凸部36が突設されている。隣り合う凸部36、36(のシール面37、37)は連設されて平面視メガネ状を呈するものとなっており、第4層部材24に設けられた凸部36(のシール面37)も同様である。   As can be understood with reference to FIGS. 4, 5, and 7, the valve seat surfaces 17 of the upper valve seat 10 </ b> A and the lower valve seat 10 </ b> B are provided at both ends of each of the communication passages 31, 32, 33, 34. , 17 are provided with a projecting portion 36 having annular sealing surfaces 37, 37 in close contact with the openings of the respective ports 11 to 14. Adjacent convex portions 36 and 36 (seal surfaces 37 and 37 thereof) are connected to form a spectacle shape in plan view, and the convex portions 36 (seal surfaces 37 of the fourth layer member 24) are provided. Is the same.

また、第1連通路31と第2連通路32は、図4に示される如くに、主弁体20の上半部20Aと下半部20Bとに跨がる分割連通路となっているので、シール性を確保するため、次のような方策が講じられている。すなわち、第1連通路31を代表して説明するに、第1連通路31を構成する第2層部材22の直線貫通路部22Aの下部に大径部22cが形成されるとともに、第3層部材23の直線貫通路部23Aの上端に、前記大径部22cに摺動自在に挿入される円筒状部23cが延設され、大径部22cと円筒状部23cとの間にOリング49が介装され、当該Oリング49の脱落を防止するワッシャ49aが大径部22cの端部に溶接にて接合されている。第2連通路32も同様な構成となっている。   Further, as shown in FIG. 4, the first communication passage 31 and the second communication passage 32 are divided communication passages that straddle the upper half 20A and the lower half 20B of the main valve body 20. In order to ensure sealing performance, the following measures are taken. That is, as a representative example of the first communication path 31, a large-diameter portion 22c is formed below the straight through-passage portion 22A of the second layer member 22 constituting the first communication path 31, and the third layer A cylindrical portion 23c is slidably inserted into the large diameter portion 22c at the upper end of the straight through-passage portion 23A of the member 23, and an O-ring 49 is interposed between the large diameter portion 22c and the cylindrical portion 23c. And a washer 49a that prevents the O-ring 49 from falling off is joined to the end of the large-diameter portion 22c by welding. The second communication path 32 has a similar configuration.

上記に加え、本実施例では、主弁体20の第1層部材21と上側弁シート10Aとの間、及び、第4層部材24と下側弁シート10Bとの間に、主弁体20の回転時において、主弁体20側のシール面37、37を上側弁シート10A及び下側弁シート10Bの弁シート面17、17から離れさせるボール式シール面離隔機構45が設けられている。   In addition to the above, in the present embodiment, the main valve body 20 is provided between the first layer member 21 of the main valve body 20 and the upper valve seat 10A and between the fourth layer member 24 and the lower valve seat 10B. Is provided with a ball-type seal surface separation mechanism 45 that separates the seal surfaces 37, 37 on the main valve body 20 side from the valve seat surfaces 17, 17 of the upper valve seat 10A and the lower valve seat 10B.

ボール式シール面離隔機構45は、第1層部材21と上側弁シート10Aとの間に設けられたものが図4、図5に代表例で示されているように、ボール46と、該ボール46を、その一部を上下方向に突出させた状態で、回転自在にかつ移動は実質的に阻止した状態で収容する収容部47と、主弁体20の回転開始前及び回転終了時においては、主弁体20側のシール面37が上側弁シート10Aの弁シート面17から離れないように、前記収容部47から突出する前記ボール47の一部が嵌め込まれ、主弁体20の回転時(流路切換中)においては、ボール46が主弁体20を押し下げながら転がり出るような寸法形状とされた逆円錐状の凹穴48とを備えている。なお、収容部47は、丸穴47aと該丸穴47に圧入等により固定された、上部が窄まった筒状抜け止め金具47bとで構成されている。   The ball-type sealing surface separation mechanism 45 is provided between the first layer member 21 and the upper valve seat 10A, as shown in a representative example in FIGS. 46 in a state in which a part of the main body 46 protrudes in the vertical direction is rotatable and substantially prevented from moving, and before the rotation of the main valve body 20 is started and at the end of the rotation. When the main valve body 20 is rotated, a part of the ball 47 protruding from the accommodating portion 47 is fitted so that the seal surface 37 on the main valve body 20 side does not separate from the valve seat surface 17 of the upper valve seat 10A. In the process of switching the flow path, the ball 46 is provided with an inverted conical concave hole 48 that is dimensioned so that the ball 46 rolls while pushing down the main valve body 20. The accommodating portion 47 includes a round hole 47a and a cylindrical stopper 47b that is fixed to the round hole 47 by press-fitting or the like and whose upper portion is narrowed.

前記ボール46が収容された収容部47は、図7及び図10の(A)の(1)に示される如くに、主弁体20の第1層部材21と第4層部材24の同一円周上にそれぞれ90°間隔をあけて4箇所に設けられており、また、凹穴48は上側弁シート10Aと下側弁シート10Bの同一円周上の、平面視で前記収容部47と同一位置及び該位置から時計回りに60°離れた位置の計8箇所に設けられている。   As shown in (1) of FIG. 7 and FIG. 10 (A), the accommodating portion 47 in which the ball 46 is accommodated is the same circle of the first layer member 21 and the fourth layer member 24 of the main valve body 20. The recesses 48 are provided at four locations on the circumference at intervals of 90 °, and the concave holes 48 are the same as the accommodating portion 47 in plan view on the same circumference of the upper valve seat 10A and the lower valve seat 10B. It is provided at a total of 8 positions, 60 degrees away from the position and clockwise from the position.

かかるシール面離隔機構45では、主弁体20の回転開始前及び回転終了時においては、図5(A)に示される如くに、上側弁シート10Aの凹穴48内にボール46の一部が嵌り込んでいる。この嵌り込み量(上側弁シート10Aの弁シート面17からボール46の頂上までの高さ)をhとする。この状態から主弁体20を60°回転させ始めると、収容部47が周方向に移動(回転)し、これに伴ってボール46は、図5(B)に示される如くに、主弁体20(上半部20A)を、上半部20Aと下半部20Bとの間に縮装された圧縮コイルばね29の付勢力に抗して、押し下げながら凹穴48から転がり出る。これによって、主弁体20のシール面37が上側弁シート10Aの弁シート面17から離れる。この際の主弁体20の押し下げ量は前記嵌り込み量hとなる。   In such a seal surface separation mechanism 45, before the rotation of the main valve body 20 and at the end of the rotation, as shown in FIG. 5A, a part of the ball 46 is placed in the recessed hole 48 of the upper valve seat 10A. It is inserted. This fitting amount (height from the valve seat surface 17 of the upper valve seat 10A to the top of the ball 46) is defined as h. When the main valve body 20 begins to rotate 60 ° from this state, the accommodating portion 47 moves (rotates) in the circumferential direction, and the ball 46 moves along with this, as shown in FIG. 20 (upper half portion 20A) rolls out of the recessed hole 48 while being pushed down against the urging force of the compression coil spring 29 that is compressed between the upper half portion 20A and the lower half portion 20B. As a result, the seal surface 37 of the main valve body 20 is separated from the valve seat surface 17 of the upper valve seat 10A. The amount by which the main valve body 20 is pushed down at this time is the fitting amount h.

なお、主弁体20が60°回転すると、ボール46が次の凹穴48に嵌り込むので、主弁体20(上半部20A)は圧縮コイルばね29の付勢力によって押し上げられ、主弁体20のシール面37が上側弁シート10Aの弁シート面17に押し付けられる。   When the main valve body 20 is rotated by 60 °, the ball 46 is fitted into the next concave hole 48, so that the main valve body 20 (upper half portion 20A) is pushed up by the urging force of the compression coil spring 29, and the main valve body. The 20 sealing surfaces 37 are pressed against the valve seat surface 17 of the upper valve seat 10A.

以上の説明から理解されるように、主弁体20が第1の回転位置をとるとき、第1ポート11と第3ポート13とを連通させる第1連通路31は、直線貫通路部21A、22A、23A、及び24Aで構成される直線状通路となり、また、第2ポート12と第4ポート14とを連通させる第2連通路32は、直線貫通路部21B、22B、23B、及び24Bで構成される直線状通路となる。   As understood from the above description, when the main valve body 20 takes the first rotational position, the first communication passage 31 that communicates the first port 11 and the third port 13 is the straight through passage portion 21A, The second communication path 32 that connects the second port 12 and the fourth port 14 is a straight through-passage portion 21B, 22B, 23B, and 24B. It becomes the linear path comprised.

それに対し、主弁体20が第2の回転位置をとるとき、第1ポート11と第2ポート12とを連通させる第3連通路33は、主弁体20の上半部20Aに設けられた横穴付き通路部21C及び21Dで構成されるU字状通路となり、また、第3ポート13と第4ポート14とを連通させる第4連通路34は、主弁体20の下半部20Bに設けられた横穴付き通路部24C及び24Dで構成されるU字状通路となる。   On the other hand, when the main valve body 20 takes the second rotational position, the third communication passage 33 for communicating the first port 11 and the second port 12 is provided in the upper half portion 20A of the main valve body 20. A U-shaped passage formed of passage portions 21 </ b> C and 21 </ b> D with horizontal holes is provided, and a fourth communication passage 34 that connects the third port 13 and the fourth port 14 is provided in the lower half portion 20 </ b> B of the main valve body 20. It becomes a U-shaped passage composed of the passage portions 24C and 24D with the horizontal holes.

上記のように、本実施例の流路切換弁1では、主弁体20を第1の回転位置から時計回りに60°回転させることにより、第1連通路31により連通するポート11−13間及び第2連通路32により連通するポート12−14間から、第3連通路33により連通するポート11−12間及び第4連通路により連通するポート13−14間への流路の切り換えが行われ、主弁体20を第2の回転位置から反時計回りに60°回転させることにより、第3連通路33により連通するポート11−12間及び第4連通路により連通するポート13−14間から、第1連通路31により連通するポート11−13間及び第2連通路32により連通するポート12−14間への流路の切り換えが行われる。   As described above, in the flow path switching valve 1 of the present embodiment, the main valve body 20 is rotated 60 degrees clockwise from the first rotation position, so that the port 11-13 communicates with the first communication path 31. In addition, the flow path is switched between the ports 12-14 communicated by the second communication path 32, the ports 11-12 communicated by the third communication path 33, and the ports 13-14 communicated by the fourth communication path 33. By rotating the main valve body 20 counterclockwise from the second rotational position by 60 °, between the ports 11-12 communicated by the third communication path 33 and between the ports 13-14 communicated by the fourth communication path The flow path is switched between the ports 11-13 communicating with the first communication path 31 and between the ports 12-14 communicating with the second communication path 32.

本実施例の流路切換弁1を、図24に示される如くのヒートポンプ式冷暖房システムに組み込む際には、前述したように、例えば、第1ポート11は圧縮機吐出側に接続される吐出側高圧ポートD、第2ポート12は室内熱交換機に接続される室内側入出ポートE、第3ポート13は室外熱交換器に接続される室外側入出ポートC、第4ポート14は圧縮機吸入側に接続される吸入側低圧ポートSとされる。   When the flow path switching valve 1 of the present embodiment is incorporated into a heat pump type air conditioning system as shown in FIG. 24, for example, the first port 11 is connected to the compressor discharge side as described above. The high-pressure port D, the second port 12 is an indoor input / output port E connected to the indoor heat exchanger, the third port 13 is an outdoor input / output port C connected to the outdoor heat exchanger, and the fourth port 14 is a compressor suction side The suction side low-pressure port S is connected to.

そして、冷房運転を行う場合には、主弁体20に図6(A)に示される如くの第1の回転位置をとらせる。これにより、図6(A)の(2)に白抜き矢印で示される如くに、圧縮機からの高圧冷媒が吐出側高圧ポート11(D)→直線状の第1連通路31→室外側入出ポート13(C)へと流れるとともに、室内熱交換器からの低圧冷媒が室内側入出ポート12(E)→直線状の第2連通路32→吸入側低圧ポート14(S)へと流れる。   When the cooling operation is performed, the main valve body 20 is set to the first rotational position as shown in FIG. As a result, as indicated by the white arrow in (2) of FIG. 6 (A), the high-pressure refrigerant from the compressor is discharged from the discharge-side high-pressure port 11 (D) → the linear first communication passage 31 → outdoor entrance / exit. While flowing to the port 13 (C), the low-pressure refrigerant from the indoor heat exchanger flows from the indoor-side inlet / outlet port 12 (E) to the linear second communication path 32 to the suction-side low-pressure port 14 (S).

一方、暖房運転を行う場合には、主弁体20を第1の回転位置から時計回りに60°回転させて図6(B)に示される如くの第2の回転位置をとらせる。これにより、流路の切り換えが行われ、図6(B)の(2)に白抜き矢印で示される如くに、圧縮機からの高圧冷媒が吐出側高圧ポート11(D)→U字状の第3連通路33→室内側入出ポート12(E)へと流れるとともに、室外側熱交換器からの低圧冷媒が室外側入出ポート13(C)→逆U字状の第4連通路34→吸入側低圧ポート14(S)へと流れる。   On the other hand, when performing the heating operation, the main valve body 20 is rotated 60 ° clockwise from the first rotation position to take the second rotation position as shown in FIG. As a result, the flow path is switched, and the high-pressure refrigerant from the compressor is discharged into the discharge-side high-pressure port 11 (D) → U-shaped as shown by the white arrow in FIG. 6B (2). The third communication passage 33 → flows to the indoor side inlet / outlet port 12 (E), and the low-pressure refrigerant from the outdoor heat exchanger is connected to the outdoor side inlet / outlet port 13 (C) → the inverted U-shaped fourth communication passage 34 → suction. Flows to the side low pressure port 14 (S).

このような構成とされた本実施例の流路切換弁1においては、第1連通路31及び第2連通路32は始端から終端までの太さ(通路径)が第1ポート11及び第2ポート12の口径と略同じ直線状の通路とされ、冷媒は第1ポート11、第2ポート12から真下にストレートに流れるので、主弁5(主弁体20)内での圧力損失はほとんど生じない。また、二つの横穴付き通路部21C及び21D、24C及び24Dで構成される第3連通路33及び第4連通路34は、内容積が比較的大きくされているので、圧力損失が軽減され、トータルでは従来の流路切換弁に比べて圧力損失を相当軽減できる。   In the flow path switching valve 1 of the present embodiment configured as described above, the first communication path 31 and the second communication path 32 have a thickness (passage diameter) from the start end to the end, and the first port 11 and the second connection path 32 have the same configuration. The straight passage is substantially the same as the diameter of the port 12, and the refrigerant flows straight down from the first port 11 and the second port 12, so that almost no pressure loss occurs in the main valve 5 (main valve body 20). Absent. Further, since the third communication passage 33 and the fourth communication passage 34 constituted by the two lateral hole passage portions 21C and 21D, 24C and 24D have a relatively large internal volume, the pressure loss is reduced, and the total Thus, the pressure loss can be considerably reduced as compared with the conventional flow path switching valve.

また、主弁体20が上半部20Aと下半部20Bとの二分割構成とされ、上半部20Aと下半部20Bはそれぞれ独立して上下動できるようにされるとともに、上半部20Aと下半部20Bとの間に圧縮コイルばね29が縮装されているので、そのばね力により、上半部20Aは押し上げられてそのシール面37が上側弁シート10Aの弁シート面17における各ポート11、12周りに押し付けられるとともに、下半部20Bは押し下げられてそのシール面37が下側弁シート10Bの弁シート面17における各ポート13、14周りに押し付けられる。   Further, the main valve body 20 has a two-part configuration of an upper half portion 20A and a lower half portion 20B, and the upper half portion 20A and the lower half portion 20B can be moved up and down independently, and the upper half portion Since the compression coil spring 29 is mounted between 20A and the lower half portion 20B, the upper half portion 20A is pushed up by the spring force, and the sealing surface 37 of the upper half seat 20A on the valve seat surface 17 of the upper valve seat 10A. While being pressed around each port 11, 12, the lower half 20 </ b> B is pushed down and its sealing surface 37 is pressed around each port 13, 14 in the valve seat surface 17 of the lower valve seat 10 </ b> B.

この場合、主弁体20(上半部20Aと下半部20B)側に凸部36が突設されてその端面が環状シール面37とされていることから、弁シート面17に対接する部分の面積が必要最小限とされ、そのため、対接面圧が高められる。これにより、十分なシール性を確保できて、流体(冷媒)が主弁体20の摺動面から漏れる弁洩れを効果的に抑制できる。   In this case, since the convex part 36 is protrudingly provided in the main valve body 20 (upper half part 20A and lower half part 20B) side, and the end surface is made into the annular seal surface 37, it is the part which contacts the valve seat surface 17 Area is minimized, so that the contact surface pressure is increased. Thereby, sufficient sealing performance can be ensured, and valve leakage in which fluid (refrigerant) leaks from the sliding surface of the main valve body 20 can be effectively suppressed.

加えて、上側弁シート10A及び下側弁シート10Bは平板状とされるので、弁シート面17を平坦な平滑面とする(容易に面精度を上げる)ことができ、これによっても、従来例のようにシールすべき面に円筒面を含んでいるものに比べて、シール性を格段に向上できる。   In addition, since the upper valve seat 10A and the lower valve seat 10B are formed in a flat plate shape, the valve seat surface 17 can be made flat and smooth (the surface accuracy can be easily increased). Compared with the case where the surface to be sealed includes a cylindrical surface, the sealing performance can be remarkably improved.

さらに、主弁ハウジング10の上側弁シート10A及び下側弁シート10Bに全てのポート11〜14が設けられることから、配管の取り回しが容易となるとともに、配管を含めた実質的な占有スペースを小さくできる。   Furthermore, since all the ports 11 to 14 are provided in the upper valve seat 10A and the lower valve seat 10B of the main valve housing 10, the piping can be easily handled and the substantial occupied space including the piping can be reduced. it can.

さらに加えて、本実施例においては、ボール式シール面離隔機構45により、主弁体20の回転時(流路切換中)には、主弁体20の上半部20Aが押し下げられるとともに、下半部20Bが押し上げられ、主弁体20側のシール面37、37が上側弁シート10A及び下側弁シート10Bの弁シート面17、17から離されるようにされているので、摺動摩擦がほとんど生じず、そのため、スティックスリップ等を生じ難くでき、摺動部分の摩耗を大幅に抑制することができ、さらに、摩耗が抑制されることから、シール性が向上して弁洩れを効果的に抑えることができる。   In addition, in the present embodiment, the ball type seal surface separation mechanism 45 pushes down the upper half 20A of the main valve body 20 when the main valve body 20 rotates (during switching of the flow path) and Since the half portion 20B is pushed up and the sealing surfaces 37, 37 on the main valve body 20 side are separated from the valve seat surfaces 17, 17 of the upper valve seat 10A and the lower valve seat 10B, there is almost no sliding friction. Therefore, stick-slip and the like can hardly occur, wear of the sliding part can be greatly suppressed, and further, since wear is suppressed, sealing performance is improved and valve leakage is effectively suppressed. be able to.

また、特許文献1に示されるような従来のスライド式主弁体を有する四方切換弁においては、流路の切換時に高圧配管Dと低圧配管Sとの流路開口面積が急激に変化するため、高圧の冷媒が低圧配管に一気に入り込むことより異音(切換音)が発生する。この異音を防止するために、冷暖房システム側で圧縮機の周波数を徐々に低下させて、高圧配管Dと低圧配管Sとの圧力差による異音が許容できる程度の差圧になるようにしてから流路の切り換えを行う必要があった。本実施例の流路切換弁1においては、ボール式シール面隔離機構45により主弁体を弁シート面から嵌り込み量hの分だけ浮かせてから切り換えるので、切換直後から一定の流路開口面積を確保でき、高圧配管Dと低圧配管Sとの間の流路開口面積が急激に変化することがなく、それゆえ上記の異音の発生を抑制できる。また、嵌り込み量hを適宜変更することにより、流路切換時の圧縮機の周波数の低下度合を特許文献1の四方切換弁を用いた冷暖房システムより小さくすることもできるし、圧縮機の周波数の低下を行うことなく流路を切り換えることもできる。   Further, in the four-way switching valve having a conventional sliding main valve body as shown in Patent Document 1, the flow path opening area between the high pressure pipe D and the low pressure pipe S changes suddenly when the flow path is switched. An abnormal noise (switching noise) is generated by the fact that the high-pressure refrigerant is plunged into the low-pressure pipe. In order to prevent this abnormal noise, the frequency of the compressor is gradually reduced on the air conditioning system side so that the abnormal pressure due to the pressure difference between the high pressure pipe D and the low pressure pipe S is acceptable. It was necessary to switch the flow path. In the flow path switching valve 1 of this embodiment, the main valve body is switched from the valve seat surface by the amount h of fitting by the ball-type seal surface isolation mechanism 45, so that switching is performed. Therefore, the flow path opening area between the high-pressure pipe D and the low-pressure pipe S does not change abruptly, and therefore the above-mentioned abnormal noise can be suppressed. Further, by appropriately changing the fitting amount h, the degree of decrease in the compressor frequency at the time of switching the flow path can be made smaller than that of the air conditioning system using the four-way switching valve of Patent Document 1, and the frequency of the compressor It is also possible to switch the flow path without lowering.

さらに、本実施例の流路切換弁1は、高圧を受ける主弁体20(上半部20Aと下半部20B)が円柱状とされ、その内部に連通路31〜34が設けられるので、従来例のような変形(撓み)等は生じ難く、十分な強度や耐久性を確保できる。   Furthermore, in the flow path switching valve 1 of the present embodiment, the main valve body 20 (the upper half 20A and the lower half 20B) that receives high pressure is formed in a columnar shape, and the communication paths 31 to 34 are provided therein. Deformation (bending) or the like as in the conventional example hardly occurs, and sufficient strength and durability can be ensured.

上記に加え、本実施例の流路切換弁1をヒートポンプ式冷暖房システム等の、高温高圧の冷媒と低温低圧の冷媒が流される環境で使用する場合、各連通路31〜34は主弁体20内で比較的大きく離されて設けられているので、高温高圧の冷媒と低温低圧の冷媒とが近接した状態(薄壁一枚を隔てた状態)で流される従来のものに比べて、主弁ハウジング内での熱交換量を大幅に低減でき、そのため、システムの効率を向上できるという効果も得られる。   In addition to the above, when the flow path switching valve 1 of the present embodiment is used in an environment in which a high-temperature and high-pressure refrigerant and a low-temperature and low-pressure refrigerant are flowed, such as a heat pump air conditioning system, the communication passages 31 to 34 are connected to the main valve body 20. Compared to the conventional valve in which the high-temperature and high-pressure refrigerant and the low-temperature and low-pressure refrigerant flow in close proximity (a state where a thin wall is separated), the main valve The amount of heat exchange in the housing can be greatly reduced, and the system efficiency can also be improved.

次に、上記した第1実施例の主弁体の変形例について説明する。   Next, a modification of the main valve body of the first embodiment will be described.

図11は、第1実施例の主弁体20の上半部20Aと下半部20Bをそれぞれ一体物とした例を示す。すなわち、上記第1実施例では、第1層部材21とこれに接合された第2層部材22とで上半部20Aが、また、第3層部材23とこれに接合された第4層部材24とで下半部20Bが構成されていたが、本例では、3Dプリンター等で上半部20A及び下半部20Bをそれぞれ始めから一体物として作製したものである。他の構成は、上記第1実施例と同じであり、上記第1実施例と略同様な作用効果が得られる。   FIG. 11 shows an example in which the upper half 20A and the lower half 20B of the main valve body 20 of the first embodiment are respectively integrated. That is, in the first embodiment, the upper half portion 20A is composed of the first layer member 21 and the second layer member 22 joined thereto, and the third layer member 23 and the fourth layer member joined thereto. In this example, the upper half 20A and the lower half 20B are manufactured as a single unit from the beginning with a 3D printer or the like. Other configurations are the same as those of the first embodiment, and substantially the same effects as those of the first embodiment can be obtained.

図12は、第1実施例の主弁体20の上半部20Aと下半部20Bを一体物とした例を示す。すなわち、主弁体20全体(第1〜第4層部材21〜24)を、3Dプリンター等で始めから一体物として作製したものである。この例のものでは、主弁体20を上下方向に付勢する手段を設けることができないので、所要のシール性を確保することは難しくなる。   FIG. 12 shows an example in which the upper half 20A and the lower half 20B of the main valve body 20 of the first embodiment are integrated. That is, the whole main valve body 20 (the 1st-4th layer members 21-24) is produced as a one-piece from the beginning with a 3D printer or the like. In this example, since it is impossible to provide means for urging the main valve body 20 in the vertical direction, it is difficult to ensure the required sealing performance.

[主弁の第2実施例]
以下、本発明の第2実施例の流路切換弁2を図13〜15を参照しながら説明する。
[Second embodiment of main valve]
Hereinafter, the flow path switching valve 2 of the second embodiment of the present invention will be described with reference to FIGS.

本第2実施例の流路切換弁2は、上記第1実施例の主弁体20内に設けられる連通路構成が異なるだけで、他の構成は略同じであるので、第1実施例の流路切換弁1との共通部分は図示を簡略化ないし省略し、以下においては、相違点(連通路構成)のみを重点的に説明する。なお、図13〜図15において、第1実施例の流路切換弁1の各部に対応する部分には共通の符号が付されている。   The flow path switching valve 2 of the second embodiment is substantially the same except for the configuration of the communication path provided in the main valve body 20 of the first embodiment. The illustration of the common part with the flow path switching valve 1 is simplified or omitted, and in the following, only the difference (communication path configuration) will be described mainly. In addition, in FIGS. 13-15, the code | symbol common to the part corresponding to each part of the flow-path switching valve 1 of 1st Example is attached | subjected.

図13の(A)は主弁体20が第1の回転位置にある状態を示し、(B)は主弁体20が、第1の回転位置から時計回りに90°回転した第2の回転位置にある状態を示しており、(1)は上面側配置図、(2)は各状態における連通路構成を示す概略図、(3)は下面側配置図である。   FIG. 13A shows a state in which the main valve body 20 is in the first rotational position, and FIG. 13B shows a second rotation in which the main valve body 20 is rotated 90 ° clockwise from the first rotational position. The state in a position is shown, (1) is an upper surface side arrangement drawing, (2) is a schematic diagram showing a communication path configuration in each state, and (3) is a lower surface side arrangement drawing.

図14の(A)は、第2実施例における主弁体20が第1の回転位置にある状態の、(1)第1層部材21、(2)第2層部材22、(3)第3層部材23、(4)第4層部材24のそれぞれの平面図、(B)は、主弁体20が第1の回転位置にある状態における連通路構成を示し、(B)の(1)〜(4)は、(A)の(1)〜(4)のX−X矢視線に従う断面図である。   FIG. 14A shows (1) the first layer member 21, (2) the second layer member 22, and (3) the third valve member 20 in the state where the main valve body 20 in the second embodiment is in the first rotational position. 3B is a plan view of the third layer member 23, and FIG. 4B is a plan view of the fourth layer member 24. FIG. 5B shows a communication path configuration in a state where the main valve body 20 is in the first rotation position. ) To (4) are cross-sectional views taken along line XX of (A) to (1) to (4).

図15(A)は、主弁体20が第2の回転位置にある状態の、(1)第1層部材21、(2)第2層部材22、(3)第3層部材23、(4)第4層部材24のそれぞれの平面図、(B)は、主弁体20が第2の回転位置にある状態における連通路構成を示し、(B)の(1)の上段側、下段側は、それぞれ(A)の(1)におけるU−U矢視線、V−V矢視線に従う部分断面図、(B)の(2)及び(3)は、(A)の(2)及び(3)のY−Y矢視線に従う断面図、(B)の(4)の上段側、下段側は、それぞれ(A)の(4)におけるJ−J矢視線、K−K矢視線に従う部分断面図である。   FIG. 15A shows (1) the first layer member 21, (2) the second layer member 22, (3) the third layer member 23, in a state where the main valve body 20 is in the second rotational position. 4) Each plan view of the fourth layer member 24, (B) shows the configuration of the communication path in a state where the main valve body 20 is in the second rotational position, (B) (1) upper stage side, lower stage The side is a partial cross-sectional view according to the U-U line of sight and the V-V line of sight in (1) of (A), (B) (2) and (3) are (A) (2) and ( 3) A sectional view according to the YY arrow line, (B) (4) upper side and lower side are respectively the JJ arrow line and the KK arrow line in (4) of (A). FIG.

本実施例の流路切換弁2を、図24に示される如くのヒートポンプ式冷暖房システムに組み込む際には、第1実施例とは異なり、例えば、第1ポート11は圧縮機吐出側に接続される吐出側高圧ポートD、第2ポート12は圧縮機吸入側に接続される吸入側低圧ポートS、第3ポート13は室外熱交換器に接続される室外側入出ポートC、第4ポート14は室内熱交換機に接続される室内側入出ポートEとされる。   When the flow path switching valve 2 of the present embodiment is incorporated into a heat pump type air conditioning system as shown in FIG. 24, unlike the first embodiment, for example, the first port 11 is connected to the compressor discharge side. The discharge side high pressure port D, the second port 12 is connected to the compressor suction side, the suction side low pressure port S, the third port 13 is connected to the outdoor heat exchanger, the outdoor input / output port C, and the fourth port 14 is connected The indoor side input / output port E is connected to the indoor heat exchanger.

そして、本第2実施例の流路切換弁2の主弁体20には、第1の回転位置をとるとき、第1ポート11と第3ポート13とを連通させる第1連通路41及び第4ポート14と第2ポート12とを連通させる第2連通路42とが設けられるとともに、第1の回転位置から時計回りに90°回転した第2の回転位置をとるとき、第1ポート11と第4ポート14とを連通させる第3連通路43及び第3ポート13と第2ポート12とを連通させる第4連通路44とが設けられている。   The main valve body 20 of the flow path switching valve 2 of the second embodiment has a first communication path 41 and a first communication path 41 for communicating the first port 11 and the third port 13 when taking the first rotational position. A second communication path 42 that communicates between the 4 port 14 and the second port 12 is provided, and when the second rotation position rotated 90 ° clockwise from the first rotation position is taken, A third communication path 43 that communicates with the fourth port 14 and a fourth communication path 44 that communicates the third port 13 and the second port 12 are provided.

上記第1〜第4連通路41〜44を形成するために、主弁体20を構成する第1〜第4層部材21〜24には、それぞれ4個ずつ通路部が設けられており、第1層部材21に設けられた4個の通路部の上面開口及び第4層部材24に設けられ4個の通路部の下面開口は、第1〜第4ポート11〜14と同一円周上に配在されており、また、その口径は各ポート11〜14の口径と略同じとされ、さらに、第1連通路41と第2連通路42は、各ポート11〜14の口径と略同じ通路径となっている。   In order to form the first to fourth communication passages 41 to 44, the first to fourth layer members 21 to 24 constituting the main valve body 20 are provided with four passage portions, respectively. The upper surface openings of the four passage portions provided in the first layer member 21 and the lower surface openings of the four passage portions provided in the fourth layer member 24 are on the same circumference as the first to fourth ports 11 to 14. In addition, the diameter of each of the ports 11 to 14 is substantially the same as that of the ports 11 to 14, and the first communication path 41 and the second communication path 42 are substantially the same as the diameters of the ports 11 to 14. It is the road diameter.

主弁体上半部20Aの上部を構成する第1層部材21には、第1実施例の直線貫通路部21A、21Bと同様に、180°間隔をあけて2つの直線貫通路部41A、41Bが設けられる。また、図15(B)の(1)の上段側及び下段側に示される如くに、一端部が開口し(上面開口41a、41c)、下面側全体が開口した横穴付き通路部41C、41Dが設けられる。横穴付き通路部41C、41Dの上面開口41a、41cは直線貫通路部41A、41Bから90°離れた位置に配在され、また、他端部以外の下面開口は第2層部材22により閉塞され、第2層部材22により閉塞されていない他端部(下面開口41b、41d)は、直線貫通路部41A、41Bの中心を結ぶ直線上に配在されている。   In the first layer member 21 constituting the upper part of the upper half 20A of the main valve body, the two straight through passage portions 41A, spaced apart by 180 °, like the straight through passage portions 21A, 21B of the first embodiment, 41B is provided. Further, as shown in the upper and lower sides of (1) in FIG. 15B, the passage portions 41C and 41D with lateral holes having one end opened (upper surface openings 41a and 41c) and the entire lower surface opened. Provided. The upper surface openings 41a and 41c of the passage portions 41C and 41D with the horizontal holes are arranged at positions 90 ° apart from the straight through-passage portions 41A and 41B, and the lower surface openings other than the other end portions are blocked by the second layer member 22. The other end portions (the lower surface openings 41b and 41d) that are not closed by the second layer member 22 are arranged on a straight line connecting the centers of the straight through passage portions 41A and 41B.

したがって、主弁体20が第1の回転位置にあるときには、直線貫通路部41A、41Bが第1ポート11、第2ポート12の真下に位置し、主弁体20を第1の回転位置から時計回りに90°回転させると、直線貫通路部41A、41Bの上面開口が上側弁シート10Aにより閉塞されるとともに、横穴付き通路部41D、41Cの上面開口が第1ポート11、第2ポート12の真下に位置する。   Therefore, when the main valve body 20 is in the first rotation position, the straight through passage portions 41A and 41B are positioned directly below the first port 11 and the second port 12, and the main valve body 20 is moved from the first rotation position. When rotated 90 ° clockwise, the upper surface openings of the straight through passage portions 41A and 41B are closed by the upper valve seat 10A, and the upper surface openings of the passage portions 41D and 41C with side holes are the first port 11 and the second port 12. Located directly below.

主弁体上半部20Aの下部を構成する第2層部材22には、前記した第1層部材21の直線貫通路部41A、41Bの中心を結ぶ直線上に所定間隔をあけて4つの直線貫通路部42A、42B、42C、42Dが設けられている。直線貫通路部42A、42Dは、第1層部材21の直線貫通路部41A、41Bの真下に位置している。直線貫通路部42Bは、横穴付き通路部41Cの下面開口41bの真下に位置し、直線貫通路部42Cは、横穴付き通路部41Dの下面開口41dの真下に位置している。   The second layer member 22 constituting the lower part of the upper half 20A of the main valve body has four straight lines with a predetermined interval on a straight line connecting the centers of the straight through passage portions 41A and 41B of the first layer member 21 described above. The through passage portions 42A, 42B, 42C, and 42D are provided. The straight through path portions 42 </ b> A and 42 </ b> D are located immediately below the straight through path portions 41 </ b> A and 41 </ b> B of the first layer member 21. The straight through-passage portion 42B is located directly below the lower surface opening 41b of the passage portion 41C with a horizontal hole, and the straight through-passage portion 42C is located directly below the lower surface opening 41d of the passage portion 41D with a horizontal hole.

主弁体下半部20Bの上部を構成する第3層部材23には、第2層部材22に設けられた4つの直線貫通路部42A、42B、42C、42Dの真下に、4つの直線貫通路部43A、43B、43C、43Dが設けられている。   The third layer member 23 constituting the upper portion of the lower half 20B of the main valve body has four straight through holes directly below the four straight through passage portions 42A, 42B, 42C and 42D provided in the second layer member 22. Road portions 43A, 43B, 43C, and 43D are provided.

主弁体下半部20Bの下部を構成する第4層部材24には、第1実施例の直線貫通路部21A、21Bと同様に、180°間隔をあけて2つの直線貫通路部44A、44Bが設けられる。また、図15(B)の(4)の上段側及び下段側に示される如くに、一端部が開口し(下面開口44a、44c)、上面側全体が開口した横穴付き通路部44C、44Dが設けられる。横穴付き通路部44C、44Dの下面開口44a、44cは直線貫通路部41A、41Bから90°離れた位置に配在され、また、他端部以外の上面開口は第3層部材23により閉塞され、第3層部材23により閉塞されていない他端部(上面開口44b、44d)は、直線貫通路部44A、44Bの中心を結ぶ直線上に配在されている。   In the fourth layer member 24 constituting the lower part of the lower half 20B of the main valve body, the two straight through-passage portions 44A, spaced apart by 180 °, like the straight through-passage portions 21A and 21B of the first embodiment, 44B is provided. Further, as shown in FIG. 15B (4) on the upper side and the lower side, the passage portions 44C and 44D with lateral holes having one end opened (lower surface openings 44a and 44c) and the entire upper surface side opened. Provided. The lower surface openings 44a, 44c of the passage portions 44C, 44D with the horizontal holes are disposed at positions 90 ° apart from the straight through-passage portions 41A, 41B, and the upper surface openings other than the other end portions are blocked by the third layer member 23. The other end portions (upper surface openings 44b and 44d) that are not closed by the third layer member 23 are arranged on a straight line connecting the centers of the straight through-passage portions 44A and 44B.

したがって、主弁体20が第1の回転位置にあるときには、直線貫通路部44A、44Bが第3ポート13、第4ポート14の真上に位置し、主弁体20を第1の回転位置から時計回りに90°回転させると、直線貫通路部44A、44Bの下面開口が下側弁シート10Bにより閉塞されるとともに、横穴付き通路部44D、44Cの下面開口44c、44aが第3ポート13、第4ポート14の真上に位置する。   Therefore, when the main valve body 20 is in the first rotation position, the straight through-passage portions 44A and 44B are positioned immediately above the third port 13 and the fourth port 14, and the main valve body 20 is moved to the first rotation position. When rotating 90 ° clockwise, the lower surface openings of the straight through passage portions 44A, 44B are closed by the lower valve seat 10B, and the lower surface openings 44c, 44a of the lateral hole passage portions 44D, 44C , Located just above the fourth port 14.

以上の説明から理解されるように、主弁体20が第1の回転位置をとるとき、第1ポート11と第3ポート13とを連通させる第1連通路41は、直線貫通路部41A、42A、43A、及び44Aで構成される直線状通路となり、また、第4ポート14と第2ポート12とを連通させる第2連通路42は、直線貫通路部41B、42D、43D、及び44Bで構成される直線状通路となる。   As understood from the above description, when the main valve body 20 takes the first rotational position, the first communication passage 41 that communicates the first port 11 and the third port 13 is the straight through passage portion 41A, 42A, 43A, and 44A, and the 2nd communication path 42 which makes the 4th port 14 and the 2nd port 12 communicate is the straight through passage part 41B, 42D, 43D, and 44B. It becomes the linear path comprised.

それに対し、主弁体20が第2の回転位置をとるとき、第1ポート11と第4ポート14とを連通させる第3連通路43は、上から順に横穴付き通路部41D→直線貫通路部42C→直線貫通路部43C→横穴付き通路部44Cで構成されるクランク状通路となる。また、第3ポート13と第2ポート12とを連通させる第4連通路44は、下から順に横穴付き通路部44D→直線貫通路部43B→直線貫通路部42B→横穴付き通路部41Cで構成されるクランク状通路となる。   On the other hand, when the main valve body 20 takes the second rotational position, the third communication passage 43 that connects the first port 11 and the fourth port 14 is a passage portion 41D with a horizontal hole in order from the top → a straight through passage portion. It becomes a crank-shaped passage composed of 42C → straight through passage portion 43C → passage portion 44C with a horizontal hole. Further, the fourth communication passage 44 for communicating the third port 13 and the second port 12 is constituted by a passage portion with a horizontal hole 44D → a straight through passage portion 43B → a straight through passage portion 42B → a passage portion with a horizontal hole 41C in order from the bottom. It becomes a crank-shaped passage.

上記のように、本実施例の流路切換弁2では、主弁体20を第1の回転位置から時計回りに90°回転させることにより、第1連通路41により連通するポート11−13間及び第2連通路42により連通するポート14−12間から、第3連通路43により連通するポート11−14間及び第4連通路により連通するポート13−12間への流路の切り換えが行われ、主弁体20を第2の回転位置から反時計回りに90°回転させることにより、第3連通路43により連通するポート11−14間及び第4連通路により連通するポート13−12間から、第1連通路41により連通するポート11−13間及び第2連通路42により連通するポート14−12間への流路の切り換えが行われる。   As described above, in the flow path switching valve 2 of the present embodiment, the main valve body 20 is rotated 90 ° clockwise from the first rotation position, so that the port 11-13 communicates with the first communication path 41. In addition, the flow path is switched from between the ports 14-12 communicated by the second communication path 42 to the ports 11-14 communicated by the third communication path 43 and between the ports 13-12 communicated by the fourth communication path 43. By rotating the main valve body 20 by 90 ° counterclockwise from the second rotation position, between the ports 11-14 communicating by the third communication passage 43 and between the ports 13-12 communicating by the fourth communication passage The flow path is switched between the ports 11-13 communicating with the first communication path 41 and between the ports 14-12 communicating with the second communication path 42.

本実施例の流路切換弁2を、図24に示される如くのヒートポンプ式冷暖房システムに組み込んで、冷房運転を行う場合には、主弁体20に図13(A)の(1)に示される如くの第1の回転位置をとらせる。これにより、図13(A)の(2)に白抜き矢印で示される如くに、圧縮機からの高圧冷媒が吐出側高圧ポート11(D)→直線状の第1連通路41→室外側入出ポート13(C)へと流れるとともに、室内熱交換器からの低圧冷媒が室内側入出ポート14(E)→直線状の第2連通路42→吸入側低圧ポート12(S)へと流れる。   When the flow path switching valve 2 of the present embodiment is incorporated into a heat pump type air conditioning system as shown in FIG. 24 and cooling operation is performed, the main valve body 20 is shown in FIG. The first rotational position as taken is taken. As a result, as indicated by the white arrow in (2) of FIG. 13 (A), the high-pressure refrigerant from the compressor is discharged from the discharge-side high-pressure port 11 (D) → the linear first communication passage 41 → outdoor entrance / exit. While flowing to the port 13 (C), the low-pressure refrigerant from the indoor heat exchanger flows from the indoor-side inlet / outlet port 14 (E) to the linear second communication path 42 → the suction-side low-pressure port 12 (S).

一方、暖房運転を行う場合には、主弁体20を第1の回転位置から時計回りに90°回転させて図13(B)の(1)に示される如くの第2の回転位置をとらせる。これにより、流路の切り換えが行われ、図13(B)の(2)に白抜き矢印で示される如くに、圧縮機からの高圧冷媒が吐出側高圧ポート11(D)→クランク状の第3連通路43→室内側入出ポート14(E)へと流れるとともに、室外側熱交換器からの低圧冷媒が室外側入出ポート13(C)→クランク状の第4連通路44→吸入側低圧ポート12(S)へと流れる。   On the other hand, when performing the heating operation, the main valve body 20 is rotated 90 ° clockwise from the first rotation position to obtain the second rotation position as shown in (1) of FIG. Make it. As a result, the flow path is switched, and the high-pressure refrigerant from the compressor is discharged from the discharge-side high-pressure port 11 (D) → the crank-shaped first as shown by the white arrow in (2) of FIG. The three-way passage 43 → flows to the indoor side inlet / outlet port 14 (E), and the low-pressure refrigerant from the outdoor side heat exchanger enters the outdoor side inlet / outlet port 13 (C) → the crank-like fourth communication passage 44 → the suction side low-pressure port. 12 (S).

このような構成とされた本実施例の流路切換弁2においても第1実施例とほぼ同様な作用効果が得られる。   In the flow path switching valve 2 of the present embodiment having such a configuration, substantially the same effect as that of the first embodiment can be obtained.

[主弁の第3実施例]
図16は、第3実施例の流路切換弁を示し、(A)は主弁体が第1の回転位置にある状態、(B)は主弁体が第2の回転位置にある状態であり、(1)は上面側配置図、(2)は(1)のX−X矢視線に従う断面図である。なお、図16において、第1実施例の流路切換弁1の各部に対応する部分には共通の符号が付されている。
[Third embodiment of main valve]
FIGS. 16A and 16B show the flow path switching valve of the third embodiment, in which FIG. 16A shows a state where the main valve body is in the first rotational position, and FIG. 16B shows a state where the main valve body is in the second rotational position. Yes, (1) is an upper surface side arrangement view, and (2) is a cross-sectional view taken along the line XX of (1). In FIG. 16, portions corresponding to the respective portions of the flow path switching valve 1 of the first embodiment are denoted by common reference numerals.

本第3実施例の流路切換弁3は、三方切換弁であり、上記第1実施例の主弁ハウジング10に設けられている第2ポート12が無く、第1層部材21と第2層部材22とが一体化され(U字状の連通路(第3連通路33)を形成する必要がないため)、また、第1実施例における第2連通路32及び第3連通路33を構成する直線貫通路部21B、22B、23B、24Bと横穴付き通路部21C、21D及びそれに付随する部分を削除したものである。   The flow path switching valve 3 of the third embodiment is a three-way switching valve, and there is no second port 12 provided in the main valve housing 10 of the first embodiment, and the first layer member 21 and the second layer. The member 22 is integrated (because it is not necessary to form a U-shaped communication path (third communication path 33)), and the second communication path 32 and the third communication path 33 in the first embodiment are configured. The straight through-passage portions 21B, 22B, 23B, and 24B, the passage portions with side holes 21C and 21D, and the portions associated therewith are deleted.

したがって、本第3実施例の流路切換弁3では、主弁体20を第1の回転位置から時計回りに60°回転させることにより、第1連通路31により連通するポート11−13間から第4連通路34により連通するポート13−14間への流路の切り換えが行われ、主弁体20を第2の回転位置から反時計回りに60°回転させることにより、第4連通路34により連通するポート13−14間から、第1連通路31により連通するポート11−13間への流路の切り換えが行われる。   Therefore, in the flow path switching valve 3 of the third embodiment, the main valve body 20 is rotated clockwise by 60 ° from the first rotation position, so that the port 11-13 communicates with the first communication path 31. The flow path is switched between the ports 13-14 communicated by the fourth communication path 34, and the main valve body 20 is rotated 60 ° counterclockwise from the second rotation position, whereby the fourth communication path 34 is obtained. Thus, the flow path is switched between the ports 13-14 communicating with each other and the ports 11-13 communicating with the first communication path 31.

このような構成とされた本実施例の流路切換弁3においても、三方切換弁と四方切換弁との違いはあるが、第1実施例の四方切換弁1とほぼ同様な作用効果が得られる。   Even in the flow path switching valve 3 of the present embodiment configured as described above, although there are differences between the three-way switching valve and the four-way switching valve, the same effects as the four-way switching valve 1 of the first embodiment are obtained. It is done.

なお、本実施例の三方切換弁3を前述したヒートポンプ式冷暖房システムに使用する場合には、当該三方切換弁3を2個使用して四方切換弁として働かせる、あるいは、冷媒又は冷気・暖気供給先の切り換え(例えば、2室のうちの一方に送るか、他方に送るかの切り換え)等に使用する。   When the three-way switching valve 3 of the present embodiment is used in the heat pump type air conditioning system described above, two three-way switching valves 3 are used to act as a four-way switching valve, or a refrigerant or cold / warm air supply destination is used. (For example, switching between sending to one of the two rooms or sending to the other).

[アクチュエータの実施例]
次に、図17〜図22を参照しながら、前記第1実施例の流路切換弁1における主弁体20を回動させるためのアクチュエータ7について説明する。
[Example of actuator]
Next, the actuator 7 for rotating the main valve body 20 in the flow path switching valve 1 of the first embodiment will be described with reference to FIGS.

本実施例1のアクチュエータ7は、前記主弁5内を流通する高圧流体と低圧流体との差圧を利用した流体圧式のもので、前記主弁ハウジング10における下側弁シート10Bの一端側に設けられた本体部50を有する。本体部50は、下側弁シート10Bから下方に向けて延設された円筒状の胴部51と、この胴部51の下面開口を気密的に封止するように固着されてかしめ固定された、中央に凸部52aを持つ下面閉塞部材52と、胴部51の上面開口を封止するようかしめ固定され、さらにはんだ付け、ろう付け、溶接等により固定された厚肉円板状の、シール部材とストッパを兼ねる上面閉塞部材53とを備え、その内部には、作動室55が設けられ、この作動室55には、運動変換機構58を構成する厚肉有底円筒状の受圧移動体60と、この受圧移動体60に該受圧移動体60の上下方向の移動に伴い相対的に回動可能に内挿される短円柱状の回転駆動体65とが収容されている。回転駆動体65は、本体部50に対して回動可能に軸支されているため、作動室55内で上下方向に移動せずに、受圧移動体60の上下方向の移動に伴って相対的に該受圧移動体60内で回動するようになっている(後で詳説する)。   The actuator 7 according to the first embodiment is a fluid pressure type that uses a differential pressure between a high-pressure fluid and a low-pressure fluid that circulates in the main valve 5, and is provided at one end of the lower valve seat 10 </ b> B in the main valve housing 10. It has the main-body part 50 provided. The main body 50 is fixed by caulking and fixing so as to hermetically seal a cylindrical body 51 extending downward from the lower valve seat 10B and a lower surface opening of the body 51. , A lower surface closing member 52 having a convex portion 52a in the center, and a thick disk-shaped seal fixed by caulking so as to seal the upper surface opening of the body portion 51, and further fixed by soldering, brazing, welding, or the like An upper surface closing member 53 that also serves as a member and a stopper is provided, and a working chamber 55 is provided therein, and the working chamber 55 has a thick bottomed cylindrical pressure receiving moving body 60 that constitutes a motion converting mechanism 58. The pressure receiving moving body 60 accommodates a short cylindrical rotation driving body 65 that is rotatably inserted with the pressure receiving moving body 60 in the vertical direction. Since the rotary drive body 65 is pivotally supported with respect to the main body 50, the rotary drive body 65 does not move in the vertical direction within the working chamber 55, but is relatively moved with the movement of the pressure receiving moving body 60 in the vertical direction. The pressure receiving moving body 60 is rotated (described in detail later).

前記受圧移動体60の外周下端近くには、作動室55の内周面との間を気密的に封止して該作動室55を容積可変の上部55Aと下部55Bとに気密的に仕切るパッキン62が装着され、また、受圧移動体60の外周の上部には、胴部51の内周上半部に左右2カ所設けられた高さ方向に伸びるキー溝54にそれぞれ嵌め込まれる作動ピン63が圧入等により固定されている。   In the vicinity of the lower end of the outer periphery of the pressure-receiving moving body 60, a packing that hermetically seals between the inner peripheral surface of the working chamber 55 and hermetically partitions the working chamber 55 into a variable volume upper part 55A and a lower part 55B. 62, and an operating pin 63 that is fitted in a key groove 54 extending in the height direction provided at two left and right positions on the upper half of the inner periphery of the body 51. It is fixed by press fitting.

前記作動ピン63とキー溝54により、受圧移動体60は、直線的に上下動するがその回転は阻止される。   The pressure receiving moving body 60 moves up and down linearly by the operating pin 63 and the key groove 54, but its rotation is prevented.

なお、図17には、受圧移動体60が最下降位置にある状態(下動行程完了状態)が示され、図18(A)には、受圧移動体60が最上昇位置にある状態(上動行程完了状態)が示されている(後で詳述)。   FIG. 17 shows a state where the pressure receiving moving body 60 is in the lowest lowered position (down movement stroke completion state), and FIG. 18A shows a state where the pressure receiving moving body 60 is in the highest rising position (upper position). The movement stroke completion state) is shown (detailed later).

また、本体部50の上部には、作動室上部55Aに高圧流体を導入・排出するための上部ポート56が設けられるとともに、その底部(下面閉塞部材52)には、作動室下部55Bに高圧流体を導入・排出するための下部ポート57が設けられている。   Further, an upper port 56 for introducing and discharging a high-pressure fluid to and from the working chamber upper portion 55A is provided at the upper portion of the main body 50, and a high-pressure fluid is provided at the bottom portion (lower surface closing member 52) to the working chamber lower portion 55B. A lower port 57 is provided for introducing and discharging the gas.

そして、本実施例のアクチュエータ7には、前記運動変換機構58を構成する受圧移動体60と回転駆動体65との間には、受圧移動体60の上下動(往復直線運動)を回転駆動体65の正逆両方向の回転運動に変換するため、ボール72、このボール72の収容部74、及び螺旋溝75が設けられている。   In the actuator 7 of this embodiment, the vertical movement (reciprocating linear motion) of the pressure receiving moving body 60 is provided between the pressure receiving moving body 60 and the rotation driving body 65 constituting the motion converting mechanism 58. A ball 72, a receiving portion 74 for the ball 72, and a spiral groove 75 are provided to convert the rotational movement into 65 forward and reverse directions.

詳細には、受圧移動体60には、複数個(本実施例では2個)のボール72及びその収容部74が設けられ、回転駆動体65には、その外周に、周方向に曲がりながら上下方向に伸びる複数本(本実施例では2本)の螺旋溝75が設けられている。前記収容部74は、受圧移動体60の上端部と、該上端部に溶接等により接合された環状押さえ部材66とにより、ボール72を、その一部を半径方向内方に突出させた状態で、回転自在にかつ移動は実質的に阻止した状態で収容するようになっており、前記螺旋溝75は、該収容部74から半径方向内方に突出するボール72の一部が嵌め込まれて回転自在に密接するような、断面円弧状の浅溝からなっている。   Specifically, the pressure receiving moving body 60 is provided with a plurality of (two in the present embodiment) balls 72 and their accommodating portions 74, and the rotary drive body 65 is vertically moved around its outer periphery while bending in the circumferential direction. A plurality of (two in this embodiment) spiral grooves 75 extending in the direction are provided. The accommodating portion 74 is formed in a state where a part of the ball 72 protrudes radially inward by an upper end portion of the pressure receiving moving body 60 and an annular pressing member 66 joined to the upper end portion by welding or the like. The spiral groove 75 is rotatably accommodated in a state where movement is substantially prevented, and the spiral groove 75 rotates with a part of a ball 72 protruding radially inward from the accommodating portion 74. It consists of a shallow groove with an arc-shaped cross-section that is in close contact.

前記回転駆動体65の中央には、該回転駆動体65と一体回動するように回転駆動軸部76がかしめ固定されている。回転駆動軸部76は、回転駆動体65にその下部が固定された下部大径部76aと、これに続く中間部76bと、下側弁シート10Bの下面側に設けられた軸受穴16に回転自在に支持されている小径の枢軸部76cとからなっている。また、回転駆動軸部76の下部大径部76aは、下側から、回転駆動体65の中央穴に通される挿通部76aaと、該挿通部76aaよりも拡径され且つ上面閉塞部材53の中央穴に通される第1拡径部76abと、該第1拡径部76abよりもさらに拡径された第2拡径部76ac(上面閉塞部材53と回転伝達機構77の駆動アーム78との間に配在される部分)とからなっており、上面閉塞部材53の中央穴と第1拡径部76abとの間にはOリング59が介装されている。   A rotation drive shaft portion 76 is caulked and fixed at the center of the rotation drive body 65 so as to rotate integrally with the rotation drive body 65. The rotation drive shaft portion 76 rotates in a lower large diameter portion 76a whose lower portion is fixed to the rotation drive body 65, an intermediate portion 76b following this, and a bearing hole 16 provided on the lower surface side of the lower valve seat 10B. It is composed of a small-diameter pivot portion 76c that is freely supported. Further, the lower large-diameter portion 76a of the rotation drive shaft portion 76 has an insertion portion 76aa that is passed through the central hole of the rotation drive body 65 from the lower side, a diameter larger than that of the insertion portion 76aa, and the upper surface closing member 53. A first diameter-expanded portion 76ab that is passed through the central hole, and a second diameter-expanded portion 76ac that is further expanded than the first diameter-expanded portion 76ab (the upper surface closing member 53 and the drive arm 78 of the rotation transmission mechanism 77). An O-ring 59 is interposed between the central hole of the upper surface closing member 53 and the first enlarged diameter portion 76ab.

第1拡径部76abと第2拡径部76acにより形成される段差の下向きの段差面と上面閉塞部材53の上面とが当接することで、前記回転駆動軸部76とそれに固定された回転駆動体65とが抜け落ちることが防止され、また、挿通部76aaと第1拡径部76abにより形成される段差の下向きの段差面は、回転駆動体65を回転駆動軸部76にかしめ固定する際の受け面とされている。   A downward step surface formed by the first enlarged portion 76ab and the second enlarged portion 76ac and the upper surface of the upper surface closing member 53 come into contact with each other, so that the rotational drive shaft portion 76 and the rotational drive fixed thereto are brought into contact. The body 65 is prevented from falling off, and the downward step surface formed by the insertion portion 76aa and the first enlarged diameter portion 76ab is used when the rotary drive body 65 is caulked and fixed to the rotary drive shaft portion 76. It is regarded as a receiving surface.

ここで、回転駆動体65の回転軸線Q(回転駆動軸部76)は、主弁体20の回転軸線Oに対して偏心するとともに、主弁体20の回転軸線Oに平行に配在されており、回転駆動軸部76と主弁体20の下側回転軸部30Bとの間には、回転駆動体65の回転を主弁体20に伝達する回転伝達機構77が設けられている。   Here, the rotation axis Q (rotation drive shaft portion 76) of the rotation drive body 65 is eccentric with respect to the rotation axis O of the main valve body 20, and is arranged in parallel to the rotation axis O of the main valve body 20. A rotation transmission mechanism 77 that transmits the rotation of the rotation drive body 65 to the main valve body 20 is provided between the rotation drive shaft section 76 and the lower rotation shaft section 30B of the main valve body 20.

回転伝達機構77は、図17、図18(A)に加えて図19を参照すればよくわかるように、回転駆動軸部76の中間部76bにその基端部が連結固定され、その先端中央にU形係合溝78aが形成された駆動アーム78と、前記主弁体20における下側回転軸部30Bの枢軸部30cにその基端部が連結固定され、その先端付近に、前記U形係合溝78aに摺動自在に係合する係合ピン79が下向きに垂設された従動アーム39とから構成されている。   The rotation transmission mechanism 77 has a base end portion connected and fixed to the intermediate portion 76b of the rotation drive shaft portion 76, as can be understood by referring to FIG. 19 in addition to FIGS. The base end portion is connected and fixed to the drive arm 78 having a U-shaped engagement groove 78a formed in the main valve body 20 and the pivot portion 30c of the lower rotary shaft portion 30B of the main valve body 20, and the U-shape is located near the distal end thereof. An engaging pin 79 that slidably engages with the engaging groove 78a is constituted by a driven arm 39 that hangs downward.

かかる構成の回転伝達機構77は、回転駆動軸部76が回転すると、それと一体に駆動アーム78が回転(揺動)し、これに伴って従動アーム39の先端付近(係合ピン79)が駆動アーム78の先端付近(U形係合溝78a)に連れ回され、これによって、下側回転軸部30B及び主弁体20が回転する。この場合、本実施例では、従動アーム39の回転角度θは60°とされ、前述したように主弁体20が流路切換に必要とする回転角度である。前記回転角度θは、受圧移動体60の上下動のストローク長や駆動アーム78と従動アーム39のレバー比(てこ比)等により設定される。なお、図17、図18(A)、及び後述する図21(A)〜(D)においては、駆動アーム78及び従動アーム39の回転途中状態が示されている。   In the rotation transmission mechanism 77 having such a configuration, when the rotation drive shaft portion 76 rotates, the drive arm 78 rotates (swings) integrally therewith, and accordingly, the vicinity of the tip of the driven arm 39 (engagement pin 79) is driven. Along with the vicinity of the tip of the arm 78 (U-shaped engagement groove 78a), the lower rotary shaft 30B and the main valve body 20 are rotated. In this case, in this embodiment, the rotation angle θ of the driven arm 39 is 60 °, and is the rotation angle that the main valve body 20 needs to switch the flow path as described above. The rotation angle θ is set by the stroke length of the vertical movement of the pressure receiving moving body 60, the lever ratio (leverage ratio) of the drive arm 78 and the driven arm 39, and the like. Note that FIGS. 17, 18 </ b> A, and FIGS. 21 </ b> A to 21 </ b> D, which will be described later, show states in the middle of rotation of the drive arm 78 and the driven arm 39.

また、回転伝達機構としては、図20に示される如くの、回転駆動軸部76に連結固定された駆動ギア97と、下側回転軸部30Bに連結固定され、前記駆動ギア97に噛合する従動ギア98とで構成する等してもよい。   As shown in FIG. 20, the rotation transmission mechanism includes a drive gear 97 connected and fixed to the rotation drive shaft portion 76 and a driven gear connected and fixed to the lower rotation shaft portion 30B and meshing with the drive gear 97. You may comprise with the gear 98, etc.

次に、アクチュエータ7の本体部50内の動作について説明する(四方パイロット弁80の構成及びそれを用いた動作については後述する)。   Next, the operation in the main body 50 of the actuator 7 will be described (the configuration of the four-way pilot valve 80 and the operation using it will be described later).

図17及び図21(A)は、作動室上部55Aに上部ポート56を介して高圧流体(高圧冷媒)を導入するとともに、作動室下部55Bから下部ポート57を介して高圧流体を排出した状態を示している。作動室上部55Aに高圧流体を導入すると、高圧流体は、受圧移動体60に装着されているパッキン62より上方で上面閉塞部材53より下方の空間(作動室上部55A)の隅々まで、つまり、受圧移動体60の内周面と回転駆動体65の外周面との間に形成される隙間を介して受圧移動体60の底面と回転駆動体65の下面との間の部分や、本体部50の胴部51の内周面と受圧移動体60の外周面との間に形成される隙間部分等に行き渡るので、受圧移動体60の上面側の受圧面積と下面側の受圧面積は等しくなる。   FIGS. 17 and 21A show a state in which high pressure fluid (high pressure refrigerant) is introduced into the upper working chamber 55A through the upper port 56 and high pressure fluid is discharged from the lower working chamber 55B through the lower port 57. Show. When the high-pressure fluid is introduced into the working chamber upper portion 55A, the high-pressure fluid reaches the corners of the space (the working chamber upper portion 55A) above the packing 62 attached to the pressure receiving moving body 60 and below the upper surface closing member 53, that is, A portion between the bottom surface of the pressure receiving moving body 60 and the lower surface of the rotary driving body 65 through a gap formed between the inner peripheral surface of the pressure receiving moving body 60 and the outer peripheral surface of the rotary driving body 65, or the main body 50 The pressure receiving area on the upper surface side of the pressure receiving moving body 60 is equal to the pressure receiving area on the lower surface side of the pressure receiving moving body 60.

このような構成のもとで、図17及び図21(A)に示される状態において、作動室下部55Bに下部ポート57を介して高圧流体を導入するとともに、作動室上部55Aから上部ポート56を介して高圧流体を排出すると、作動室上部55Aより作動室下部55Bの方が高圧となるので、受圧移動体60が上向きに押されて、受圧移動体60の作動ピン63がキー溝54に案内されながら、受圧移動体60が真っ直ぐに上動し、これに伴って運動変換機構58のボール72も回転しながら真っ直ぐに上動する。この際、ボール72の、螺旋溝75内に嵌り込んでいる部分により螺旋溝75が周方向に押されて回転駆動体65が一方向(ここでは時計回り)に回転する。そして、受圧移動体60の上端(環状押さえ部材66)が上面閉塞部材53に接当すると、受圧移動体60の上動が停止し、回転駆動体65の回転も停止する。以下、この行程を上動行程と称し、図21(B)に示される状態(受圧移動体60が最上昇位置にある状態)を上動行程完了状態と称する。   Under such a configuration, in the state shown in FIGS. 17 and 21A, high-pressure fluid is introduced into the working chamber lower portion 55B through the lower port 57, and the upper port 56 is connected to the working chamber upper portion 55A. When the high-pressure fluid is discharged via the pressure chamber, the pressure in the lower working chamber 55B becomes higher than that in the upper working chamber 55A, so that the pressure receiving moving body 60 is pushed upward and the operating pin 63 of the pressure receiving moving body 60 is guided to the key groove 54. As a result, the pressure receiving moving body 60 moves straight up, and the ball 72 of the motion conversion mechanism 58 also moves straight while rotating. At this time, the spiral groove 75 is pushed in the circumferential direction by the portion of the ball 72 fitted in the spiral groove 75, and the rotation driving body 65 rotates in one direction (here, clockwise). When the upper end (annular pressing member 66) of the pressure receiving moving body 60 comes into contact with the upper surface closing member 53, the upward movement of the pressure receiving moving body 60 is stopped and the rotation of the rotary driving body 65 is also stopped. Hereinafter, this stroke is referred to as an upward movement stroke, and the state shown in FIG. 21B (the state where the pressure receiving moving body 60 is at the highest position) is referred to as an upward movement stroke completion state.

それに対し、図21(C)、(D)に示される如くに、前記上動行程完了状態において、作動室上部55Aに上部ポート56を介して高圧流体を導入するとともに、作動室下部55Bから下部ポート57を介して高圧流体を排出すると、作動室下部55Bより作動室上部55Aの方が高圧となるので、受圧移動体60が下向きに押されて、受圧移動体60の作動ピン63がキー溝54に案内されながら、受圧移動体60が真っ直ぐに下動し、これに伴って運動変換機構58のボール72も回転しながら真っ直ぐに下動する。この際、ボール72の、螺旋溝75内に嵌り込んでいる部分により螺旋溝75が周方向に押されて回転駆動体65が他方向(ここでは反時計回り)に回転する。そして、受圧移動体60の下端が下面閉塞部材52の凸部52aに接当すると、受圧移動体60の下動が停止し、回転駆動体65の回転も停止する。以下、この行程を下動行程と称し、図21(D)に示される状態(受圧移動体60が最下降位置にある状態)を下動行程完了状態と称する。   On the other hand, as shown in FIGS. 21C and 21D, in the state where the upward movement stroke is completed, the high pressure fluid is introduced into the working chamber upper portion 55A via the upper port 56, and the working chamber lower portion 55B is lowered to the lower portion. When the high-pressure fluid is discharged through the port 57, the working chamber upper portion 55A has a higher pressure than the working chamber lower portion 55B, so that the pressure receiving moving body 60 is pushed downward, and the operating pin 63 of the pressure receiving moving body 60 is moved to the key groove. While being guided by 54, the pressure receiving moving body 60 moves down straight, and accordingly, the ball 72 of the motion conversion mechanism 58 also moves down straight while rotating. At this time, the spiral groove 75 is pushed in the circumferential direction by the portion of the ball 72 that is fitted in the spiral groove 75, and the rotational driving body 65 rotates in the other direction (counterclockwise here). When the lower end of the pressure receiving moving body 60 comes into contact with the convex portion 52a of the lower surface closing member 52, the downward movement of the pressure receiving moving body 60 stops and the rotation of the rotation driving body 65 also stops. Hereinafter, this stroke is referred to as a downward movement stroke, and the state shown in FIG. 21D (the state where the pressure receiving moving body 60 is at the lowest position) is referred to as a downward movement stroke completion state.

前記上動行程完了状態において受圧移動体60に下動行程をとらせることにより、主弁体20が第1の回転位置から第2の回転位置へと回転して前述した如くの流路切換が行われ、それとは逆に、前記下動行程完了状態において受圧移動体60に上動行程をとらせることにより、主弁体20が第2の回転位置から第1の回転位置へと回転して前述した如くの流路切換が行われる。   By causing the pressure receiving moving body 60 to take the downward movement stroke in the state of completion of the upward movement stroke, the main valve body 20 rotates from the first rotation position to the second rotation position, and the flow path switching as described above is performed. On the contrary, by causing the pressure receiving moving body 60 to take the upward movement stroke in the state where the downward movement stroke is completed, the main valve body 20 rotates from the second rotation position to the first rotation position. The flow path is switched as described above.

本実施例では、前記流路切換、すなわち、上動行程と下動行程との切り換えを、前記上部ポート56と下部ポート57、及び、高圧部分である主弁ハウジング10内と低圧部分である第4ポート14(吸入側低圧ポートS)とに接続された電磁式の四方パイロット弁80により行うようにされている。   In the present embodiment, the flow path switching, that is, the switching between the upward movement stroke and the downward movement stroke, is performed in the upper port 56 and the lower port 57 and in the main valve housing 10 which is a high pressure portion and in the low pressure portion. The operation is performed by an electromagnetic four-way pilot valve 80 connected to the 4 port 14 (suction side low pressure port S).

四方パイロット弁80は、その構造自体はよく知られているもので、図22に示される如くに、前記主弁ハウジング10の下側弁シート10Bの下面側におけるアクチュエータ7の本体部50とは反対側に下方に向けて延設された下面が開口した円筒状の弁ケース部81と、この弁ケース部81の下面開口を気密的に封止するようにろう付け・かしめ等により固定されたソレノイド部82と、弁ケース部81の側面部に圧入・かしめ等により気密的に取着された、その内端面が弁座(シート面)92とされる有底筒形の弁座ブロック83とを有する。   The structure of the four-way pilot valve 80 is well known. As shown in FIG. 22, the four-way pilot valve 80 is opposite to the main body 50 of the actuator 7 on the lower surface side of the lower valve seat 10B of the main valve housing 10. A cylindrical valve case portion 81 having an open lower surface extending downward on the side, and a solenoid fixed by brazing, caulking, or the like so as to hermetically seal the lower surface opening of the valve case portion 81 And a bottomed cylindrical valve seat block 83 whose inner end surface is a valve seat (seat surface) 92 that is airtightly attached to the side surface portion of the valve case portion 81 by press fitting, caulking, or the like. Have.

弁ケース部81内は、弁室88となっており、この弁室88は、下側弁シート10Bに貫設された細孔89を介して高圧部分である主弁ハウジング10内に連通するようになっている。ソレノイド部82は、通電励磁用のコイル82a、このコイル82aの外周を覆うカバーケース82b、コイル82aの内周側に配在されてボルト82cによりカバーケース82bに固定された吸引子84、この吸引子84に対向配置されたプランジャ85等を備えている。プランジャ85は、コイル82aと吸引子84との間にその下部が配在された円筒状のガイドパイプ86に摺動自在に嵌挿されている。ガイドパイプ86の下端は吸引子84の外周段丘部に溶接等により固定され、その上端鍔状部が弁ケース部81に溶接・ろう付け・かしめ等により気密的に取着されている。   The inside of the valve case portion 81 is a valve chamber 88. The valve chamber 88 communicates with the main valve housing 10 which is a high-pressure portion through a pore 89 penetrating the lower valve seat 10B. It has become. The solenoid part 82 includes a coil 82a for energization excitation, a cover case 82b covering the outer periphery of the coil 82a, an attractor 84 disposed on the inner peripheral side of the coil 82a and fixed to the cover case 82b by a bolt 82c, A plunger 85 or the like disposed opposite to the child 84 is provided. The plunger 85 is slidably fitted into a cylindrical guide pipe 86 having a lower portion disposed between the coil 82a and the attractor 84. The lower end of the guide pipe 86 is fixed to the outer peripheral terrace portion of the suction element 84 by welding or the like, and the upper end hook-like portion is airtightly attached to the valve case portion 81 by welding, brazing, caulking or the like.

また、吸引子84とプランジャ85との間には、プランジャ85を吸引子84から離れる方向(図では上方)に付勢する圧縮コイルばね87が縮装されている。   A compression coil spring 87 that biases the plunger 85 in a direction away from the suction element 84 (upward in the drawing) is mounted between the suction element 84 and the plunger 85.

プランジャ85の吸引子84側とは反対側の端部には、弁体91をその自由端側で厚み方向に摺動可能に保持する弁体ホルダ90がその基端部を取付具96と共に圧入・かしめ等により取付固定されている。弁体ホルダ90には、弁体91を弁座92に押し付ける方向(厚み方向)に付勢する板ばね94が取り付けられている。弁体91は弁座92のシート面をプランジャ85の上下動に伴って摺動するようになっている。   A valve body holder 90 that holds the valve body 91 slidably in the thickness direction on its free end side is press-fitted together with the fixture 96 at the end of the plunger 85 opposite to the suction element 84 side.・ It is fixed by caulking. A leaf spring 94 that urges the valve body 91 in a direction (thickness direction) to press the valve body 91 against the valve seat 92 is attached to the valve body holder 90. The valve body 91 slides on the seat surface of the valve seat 92 as the plunger 85 moves up and down.

前記弁座92には、上から順にポートa、ポートb、ポートcが設けられており、また、弁体91には、前記ポートaとポートb及びポートbとポートcを選択的に連通させ得る、厚み方向に凹む凹部93が設けられている。弁座ブロック83には、ポートaのみに連通するように細管95aの一端部が、ポートbのみに連通するように細管95bの一端部が、ポートcのみに連通するように細管95cの一端部がそれぞれ気密的に挿着されている。   The valve seat 92 is provided with a port a, a port b, and a port c in order from the top, and the valve body 91 selectively communicates the port a with the port b and the port b with the port c. A recessed portion 93 is provided which is obtained and is recessed in the thickness direction. The valve seat block 83 has one end portion of the narrow tube 95a communicating with only the port a, one end portion of the thin tube 95b communicating with only the port b, and one end portion of the narrow tube 95c communicating with only the port c. Are inserted in an airtight manner.

細管95aの他端部は、本体部50の上部ポート56を介して作動室上部55Aに接続され、細管95bの他端部は、低圧部分である第4ポート14(吸入側低圧ポートS)に接続され、細管95cの他端部は、本体部50の下部ポート57を介して作動室下部55Bに接続されている。   The other end of the thin tube 95a is connected to the working chamber upper portion 55A via the upper port 56 of the main body 50, and the other end of the thin tube 95b is connected to the fourth port 14 (suction side low pressure port S) which is a low pressure portion. The other end of the thin tube 95c is connected to the working chamber lower part 55B via the lower port 57 of the main body part 50.

このような構成とされた四方パイロット弁80においては、ソレノイド部82への通電OFF時には、図22(A)に示される如くに、プランジャ85は圧縮コイルばね87の付勢力により、その上端が弁座ブロック83に接当する位置まで押し上げられている。この状態では、弁体91がポートaとポートb上に位置し、その凹部93によりポートaとポートbが連通するとともに、ポートcと弁室88とが連通するので、主弁ハウジング10内の高圧流体が細孔89→弁室88→ポートc→細管95c→下部ポート57を介して作動室下部55Bに導入されるとともに、作動室上部55Aの高圧流体が上部ポート56→細管95a→ポートa→凹部93→ポートb→細管95b→第4ポート14(吸入側低圧ポートS)へと流れて排出される。   In the four-way pilot valve 80 configured as described above, when the energization to the solenoid portion 82 is turned off, the plunger 85 has its upper end positioned on the valve by the urging force of the compression coil spring 87 as shown in FIG. It is pushed up to a position where it contacts the seat block 83. In this state, the valve body 91 is positioned on the port a and the port b, and the port a and the port b communicate with each other by the concave portion 93, and the port c and the valve chamber 88 communicate with each other. The high pressure fluid is introduced into the working chamber lower portion 55B through the pore 89 → the valve chamber 88 → the port c → the narrow tube 95c → the lower port 57, and the high pressure fluid in the upper portion of the working chamber 55A is transferred to the upper port 56 → the narrow tube 95a → port a. → The recess 93 → the port b → the narrow tube 95 b → the fourth port 14 (the suction side low pressure port S) is discharged.

それに対し、ソレノイド部82への通電をONにすると、図22(B)に示される如くに、プランジャ85は吸引子84の吸引力により、その下端が吸引子84に接当する位置まで引き寄せられる。このときには、弁体91がポートbとポートc上に位置し、その凹部93によりポートbとポートcが連通するとともに、ポートaと弁室88とが連通するので、主弁ハウジング10内の高圧流体が細孔89→弁室88→ポートa→細管95a→上部ポート56を介して作動室上部55Aに導入されるとともに、作動室下部55Bの高圧流体が下部ポート57→細管95c→ポートc→凹部93→ポートb→細管95b→第4ポート14(吸入側低圧ポートS)へと流れて排出される。   On the other hand, when the energization to the solenoid portion 82 is turned on, the plunger 85 is pulled to a position where the lower end of the plunger 85 comes into contact with the suction element 84 by the suction force of the suction element 84 as shown in FIG. . At this time, the valve body 91 is positioned on the port b and the port c, and the port b and the port c communicate with each other by the concave portion 93, and the port a and the valve chamber 88 communicate with each other. The fluid is introduced into the working chamber upper part 55A via the pore 89 → the valve chamber 88 → the port a → the thin tube 95a → the upper port 56, and the high-pressure fluid in the lower part of the working chamber 55B is transferred to the lower port 57 → the narrow tube 95c → port c → It flows out from the concave portion 93 → the port b → the narrow tube 95b → the fourth port 14 (the suction side low pressure port S) and is discharged.

したがって、ソレノイド部82への通電をOFFにすると、前記上動行程がとられ、主弁体20が第2の回転位置から第1の回転位置へと回転し、前記した如くの流路切換が行われる一方、ソレノイド部82への通電をONにすると、前記下動行程がとられ、主弁体20が第1の回転位置から第2の回転位置へと回転し、前記した如くの流路切換が行われる。   Therefore, when the energization to the solenoid portion 82 is turned off, the upward movement stroke is taken, the main valve body 20 rotates from the second rotation position to the first rotation position, and the flow path switching as described above is performed. On the other hand, when energization to the solenoid unit 82 is turned ON, the downward movement stroke is taken, the main valve body 20 rotates from the first rotation position to the second rotation position, and the flow path as described above. Switching is performed.

このように、本実施例の流路切換弁1においては、電磁式四方パイロット弁80への通電をON/OFFで切り換えることで、主弁10内を流通する高圧流体と低圧流体との差圧を利用して主弁体20を回動させるようにされているので、電動モータ等で主弁体20を回動させる場合に比べて、コスト削減、消費電力の低減、省エネ化等を図ることができる。なお、本実施例のアクチュエータ7による流路切換は、電動モータ+減速機で行う流路切換より素早く行うことができる。   As described above, in the flow path switching valve 1 of the present embodiment, the pressure difference between the high pressure fluid and the low pressure fluid flowing through the main valve 10 is switched by switching the energization to the electromagnetic four-way pilot valve 80 on and off. Since the main valve body 20 is rotated by using the motor, cost reduction, power consumption reduction, energy saving, and the like are achieved as compared with the case where the main valve body 20 is rotated by an electric motor or the like. Can do. The flow path switching by the actuator 7 of this embodiment can be performed more quickly than the flow path switching performed by the electric motor + reduction gear.

また、主弁体20を回動させるアクチュエータ7は、流体圧により受圧移動体60を上下動させ、この上下動を回転運動に変換して主弁体20に伝達する構成であるので、従来例のように高圧を受ける部分が主弁体の回転軸部の延長軸部に片持ち支持された、板厚に対して受圧面積の大きな板状体であるものに比して、高圧を受ける部分(受圧移動体60)に、十分な強度を確保でき、耐久性を向上させることができるとともに、十分な強度を確保できることから、受圧面積を大きくでき、そのため、流路切換を確実かつ迅速に行うことができる。   The actuator 7 that rotates the main valve body 20 is configured to move the pressure-receiving moving body 60 up and down by fluid pressure, convert this up-and-down movement into a rotational motion, and transmit it to the main valve body 20. The part that receives high pressure compared to the part that is cantilevered by the extension shaft part of the rotating shaft part of the main valve body and has a large pressure receiving area relative to the plate thickness The (pressure receiving moving body 60) can ensure sufficient strength, improve durability, and ensure sufficient strength, so that the pressure receiving area can be increased, and therefore the flow path switching is performed reliably and promptly. be able to.

上記に加え、直線運動を回転運動に変換する機構としては、一般にボールねじ機構が知られているが、通常のボールねじ機構は、ボールを多数使用し、リターン構造も必要であるため、本実施例の運動変換機構58に比べて、構造が複雑で高価であり、また、高温高圧環境下での使用は考慮されていないため、ヒートポンプ式冷暖房システム等に組み込まれる流路切換弁に採用することは難しい。それに対し、本実施例の運動変換機構58を備えた流体圧式のアクチュエータは、部品点数が少なく極めてシンプルな構成であるので、コスト的に有利であるとともに、高温高圧環境下で使用する場合の対策(受圧移動体60の肉厚を厚くする等)を容易にとることができ、そのため、本実施例の流路切換弁1は、特に、ヒートポンプ式冷暖房システム等の高温高圧環境下に組み込まれる流路切換弁として費用対効果に極めて優れるものとなる。   In addition to the above, a ball screw mechanism is generally known as a mechanism for converting linear motion to rotational motion. However, the normal ball screw mechanism uses a large number of balls and requires a return structure. Compared to the motion conversion mechanism 58 of the example, the structure is complicated and expensive, and use in a high-temperature and high-pressure environment is not considered. Is difficult. On the other hand, the fluid pressure type actuator provided with the motion conversion mechanism 58 of the present embodiment has an extremely simple configuration with a small number of parts, which is advantageous in terms of cost and measures for use in a high temperature and high pressure environment. (Such as increasing the thickness of the pressure-receiving moving body 60) can be easily achieved. Therefore, the flow path switching valve 1 of the present embodiment is particularly suitable for a flow incorporated in a high-temperature and high-pressure environment such as a heat pump air conditioning system. As a path switching valve, it is extremely cost-effective.

[アクチュエータの変形例]
図23は、アクチュエータの変形例を示す。図示例のアクチュエータ8は、基本構成は上記アクチュエータ7と同様に、本体部50、運動変換機構58(受圧移動体60、回転駆動体65、ボール72、収容部74、螺旋溝75)、上部ポート56、下部ポート57、四方パイロット弁80等(符号は共通)を備えているが、本例のアクチュエータ8では、回転駆動体65の駆動軸部と主弁体20の回転軸部とが共通の軸線上に配置されて、主弁体20と回転駆動体65とが一体的に回動するようにされている。
[Modification of actuator]
FIG. 23 shows a modification of the actuator. The actuator 8 of the illustrated example has the same basic structure as the actuator 7, the main body 50, the motion conversion mechanism 58 (the pressure receiving moving body 60, the rotation driving body 65, the ball 72, the housing portion 74, the spiral groove 75), the upper port. 56, a lower port 57, a four-way pilot valve 80, etc. (reference numerals are common). In the actuator 8 of this example, the drive shaft portion of the rotary drive body 65 and the rotary shaft portion of the main valve body 20 are common. The main valve body 20 and the rotary drive body 65 are arranged on the axis so as to rotate integrally.

詳細には、回転駆動体65は主弁体20の下側回転軸部30Bに圧入・かしめ等により外嵌固定されており、回転駆動体65の回転が主弁体20に直接伝達されるようになっている。したがって、本実施例2では、アクチュエータ7の回転伝達機構77は不要とされ、また、受圧移動体60の上動を下側弁シート10Bの下面10eで止めるようになっているので、アクチュエータ7の上面閉塞部材53も不要とされる。そのため、構成が簡素化され、コスト的には有利である。   Specifically, the rotary drive body 65 is externally fitted and fixed to the lower rotary shaft portion 30B of the main valve body 20 by press fitting, caulking, etc., so that the rotation of the rotary drive body 65 is directly transmitted to the main valve body 20. It has become. Therefore, in the second embodiment, the rotation transmission mechanism 77 of the actuator 7 is not necessary, and the upward movement of the pressure receiving moving body 60 is stopped by the lower surface 10e of the lower valve seat 10B. The upper surface closing member 53 is also unnecessary. Therefore, the configuration is simplified, which is advantageous in terms of cost.

なお、本発明に係る流路切換弁は、ヒートポンプ式冷暖房システムのみならず、他のシステム、装置、機器類にも組み込めることは勿論である。   Of course, the flow path switching valve according to the present invention can be incorporated not only in the heat pump air conditioning system but also in other systems, devices, and devices.

また、弁ハウジング10、主弁体20、受圧移動体60、回転駆動体65等の素材としては、アルミやステンレス等が用いられるが、それに限られることはなく、その他の金属、樹脂等の、導入される流体の圧力に耐えられるものであれば、いかなるものであってもよい。   Moreover, as materials for the valve housing 10, the main valve body 20, the pressure receiving moving body 60, the rotation driving body 65 and the like, aluminum, stainless steel, or the like is used, but is not limited thereto, and other metals, resins, etc. Any material that can withstand the pressure of the fluid to be introduced may be used.

1 流路切換弁
5 主弁
7 アクチュエータ
10 主弁ハウジング
10A 上側弁シート
10B 下側弁シート
11 第1ポート
12 第2ポート
13 第3ポート
14 第4ポート
17 シート面
20 主弁体
20A 上半部
20B 下半部
21 第1層部材
22 第2層部材
23 第3層部材
24 第4層部材
27 横断溝
29 圧縮コイルばね
30A 上側回転軸部
30B 下側回転軸部
31 第1連通路
32 第2連通路
33 第3連通路
34 第4連通路
36 凸部
37 シール面
41 第1連通路
42 第2連通路
43 第3連通路
44 第4連通路
45 ボール式シール面離隔機構
50 本体部(アクチュエータ)
52 下面閉塞部材
53 上面閉塞部材
54 キー溝
55 作動室
55A 作動室上部
55B 作動室下部
56 上部ポート
57 下部ポート
58 運動変換機構
60 受圧移動体
62 パッキン
63 作動ピン
65 回転駆動体
72 ボール
75 螺旋溝
76 回転駆動軸部
77 回転伝達機構
80 四方パイロット弁
82 ソレノイド部
83 弁座ブロック
85 プランジャ
88 弁室
89 細孔
90 弁体ホルダ
91 弁体
92 弁座
93 凹部
a、b、c ポート(四方パイロット弁)
95a、95b、95c 細管
D 吐出側高圧ポート
S 吸入側低圧ポート
C 室外側入出ポート
E 室内側入出ポート
DESCRIPTION OF SYMBOLS 1 Flow path switching valve 5 Main valve 7 Actuator 10 Main valve housing 10A Upper valve seat 10B Lower valve seat 11 1st port 12 2nd port 13 3rd port 14 4th port 17 Seat surface 20 Main valve body 20A Upper half part 20B Lower half 21 First layer member 22 Second layer member 23 Third layer member 24 Fourth layer member 27 Transverse groove 29 Compression coil spring 30A Upper rotation shaft portion 30B Lower rotation shaft portion 31 First communication path 32 Second Communication path 33 Third communication path 34 Fourth communication path 36 Protruding portion 37 Seal surface 41 First communication path 42 Second communication path 43 Third communication path 44 Fourth communication path 45 Ball-type seal surface separation mechanism 50 Body (actuator) )
52 Lower surface closing member 53 Upper surface closing member 54 Key groove 55 Working chamber 55A Working chamber upper portion 55B Working chamber lower portion 56 Upper port 57 Lower port 58 Motion conversion mechanism 60 Pressure receiving moving body 62 Packing 63 Actuating pin 65 Rotating drive body 72 Ball 75 Spiral groove 76 Rotation drive shaft 77 Rotation transmission mechanism 80 Four-way pilot valve 82 Solenoid part 83 Valve seat block 85 Plunger 88 Valve chamber 89 Pore 90 Valve body holder 91 Valve body 92 Valve seat 93 Recesses a, b, c Port (four-way pilot valve )
95a, 95b, 95c Narrow tube D High pressure port on the discharge side S Low pressure port on the suction side C Outer port / outlet port E Indoor port / out port

Claims (17)

主弁ハウジング及び該主弁ハウジング内に回動可能に配在された主弁体を備える主弁と、前記主弁体を回動させるための流体圧式のアクチュエータとを備え、前記主弁体を回転させることにより、流路が切り換えられるようにされた流路切換弁であって、
前記アクチュエータは、前記主弁に供給される高圧流体が導入される作動室が設けられた本体部を有し、前記作動室に、前記高圧流体の圧力を利用して、往復直線運動を正逆両方向の回転運動に変換する運動変換機構が設けられ
前記運動変換機構は、前記作動室にその回転は阻止された状態で上下動可能に収容された受圧移動体と、該受圧移動体の上下動に対応して相対的に回動可能に該受圧移動体に内挿又は外挿される回転駆動体とを有し、前記受圧移動体及び回転駆動体のうちの一方に、ボールと、該ボールを、その一部を半径方向に突出させた状態で、回転自在にかつ移動は実質的に阻止した状態で収容する収容部とが設けられ、他方に、前記収容部から半径方向に突出する前記ボールの一部が嵌め込まれる、周方向に曲がりながら上下方向に伸びる螺旋溝が設けられている構成であることを特徴とする流路切換弁。
A main valve including a main valve housing and a main valve body rotatably disposed in the main valve housing; and a hydraulic actuator for rotating the main valve body, the main valve body comprising: A flow path switching valve configured to be switched by rotating,
The actuator has a main body portion provided with a working chamber into which a high-pressure fluid supplied to the main valve is introduced, and the reciprocating linear motion is forward and backward using the pressure of the high-pressure fluid in the working chamber. A motion conversion mechanism that converts rotational motion in both directions is provided ,
The motion conversion mechanism is configured such that the pressure receiving moving body accommodated in the working chamber so as to be able to move up and down in a state in which the rotation thereof is prevented, and the pressure receiving moving body to be relatively rotatable corresponding to the vertical movement of the pressure receiving moving body. A rotary drive body that is interpolated or extrapolated in the movable body, and in one of the pressure receiving movable body and the rotary drive body, the ball and a part of the ball project in the radial direction. An accommodation portion that is rotatably and accommodated in a state in which movement is substantially prevented, and on the other hand, a part of the ball protruding in a radial direction from the accommodation portion is fitted, and is bent up and down while bending in the circumferential direction. flow path switching valve, wherein the configuration der Rukoto the spiral groove extending direction.
前記受圧移動体の外周に、前記作動室の内周面との間を気密的に封止して前記作動室を容積可変の上部と下部とに仕切るパッキンが装着され、前記本体部に、前記作動室上部に高圧流体を導入・排出するための上部ポートが設けられるとともに、前記作動室下部に高圧流体を導入・排出するための下部ポートが設けられていることを特徴とする請求項に記載の流路切換弁。 On the outer periphery of the pressure-receiving movable body, a packing is installed that hermetically seals between the inner peripheral surface of the working chamber and partitions the working chamber into an upper part and a lower part whose volume is variable. together with the upper port for introducing and discharging a high pressure fluid is provided in the working chamber top to claim 1, characterized in that the lower port for introducing and discharging a high pressure fluid to the lower the working chamber is provided The flow path switching valve described. 前記アクチュエータは、前記作動室下部に前記下部ポートを介して高圧流体を導入するとともに、前記作動室上部から前記上部ポートを介して高圧流体を排出することにより、前記受圧移動体を上動させて前記回転駆動体を一方向に回転させる上動行程と、前記作動室上部に前記上部ポートを介して高圧流体を導入するとともに、前記作動室下部から前記下部ポートを介して高圧流体を排出することにより、前記受圧移動体を下動させて前記回転駆動体を他方向に回転させる下動行程とを選択的にとり得るように構成されていることを特徴とする請求項に記載の流路切換弁。 The actuator introduces a high-pressure fluid into the lower portion of the working chamber via the lower port and discharges the high-pressure fluid from the upper portion of the working chamber via the upper port, thereby moving the pressure-receiving movable body upward. An upward stroke of rotating the rotary drive body in one direction, and introducing high-pressure fluid into the upper portion of the working chamber via the upper port and discharging high-pressure fluid from the lower portion of the working chamber via the lower port. 3. The flow path switching according to claim 2 , wherein the flow switching unit is configured to selectively take a downward movement stroke in which the pressure receiving moving body is moved downward to rotate the rotary drive body in the other direction. valve. 前記上動行程と前記下動行程との切り換えを、前記上部ポートと前記下部ポート、及び、前記主弁内の高圧部分と低圧部分とに接続された四方パイロット弁により行うようにされていることを特徴とする請求項に記載の流路切換弁。 Switching between the up stroke and the down stroke is performed by a four-way pilot valve connected to the upper port and the lower port, and a high pressure portion and a low pressure portion in the main valve. The flow path switching valve according to claim 3 . 前記回転駆動体の回転軸線は、前記主弁体の回転軸線に対して偏心するとともに、前記主弁体の回転軸線に平行に配在されていることを特徴とする請求項からのいずれかに記載の流路切換弁。 The axis of rotation of the rotary drive member is configured to eccentrically relative to the main valve body axis of rotation, one of claims 1 to 4, characterized in that they are Zaisa distribution parallel to the axis of rotation of the main valve body A flow path switching valve according to claim 1. 前記アクチュエータの回転駆動体と前記主弁体との間に前記回転駆動体の回転を前記主弁体に伝達する回転伝達機構が設けられていることを特徴とする請求項からのいずれかに記載の流路切換弁。 Wherein one of the rotation of the rotary drive member from claim 1, characterized in that the rotation transmission mechanism is provided for transmitting to the main valve body 5 between the main valve body and the rotary drive member of said actuator The flow path switching valve according to 1. 前記回転伝達機構は、前記回転駆動体の駆動軸部に連結固定された駆動アームと、前記主弁体の回転軸部に連結固定され、その先端付近が前記駆動アームの先端付近に連れ回される従動アームとで構成されていることを特徴とする請求項に記載の流路切換弁。 The rotation transmission mechanism is connected and fixed to the drive shaft connected to the drive shaft portion of the rotary drive body, and the rotary shaft portion of the main valve body, and the vicinity of the tip is rotated near the tip of the drive arm. The flow path switching valve according to claim 6 , wherein the flow path switching valve is configured with a driven arm. 前記回転伝達機構は、前記回転駆動体の駆動軸部に連結固定された駆動ギアと、前記主弁体の回転軸部に連結固定され、前記駆動ギアに噛合する従動ギアとで構成されていることを特徴とする請求項に記載の流路切換弁。 The rotation transmission mechanism includes a drive gear connected and fixed to a drive shaft portion of the rotation drive body, and a driven gear connected and fixed to the rotation shaft portion of the main valve body and meshing with the drive gear. The flow path switching valve according to claim 6 . 前記回転駆動体の駆動軸部と前記主弁体の回転軸部とが共通の軸線上に配置されて、前記主弁体と前記回転駆動体とが一体的に回動するようにされていることを特徴とする請求項からのいずれかに記載の流路切換弁。 The drive shaft portion of the rotation drive body and the rotation shaft portion of the main valve body are arranged on a common axis so that the main valve body and the rotation drive body rotate integrally. The flow path switching valve according to any one of claims 1 to 4 , wherein 前記主弁ハウジングは、上側弁シート及び下側弁シートによりその上面開口及び下面開口が気密的に封止された筒状であり、前記上側弁シート及び/又は前記下側弁シートに合計で少なくとも3個のポートが設けられ、前記主弁ハウジング内に回動可能に配在された前記主弁体内に、前記ポート間を選択的に連通するための複数本の連通路が設けられ、前記アクチュエータにより前記主弁体を回転させることにより、連通するポート間が切り換えられるようにされていることを特徴とする請求項1からのいずれかに記載の流路切換弁。 The main valve housing has a cylindrical shape in which an upper surface opening and a lower surface opening are hermetically sealed by an upper valve seat and a lower valve seat, and at least a total of the upper valve seat and / or the lower valve seat Three ports are provided, and a plurality of communication passages for selectively communicating between the ports are provided in the main valve body rotatably disposed in the main valve housing, and the actuator wherein by rotating the main valve body, the flow path switching valve according to claim 1, characterized in that it is adapted between port communicating is switched 9 by. 前記主弁体内に、少なくとも、前記ポートのうちの一つと他の一つとを連通させ得る少なくとも一つの第1連通路と、前記ポートのうちの一つと別の一つとを連通させ得る少なくとも一つの第2連通路とが設けられ、前記主弁体を一方向に回転させることにより、前記第1連通路により連通するポート間から前記第2連通路により連通するポート間への流路の切り換えが行われ、該流路切換後に前記主弁体を他方向に回転させることにより、前記第2連通路により連通するポート間から前記第1連通路により連通するポート間への流路の切り換えが行われるようにされていることを特徴とする請求項10に記載の流路切換弁。 At least one first communication passage capable of communicating at least one of the ports with another one and at least one of the ports and another one within the main valve body. A second communication path is provided, and by switching the main valve body in one direction, the flow path can be switched from the port communicating with the first communication path to the port communicating with the second communication path. The flow path is switched between the ports communicating with the second communication path and the ports communicating with the first communication path by rotating the main valve body in the other direction after the flow path switching. The flow path switching valve according to claim 10 , wherein the flow path switching valve is configured as described above. 前記上側弁シート及び/又は前記下側弁シートに第1、第2、第3及び第4のポートが設けられ、
前記主弁体に、該主弁体が第1の回転位置をとるとき、前記第1ポートと第3ポートとを連通させる第1連通路及び前記第2ポートと第4ポートとを連通させる第2連通路と、
前記主弁体が第2の回転位置をとるとき、前記第1ポートと第2ポート又は第4ポートとを連通させる第3連通路及び前記第3ポートと第4ポート又は第2ポートとを連通させる第4連通路とが設けられていることを特徴とする請求項10又は11に記載の流路切換弁。
First, second, third and fourth ports are provided in the upper valve seat and / or the lower valve seat,
When the main valve body is in the first rotation position, the first communication passage for communicating the first port and the third port and the second port and the fourth port are communicated with the main valve body. Two passages,
When the main valve body is in the second rotational position, the third communication path that communicates the first port with the second port or the fourth port and the third port communicates with the fourth port or the second port. The flow path switching valve according to claim 10 or 11 , wherein a fourth communication path is provided.
前記上側弁シートに第1及び第2ポートが設けられるとともに、前記下側弁シートに第3及び第4ポートが設けられていることを特徴とする請求項12に記載の流路切換弁。 The flow path switching valve according to claim 12 , wherein the upper valve seat is provided with first and second ports, and the lower valve seat is provided with third and fourth ports. 前記複数本の連通路のうちの少なくとも1本は、全体が直線状の通路で構成されていることを特徴とする請求項10から13のいずれかに記載の流路切換弁。 The flow path switching valve according to any one of claims 10 to 13 , wherein at least one of the plurality of communication paths is constituted by a linear path as a whole. 前記複数本の連通路のうちの少なくとも1本は、U字状又はクランク状の通路で構成されていることを特徴とする請求項10から14のいずれかに記載の流路切換弁。 The flow path switching valve according to any one of claims 10 to 14 , wherein at least one of the plurality of communication paths is configured as a U-shaped or crank-shaped path. 前記連通路の両端部に、前記上側弁シート及び/又は前記下側弁シートにおける前記各ポートの開口周りに密接する環状シール面を持つ凸部が突設されていることを特徴とする請求項10から15のいずれかに記載の流路切換弁。 The convex portion having an annular sealing surface that is in close contact with the periphery of the opening of each port in the upper valve seat and / or the lower valve seat is protruded from both ends of the communication passage. The flow path switching valve according to any one of 10 to 15 . 前記主弁体は、一体回動可能かつ上下動可能な上半部と下半部との二分割構成とされ、前記上半部と前記下半部との間に、それらを相互に逆方向に付勢する付勢手段が介装されていることを特徴とする請求項10から16のいずれかに記載の流路切換弁。 The main valve body is configured to be divided into an upper half part and a lower half part that are integrally rotatable and vertically movable, and the upper half part and the lower half part are opposite to each other. The flow path switching valve according to any one of claims 10 to 16 , wherein a biasing means for biasing is interposed.
JP2014223201A 2014-10-31 2014-10-31 Flow path switching valve Active JP6453040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014223201A JP6453040B2 (en) 2014-10-31 2014-10-31 Flow path switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014223201A JP6453040B2 (en) 2014-10-31 2014-10-31 Flow path switching valve

Publications (2)

Publication Number Publication Date
JP2016089902A JP2016089902A (en) 2016-05-23
JP6453040B2 true JP6453040B2 (en) 2019-01-16

Family

ID=56016552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014223201A Active JP6453040B2 (en) 2014-10-31 2014-10-31 Flow path switching valve

Country Status (1)

Country Link
JP (1) JP6453040B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523662B2 (en) * 2014-11-26 2019-06-05 株式会社不二工機 Flow path switching valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH598103A5 (en) * 1975-10-22 1978-04-28 Buehler Ag Geb
US4203469A (en) * 1978-06-09 1980-05-20 Gates James T Four way reversing valve for air conditioning systems
US7819948B2 (en) * 2007-10-29 2010-10-26 Air Products And Chemicals, Inc. Rotary valve

Also Published As

Publication number Publication date
JP2016089902A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
JP6465619B2 (en) Flow path switching valve
JP7071757B2 (en) Six-way switching valve
JP6478585B2 (en) Flow path switching valve
EP2290273B1 (en) Multi-way selector valve
JP6515163B2 (en) Six-way switching valve
CN108869795B (en) Flow path switching valve
JP5870760B2 (en) Four-way valve and heat pump device equipped with it
CN108869794B (en) Flow path switching valve
CN109578617B (en) Flow path switching valve
JP2016191403A (en) Channel switching valve
JP6621686B2 (en) 6-way switching valve
JP6461589B2 (en) Flow path switching valve
JP6478586B2 (en) Flow path switching valve
JP6453040B2 (en) Flow path switching valve
JP6491861B2 (en) Flow path switching valve
JP6689418B2 (en) Flow path switching valve
JP2016098968A (en) Channel switching valve
JP6585514B2 (en) 6-way switching valve
JP6478780B2 (en) Flow path switching valve
JP2012159101A (en) Four-way switching valve
JP2019049364A (en) Flow channel switch valve
JP5404456B2 (en) Multi-way selector valve
JP2018194022A (en) Flow channel switch valve and its assembling method
JP7109057B2 (en) four-way switching valve
JP6670633B2 (en) 6-way switching valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181212

R150 Certificate of patent or registration of utility model

Ref document number: 6453040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250