JP3136086B2 - Control valve - Google Patents

Control valve

Info

Publication number
JP3136086B2
JP3136086B2 JP07265009A JP26500995A JP3136086B2 JP 3136086 B2 JP3136086 B2 JP 3136086B2 JP 07265009 A JP07265009 A JP 07265009A JP 26500995 A JP26500995 A JP 26500995A JP 3136086 B2 JP3136086 B2 JP 3136086B2
Authority
JP
Japan
Prior art keywords
valve
valve body
rotor
hole
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07265009A
Other languages
Japanese (ja)
Other versions
JPH0979410A (en
Inventor
和彦 武藤
典彦 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Original Assignee
Pacific Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd filed Critical Pacific Industrial Co Ltd
Priority to JP07265009A priority Critical patent/JP3136086B2/en
Publication of JPH0979410A publication Critical patent/JPH0979410A/en
Application granted granted Critical
Publication of JP3136086B2 publication Critical patent/JP3136086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ヒートポンプ式
冷媒回路における冷房時と暖房時の冷媒の流路を切り換
える四方弁と、膨張弁の機能を果たす電動弁とを複合一
体化した制御弁の改良に係り、特に四方弁の弁体にバイ
パス弁を付加させると共に伝達装置のガイドブッシュに
通孔を設けることにより、従来、冷凍サイクルのバイパ
ス回路のオン・オフ制御に用いられる二方弁を廃止でき
るようにした制御弁に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a control valve in which a four-way valve for switching the flow path of refrigerant during cooling and heating in a heat pump type refrigerant circuit and an electric valve which functions as an expansion valve are combined and integrated. In particular, by adding a bypass valve to the valve body of the four-way valve and providing a through hole in the guide bush of the transmission device, the two-way valve conventionally used for on / off control of the bypass circuit of the refrigeration cycle can be eliminated. The present invention relates to such a control valve.

【0002】[0002]

【従来の技術】先ず最初に図11は、特願平6−270
381号に開示された従来技術の制御弁Zの構造を示
す。制御弁Zの構造は、六方弁であり、大きく分けて電
動弁A部、四方弁B部及び前記電動弁A部と四方弁B部
とを連結する伝達装置C部の3つに分けられる。
2. Description of the Related Art First, FIG.
381 shows the structure of a conventional control valve Z disclosed in Japanese Patent No. 381. The structure of the control valve Z is a six-way valve, which is roughly divided into three parts: an electric valve A, a four-way valve B, and a transmission device C that connects the electric valve A and the four-way valve B.

【0003】第1番目に電動弁A部の構造は、上部を大
径部1aとした非磁性体からなる円筒状ケース1の下端
部に、中央にチャンバー17を備えチャンバーの中心上
部に推進軸受7を設けると共に下部に弁口8を設け、前
記チャンバー側部及び下部に開口18、19を有する弁
ボディ6を配置し、開口18には出入口パイプ19が、
又、下部の弁口8下方の開口20には出入口パイプ21
が設けられている。
[0003] First, the structure of the motor-operated valve portion A is that a chamber 17 is provided at the lower end of a cylindrical case 1 made of a non-magnetic material having a large-diameter portion 1a at the upper portion, and a propulsion bearing is provided at the upper center of the chamber. 7, a valve port 8 is provided at a lower portion, and a valve body 6 having openings 18 and 19 at the side and the lower portion of the chamber is arranged.
In addition, an opening 20 below the valve port 8 in the lower part has an entrance pipe 21.
Is provided.

【0004】そして、ケース1の下部外周に固定子コイ
ル2が設けられ、その内部には先端部に針状弁3を備え
たねじ軸4の上部と一体的に形成したモータの回転子5
が設けられ、このねじ軸4が推進軸受7により直進運動
に変換されて弁ボディ6の下部の弁口8に前記針状弁3
を接離させることにより、弁口8の開口度を制御させる
ようになっており、回転子5の上半部内周面には、一箇
所だけ中心方向にリブ状の凸部9が突出状に形成されて
いるものである。
A stator coil 2 is provided on the outer periphery of a lower part of a case 1 and a rotor 5 of a motor integrally formed with an upper part of a screw shaft 4 having a needle valve 3 at a tip thereof.
The screw shaft 4 is converted into linear motion by a propulsion bearing 7, and the needle valve 3 is inserted into a valve port 8 at a lower portion of the valve body 6.
The opening degree of the valve port 8 is controlled by contacting and separating the ribs, and a rib-shaped convex portion 9 protrudes from the inner peripheral surface of the upper half portion of the rotor 5 at only one position in the center direction. It has been formed.

【0005】第2番目に四方弁B部の構造は、非磁性体
からなる前記円筒状ケース1上部の大径部1aの上端
に、図12に示す如く、4つの開口33、34、35、
36を同心円上でかつ、等間隔に有する金属円板状の弁
座37を固定し、この弁座37の下面にプラスチック製
の肉厚円板状の弁体39が摺動回転可能に配設されたも
のである。
[0005] Second, the structure of the four-way valve B portion includes, as shown in FIG. 12, four openings 33, 34, 35, at the upper end of the large-diameter portion 1a at the top of the cylindrical case 1 made of a non-magnetic material.
A metal disk-shaped valve seat 37 having a concentric circle 36 and equidistant spaces is fixed, and a plastic thick disk-shaped valve body 39 is slidably mounted on the lower surface of the valve seat 37. It was done.

【0006】前記弁座37の4つの開口33、34、3
5、36は、図12に示したように所定の角度(90
°)間隔で開口33を導入口、これと対向位置の開口3
4を導出口、又これらと直交的に配置した開口35と3
6を通孔としており、それぞれ導入口33の上面には導
入管40が、導出口34には導出管41が、又通孔35
と36には通孔管42と43が設けられ、前記導入口3
3の下部にのみパイプによるストッパー44が少量突出
状に設けられている。
The four openings 33, 34, 3 of the valve seat 37
5, 36 are given angles (90, 90) as shown in FIG.
°) The openings 33 are introduced at intervals, and the openings 3 are positioned opposite to the inlets.
4 are outlets, and openings 35 and 3 arranged orthogonally to these outlets
6, an inlet pipe 40 is provided on the upper surface of the inlet 33, an outlet pipe 41 is provided on the outlet 34, and a through hole 35 is provided.
And 36 are provided with through-hole pipes 42 and 43, respectively.
Only at the lower part of 3 is a stopper 44 made of a pipe provided in a small projecting shape.

【0007】又、前記プラスチック製の肉厚円板状の弁
体39には、図12(B)に示す如く、前記弁座37の
導入口33と通孔35と対応する位置に貫通孔45と4
6を設けると共に、その下半部に両貫通孔45、46を
つなぐ連通孔47(図13(A)参照)を設け、導出口
34及び通孔36と対応する位置に導出口34及び通孔
36を気密的につなぐ気密連通孔48(図13(B)参
照)が設けられ、これら両連通孔47、48の下部は平
面円弧状に形成されていて、隣接する各開口において連
通状態が切り換わるようになっている。
As shown in FIG. 12B, a through-hole 45 is formed at a position corresponding to the inlet 33 and the through-hole 35 of the valve seat 37, as shown in FIG. And 4
6 and a communication hole 47 (see FIG. 13A) connecting the two through holes 45 and 46 in the lower half thereof, and the outlet 34 and the through hole 36 are provided at positions corresponding to the outlet 34 and the through hole 36. An airtight communication hole 48 (see FIG. 13 (B)) for airtightly connecting the communication holes 36 is provided. The lower portions of both communication holes 47 and 48 are formed in a planar arc shape, and the communication state is cut off at each adjacent opening. It has been replaced.

【0008】また、前記肉厚円板状の弁体39には、図
11に示す如く、その上面中心に孔22が設けられ、こ
の孔22に運転時冷媒の圧力により弁体39を弁座37
に押圧する圧力よりも弱い圧力の圧縮コイルばね23が
設けられ、反対側の弁体39の下面側にはボス24を設
け、その中心部に内歯25が形成されている。
As shown in FIG. 11, a hole 22 is provided at the center of the upper surface of the thick disk-shaped valve body 39, and the valve body 39 is placed in the hole 22 by the pressure of the refrigerant during operation. 37
A compression coil spring 23 having a pressure lower than the pressure applied to the valve body 39 is provided, a boss 24 is provided on the lower surface side of the valve body 39 on the opposite side, and internal teeth 25 are formed at the center thereof.

【0009】第3番目に伝達装置C部は、図11に示す
如く、前記非磁性体からなる円筒状ケース1の中間部即
ち、前記電動弁A部の回転子5と四方弁B部の弁体29
との間のに設けられ、電動弁A部の弁口8が全開直前の
位置と全閉直前の位置に到ったときに、遅延伝達手段1
6および係合手段30を介して四方弁の弁体39に回転
を伝えるようにしたものである。
Third, as shown in FIG. 11, the transmission device C is an intermediate portion of the cylindrical case 1 made of the non-magnetic material, that is, the rotor 5 of the electric valve A and the valve of the four-way valve B. Body 29
When the valve opening 8 of the motor-operated valve A reaches the position immediately before the fully open position and the position immediately before the fully closed position, the delay transmission means 1
The rotation is transmitted to the valve body 39 of the four-way valve through the engagement means 6 and the engagement means 30.

【0010】即ち、円筒状ケース1内にガイドブッシュ
26をかしめ固定し、このガイドブッシュ26の中心
に、上部に鍔27を有する連結棒28を気密的、かつ回
転自在に支持し、この連結棒28の上端部には前記弁体
39下面中心の内歯25と噛み合う外歯29が形成さ
れ、この内歯25と外歯29とにより係合手段30を形
成している。
That is, a guide bush 26 is caulked and fixed in the cylindrical case 1, and a connecting rod 28 having a flange 27 at an upper portion is air-tightly and rotatably supported at the center of the guide bush 26. External teeth 29 meshing with the internal teeth 25 at the center of the lower surface of the valve body 39 are formed at the upper end of the valve body 39, and the engagement means 30 is formed by the internal teeth 25 and the external teeth 29.

【0011】また、上記の連結棒28の下方は、ガイド
ブッシュ26を貫通し、上下に突出片14、15を有す
るコイルによる遅延伝達手段16が設けられている。即
ち、連結棒28の下端は前記回転子5の上半部内面にま
で延び、その先端にフランジ11を備えている。
Below the connecting rod 28, a delay transmission means 16 is provided, which penetrates the guide bush 26 and has a coil having projecting pieces 14, 15 on the upper and lower sides. That is, the lower end of the connecting rod 28 extends to the inner surface of the upper half of the rotor 5 and has a flange 11 at the end.

【0012】そして、連結棒28のガイドブッシュ26
より少し下方に、垂下状のストッパー片13aを外方先
端に備えたストッパー13を固定し、このストッパー1
3と下端のフランジ11との間に、図11および図1
6、図17に示す如く、所定長さのコイルの上下端を上
方の突出片14と下方の突出片15として接線方向にほ
ぼ平行的に延長させた遅延伝達手段16を回転可能に設
け、この遅延伝達手段16の上方の突出片14の先端が
前記ストッパー片13aと当接可能となっており、下方
の突出片15の先端が前記回転子5の上半部内面に形成
された内向きの凸部9と当接可能となっている。
The guide bush 26 of the connecting rod 28
A stopper 13 having a downwardly extending stopper piece 13a at its outer end is fixed slightly below the stopper 13.
11 and FIG.
6. As shown in FIG. 17, a delay transmission means 16 in which the upper and lower ends of a coil having a predetermined length are extended substantially parallel to the tangential direction as an upper projecting piece 14 and a lower projecting piece 15 is rotatably provided. The tip of the upper projecting piece 14 of the delay transmission means 16 can be brought into contact with the stopper piece 13a, and the tip of the lower projecting piece 15 is formed in an inward direction formed on the inner surface of the upper half of the rotor 5. The projection 9 can be abutted.

【0013】引き続いて、従来技術の制御弁の作用(作
動)について説明する。図11に示す如く、電動弁A部
の針状弁3が閉弁状態で、図13、図14に示す如く、
四方弁B部の弁体39における貫通孔45と46が弁座
37の導入孔33と通孔35に対応して暖房状態となっ
ている時は、図16、図17(A)に示す如く、平面的
にみて、回転子5の凸部9の一側面(上面)が遅延伝達
手段16の下方の突出片15の外面(下面)に、また、
上方の突出片14の外面(上面)がストッパー片13a
の外側(下面)に当接して、上下の突出片14、15を
凸部9とストッパー片13aにより挟んだ状態となって
いる。
Subsequently, the operation (operation) of the conventional control valve will be described. As shown in FIG. 11, when the needle valve 3 of the motor-operated valve A is in the closed state, as shown in FIGS.
When the through holes 45 and 46 in the valve body 39 of the four-way valve B are in the heating state corresponding to the introduction holes 33 and the through holes 35 of the valve seat 37, as shown in FIGS. 16 and 17A. In plan view, one side surface (upper surface) of the convex portion 9 of the rotor 5 is provided on the outer surface (lower surface) of the protruding piece 15 below the delay transmission means 16, and
The outer surface (upper surface) of the upper protruding piece 14 is the stopper piece 13a.
And the upper and lower projecting pieces 14 and 15 are sandwiched between the projection 9 and the stopper piece 13a.

【0014】この状態においては、弁座37と弁体39
の位置関係が図14に示す如く、四方弁B部の弁座37
の導入口33の下面に突出状に設けたストッパー44
は、弁体39の貫通孔45と対応した位置にある。従っ
て、図13(A)に示す如く、連通孔47により導入口
33と通孔35とが連通された状態になり、図9で示す
ように、圧縮機Fの吐出口から出た冷媒は、導入管40
→導入口33→連通孔47→通孔管42を経て室内熱交
換器Eに入り、電動弁Aのパイプ21→弁口8→パイプ
19を経て、室外熱交換器Dを通り、図13(B)に示
す如く、通孔管43→通孔36→気密連通孔48→導出
口34→導出管41を経て圧縮機Fに戻る。
In this state, the valve seat 37 and the valve body 39
As shown in FIG. 14, the valve seat 37 of the four-way valve B portion
Stopper 44 protrudingly provided on the lower surface of the inlet 33
Is located at a position corresponding to the through hole 45 of the valve body 39. Therefore, as shown in FIG. 13A, the introduction port 33 and the through hole 35 are in communication with each other through the communication hole 47, and as shown in FIG. Introductory tube 40
→ The inlet 33 → the communicating hole 47 → the indoor heat exchanger E via the through-hole pipe 42, the pipe 21 of the motor-operated valve A → the valve port 8 → the pipe 19, the outdoor heat exchanger D, and FIG. As shown in B), the flow returns to the compressor F via the through-hole pipe 43 → the through-hole 36 → the airtight communication hole 48 → the outlet 34 → the outlet pipe 41.

【0015】この暖房状態において、電動弁Aの固定子
コイル2に閉弁方向に回転するように通電されると、図
16、図17(A)に示すモータの回転子5は上面から
みて矢印の如く左方向に一回転し、回転子5の凸部9が
遅延伝達手段16の下方の突出片15から離れ、約1周
回転したところで図17(B)のように下方の突出片1
5の内側(上面)に当たる。
In this heating state, when the stator coil 2 of the motor-operated valve A is energized so as to rotate in the valve closing direction, the rotor 5 of the motor shown in FIGS. As shown in FIG. 17 (B), when the projection 9 of the rotor 5 separates from the lower projecting piece 15 of the delay transmission means 16 and rotates about one turn, as shown in FIG.
5 inside (upper surface).

【0016】続いて回転子5が回転すると、前記遅延伝
達手段16下方の突出片15が回転子5の凸部9に押さ
れて上方の突出片14と共に左方向に回動し、やがて、
図17(C)のように上方の突出片14が前記スッパー
片13aの後面(上面)と当接するまで回転子5が回転
する。上記図17(A)〜(C)間の回転子5の約2回
転の間は遅延伝達手段16におけるコイルの空転によ
り、連結棒28には伝わらない。従って、この間、ねじ
軸4による針状弁3の上下作用により弁口8の開口面積
を変化させることができ、最適絞り度の位置で、暖房運
転が可能となる。
Subsequently, when the rotor 5 rotates, the projecting piece 15 below the delay transmission means 16 is pushed by the convex portion 9 of the rotor 5 and rotates leftward with the projecting piece 14 above.
As shown in FIG. 17C, the rotor 5 rotates until the upper protruding piece 14 comes into contact with the rear surface (upper surface) of the sper piece 13a. During approximately two rotations of the rotor 5 between FIGS. 17A to 17C, the rotation is not transmitted to the connecting rod 28 due to the idling of the coil in the delay transmission means 16. Accordingly, during this time, the opening area of the valve port 8 can be changed by the vertical movement of the needle valve 3 by the screw shaft 4, and the heating operation can be performed at the position of the optimal throttle degree.

【0017】次に、冷房運転に切り換えたい時は、図1
7(C)の状態から回転子5を、さらに左方向に回転さ
せると上方の突出片14により連結棒28と一体的に固
定されたストッパー片13aを押しつつ、図17(D)
の状態まで回転するので、連結棒28は回転を始め、上
部の四方弁B部の弁体36に回転を伝える。これによ
り、弁体39が図14の状態から図15の状態まで90
°回転し、冷房運転に切り換わる。
Next, when it is desired to switch to the cooling operation, FIG.
When the rotor 5 is further rotated to the left from the state of FIG. 7 (C), the stopper piece 13a fixed integrally with the connecting rod 28 is pushed by the upper projecting piece 14, and FIG.
, The connecting rod 28 starts rotating and transmits the rotation to the valve body 36 of the upper four-way valve B portion. As a result, the valve body 39 moves 90 degrees from the state of FIG. 14 to the state of FIG.
Rotate ° and switch to cooling operation.

【0018】この暖房運転から冷房運転に切り換える
際、弁体39を90°回転させるが、この時、弁体39
における連通孔47の貫通孔45側の内縁外端部に当接
していたストッパー44が連通孔47の貫通孔46側の
内縁外端部に図15の如く当接することにより確実に停
止する。
When switching from the heating operation to the cooling operation, the valve body 39 is rotated by 90 degrees.
The stopper 44, which has been in contact with the outer end of the inner side of the through hole 45 of the communication hole 47 in the above, comes into contact with the outer end of the inner side of the through hole 46 of the through hole 47 as shown in FIG.

【0019】この弁体39の切り換えにより、気密連通
孔48は導出孔34と通孔35の間を気密的に連通させ
ることになるため、圧縮機Fの吐出口から出た冷媒は、
導入管40→導入口33→連通孔47→通孔36→導孔
管43を経て室外熱交換器Dに入り、制御弁のパイプ1
9→弁口8→パイプ21を経て室内熱交換器Eを通り、
通孔管42→通孔35→連通孔48→導出口34→導出
管41を経て圧縮機Fに戻る。
The switching of the valve body 39 causes the airtight communication hole 48 to airtightly communicate between the outlet hole 34 and the communication hole 35, so that the refrigerant discharged from the discharge port of the compressor F is
The inlet pipe 40 → the inlet port 33 → the communication hole 47 → the through hole 36 → the outdoor heat exchanger D via the guide tube 43, and the control valve pipe 1
9 → Valve port 8 → Pass through the indoor heat exchanger E via pipe 21,
The flow returns to the compressor F via the through-hole pipe 42 → the through-hole 35 → the communication hole 48 → the outlet 34 → the outlet pipe 41.

【0020】この冷房運転、即ち、図17(D)の状態
で最適絞り度を得ようとする時は、針状弁3が閉弁方向
に回転するように固定子コイル2に通電する。それによ
り、前記とは逆の原理にて、モータの回転子5は遅延伝
達手段とは接触することなく上面から見て矢印とは逆の
右方向に一回転し、回転子の凸部9が遅延伝達手段16
の下方の突出片15の反対側に当たる。続いて回転子5
が回転すると、遅延伝達手段16の下方の突出片15が
ロータースリーブの凸部9に押されて右方向に回転し、
やがて上方の突出片14が前記ストッパー片13と当接
するまで、回転子5が回転する。この間ねじ軸4による
針状弁3の上下作用により弁口8の開口面積を変化させ
ることができ、最適絞り度の位置で冷房運転が可能とな
る。
In order to obtain the optimum degree of throttle in the cooling operation, that is, in the state of FIG. 17D, the stator coil 2 is energized so that the needle valve 3 rotates in the valve closing direction. Accordingly, on the principle opposite to the above, the rotor 5 of the motor makes one rotation in the right direction opposite to the arrow when viewed from above without contacting the delay transmission means, and the protrusion 9 of the rotor is Delay transmission means 16
On the opposite side of the protruding piece 15 below. Then rotor 5
Is rotated, the protruding piece 15 below the delay transmission means 16 is pushed by the protrusion 9 of the rotor sleeve and rotates rightward,
The rotor 5 rotates until the upper protruding piece 14 comes into contact with the stopper piece 13. During this time, the opening area of the valve port 8 can be changed by the up and down action of the needle valve 3 by the screw shaft 4, and the cooling operation can be performed at the position of the optimal throttle degree.

【0021】再び暖房運転に切り換えたい時は、針状弁
3が更に閉弁方向に回転するように固定子コイル2に通
電すると、遅延伝達手段16の上方の突出片14がスト
ッパー片13aと当接し連結棒28が図17において反
時計方向に回転し、弁体39は図15の状態から図14
の状態に90°回動して暖房運転に切り換わる。
When it is desired to switch to the heating operation again, when the stator coil 2 is energized so that the needle valve 3 further rotates in the valve closing direction, the protruding piece 14 above the delay transmission means 16 contacts the stopper piece 13a. The connecting rod 28 rotates counterclockwise in FIG. 17, and the valve body 39 is moved from the state of FIG.
Is turned 90 ° to the state of and the mode is switched to the heating operation.

【0022】一方、図10は、冷凍サイクルのパイパス
回路のオン・オフ制御に用いられている従来技術の二方
弁の構造を示す。この二方弁Gの構造は、下部中心に弁
座103を設けると共に側部と下方にそれぞれ冷媒の流
入出パイプ104、105を設けた弁本体101と、こ
の弁本体101の上部に設けられた非磁性材料からなる
プランジャーチューブ110内に摺動可能に内挿された
下端部に弁体106を備えた磁性材料からなるプランジ
ャー107と、このプランジャー107の上部にスプリ
ング108を介して前記プランジャーチューブ110の
上端部に固定された磁性材料からなる吸引子109と、
前記プランジャーチューブ110の回りに配置されたコ
イル112及び前記コイル112を囲むように配置され
たコ字状の磁性材料からなるヨーク113によって構成
される電磁石111とにより構成されている。なお、図
中102は、ヨーク113と吸引子109とを固定する
固定ねじである。
FIG. 10 shows the structure of a conventional two-way valve used for on / off control of a bypass circuit of a refrigeration cycle. The structure of the two-way valve G includes a valve body 101 provided with a valve seat 103 at a lower center and provided with refrigerant inflow / outflow pipes 104 and 105 at side and lower portions, respectively, and provided at an upper portion of the valve body 101. A plunger 107 made of a magnetic material having a valve body 106 at a lower end slidably inserted in a plunger tube 110 made of a non-magnetic material, and a plunger 107 above the plunger 107 via a spring 108. A suction element 109 made of a magnetic material fixed to an upper end of the plunger tube 110;
It comprises a coil 112 arranged around the plunger tube 110 and an electromagnet 111 constituted by a yoke 113 made of a U-shaped magnetic material arranged so as to surround the coil 112. In the figure, reference numeral 102 denotes a fixing screw for fixing the yoke 113 and the suction element 109.

【0023】続いて、従来技術の二方弁の作用(作動)
について説明する。電磁石111のコイル112への非
通電時には、スプリング108の作用によりプランジャ
ー107の弁体106が弁座103に圧接し、二方弁は
閉状態となっている。
Subsequently, the operation (actuation) of the conventional two-way valve
Will be described. When power is not supplied to the coil 112 of the electromagnet 111, the valve body 106 of the plunger 107 is pressed against the valve seat 103 by the action of the spring 108, and the two-way valve is in a closed state.

【0024】次に、電磁石111のコイル112に通電
すると、内部に発生する磁界の作用によりプランジャー
107はスプリング108の力に抗して吸引子109に
吸引され、弁体106が弁座103から離れることによ
り二方弁は開状態となる。
Next, when the coil 112 of the electromagnet 111 is energized, the plunger 107 is attracted by the attraction element 109 against the force of the spring 108 by the action of the magnetic field generated inside, and the valve 106 is moved from the valve seat 103. The separation causes the two-way valve to open.

【0025】図9は、一般的なヒートポンプ式冷凍サイ
クルに室外側熱交換器Dの除霜を目的としてホットガス
デフロスト式とよばれるバイパス回路Hを設けた回路図
であり、バイパス回路Hでは、圧縮機Fの出口側と室内
側熱交換器Eの出口側、すなわち、電動弁部Aの入口側
との間に二方弁Gが設けられており、通常暖房運転では
二方弁Gを閉弁状態とし、冷媒を圧縮機F→導入管40
→四方弁部B→通孔管42→室内側熱交換器E→電動弁
部A→室外側熱交換器D→通孔管43→四方弁部B→導
出管41→圧縮機Fへと循環させ、次に除霜運転では二
方弁Gを開弁状態とし、冷媒を圧縮機F→二方弁G→電
動弁部A→室外側熱交換器D→通孔管43→四方弁部B
→導出管41→圧縮機Fへと循環させるようになってお
り、圧縮機Fから吐出した高温高圧の冷媒を直接室外側
熱交換器Dに送り込むことにより除霜を行うものであ
る。
FIG. 9 is a circuit diagram in which a general heat pump refrigeration cycle is provided with a bypass circuit H called a hot gas defrost type for the purpose of defrosting the outdoor heat exchanger D. In the bypass circuit H, A two-way valve G is provided between the outlet side of the compressor F and the outlet side of the indoor heat exchanger E, that is, the inlet side of the motor-operated valve portion A. In the normal heating operation, the two-way valve G is closed. With the valve in the state, the refrigerant is supplied from the compressor F to the inlet pipe 40.
→ four-way valve part B → through-hole pipe 42 → indoor heat exchanger E → electric valve part A → outdoor heat exchanger D → through-hole pipe 43 → four-way valve part B → outlet pipe 41 → circulates to compressor F Then, in the defrosting operation, the two-way valve G is opened, and the refrigerant is compressed by the compressor F, the two-way valve G, the electric valve part A, the outdoor heat exchanger D, the through-hole pipe 43, and the four-way valve part B.
The refrigerant is circulated from the outlet pipe 41 to the compressor F, and the high-temperature and high-pressure refrigerant discharged from the compressor F is directly sent to the outdoor heat exchanger D to perform defrosting.

【0026】なお、このようなバイパス回路Hを設ける
理由は、暖房運転中に外気温度が0℃以下になると、空
気中の水分が室外側熱交換機Dのフィン等に凝縮し霜と
なって付着するため、室外側熱交換機Dの伝熱効果が低
下し、冷凍サイクルの効率(暖房効率)を著しく低下さ
せるので除霜を行わなければならないためである。
The reason for providing such a bypass circuit H is that when the outside air temperature becomes 0 ° C. or less during the heating operation, moisture in the air condenses on the fins of the outdoor heat exchanger D and becomes frost and adheres. Therefore, the heat transfer effect of the outdoor heat exchanger D is reduced, and the efficiency (heating efficiency) of the refrigeration cycle is significantly reduced, so that defrost must be performed.

【0027】[0027]

【発明が解決しようとする課題】前述した従来技術で
は、図9に示す冷凍サイクルの回路における制御弁と二
方弁の仕様形態において、各々独立した駆動装置を用い
て駆動させるものであるから、以下のような問題点があ
った。 制御弁と二方弁をそれぞれ設置するためのスペースが
必要であった。 制御弁を作動させるモータ用の固定子コイル2と、二
方弁を作動させる電磁石37という、それぞれの電気的
駆動手段が個々に必要となり、コスト高になっていた。 制御弁用と二方弁用の2つのコントローラを必要と
し、また、これらコントローラと弁をつなぐリード線が
それぞれ必要となり、コスト高となっていた。 二方弁は、開弁中は連続通電しなければならず、電気
代が余分に必要であった。
In the prior art described above, the control valve and the two-way valve in the refrigeration cycle circuit shown in FIG. 9 are driven by independent driving devices in the specification form. There were the following problems. Space was required for installing the control valve and the two-way valve, respectively. Each electric drive means such as the stator coil 2 for the motor for operating the control valve and the electromagnet 37 for operating the two-way valve is required individually, which has increased the cost. Two controllers, one for the control valve and the other for the two-way valve, are required, and lead wires for connecting these controllers and the valve are required, resulting in high costs. The two-way valve had to be energized continuously while the valve was open, requiring an extra electricity bill.

【0028】[0028]

【問題点を解決するための手段】本発明の制御弁は、膨
張弁の機能を果たす電動弁A部と、冷房時と暖房時の冷
媒の流路を切り換える機能を果たす四方弁B部とからな
る従来の制御弁において、四方弁の弁体にバイパス弁5
1を付加させると共に伝達装置のガイドブッシュに通孔
を設けることにより、従来、冷凍サイクルのバイパス回
路のオン・オフ制御に用いられていた二方弁の機能を付
加させ、一つの駆動源(固定子コイル2)にて3つの機
能を制御可能とすることを特徴とするものである。
The control valve of the present invention comprises a motor-operated valve A which functions as an expansion valve and a four-way valve B which functions to switch the flow path of the refrigerant during cooling and heating. In the conventional control valve, a four-way valve body has a bypass valve 5
1 and a through hole in the guide bush of the transmission device, thereby adding the function of a two-way valve conventionally used for on / off control of a refrigeration cycle bypass circuit, thereby providing one drive source (fixed). It is characterized in that three functions can be controlled by the child coil 2).

【0029】すなわち、本発明に係る制御弁は、非磁性
体からなるケース1外周部の固定子コイル2への通電に
よるケース1内の回転子5の回転により、この回転子5
の中心下方に一体的に設けられたねじ軸4を介してねじ
軸先端の針状弁3を上下動させ、ケース1の下端に設け
た弁ボディ6下部の弁口8の開度を制御する電動弁A部
と、少なくとも3つの開口を同心円上に設けた金属円板
状の弁座37を前記ケース1の上端に設け、この弁座3
7の下面を摺動回転して前記3つの開口の少なくとも2
つを気密的に連通させ、他の1つの開口は開放状態とす
るプラスチック弁体39とからなる四方弁B部と、前記
電動弁A部の回転子5と四方弁B部の弁体39との間に
設けた、電動弁A部の弁口8が全開直前の位置と全閉直
前の位置において回転を伝える伝達装置C部とにより構
成され、前記電動弁A部の回転子5の回転力を利用し
て、電動弁A部の弁口8の絞り開閉と四方弁B部の弁体
39の回転による流路切換とを連動して行なう制御弁に
おいて、前記弁体39下部のボス24下面を開口してそ
の壁面に突起56を対向させて設けて遅延連結部55を
構成し、前記開口に挿入されるバイパス弁51には、そ
の上半部外周を扇状に切り欠いて遅延連結部53を設け
ると共に、中心部に内歯52が形成された下半部の外周
にも同様に扇状に切り欠き、さらに底面に弁シール部5
4を形成し、前記伝達装置Cのガイドブッシュ26に
は、その中心部に上端部に外歯29を設けた連結棒28
を気密的に且つ回転自在に設けると共に通孔57を設
け、前記バイパス弁51の遅延連結部53と弁体39の
遅延連結部55とにより、バイパス弁51を、伝達装置
C部及び弁体39とそれぞれ所定の回転角度をもって前
記遅延連動させるのに際し、前記弁体39が回転するま
での間は電動弁Aの空間61と前記四方弁Bの空間62
が連通するようにしたことを特徴とするものである。
That is, the control valve according to the present invention rotates the rotor 5 in the case 1 by energizing the stator coil 2 on the outer periphery of the case 1 made of a non-magnetic material.
The needle valve 3 at the tip of the screw shaft is moved up and down via a screw shaft 4 integrally provided below the center of the case 1 to control the opening degree of a valve port 8 below the valve body 6 provided at the lower end of the case 1. An electric valve A portion and a metal disk-shaped valve seat 37 having at least three openings provided concentrically are provided at the upper end of the case 1.
7 is slid and rotated on at least two of the three openings.
And the other one opening is opened by a plastic valve body 39, a four-way valve B, a rotor 5 of the motor-operated valve A, and a valve body 39 of the four-way valve B. And a transmission device C for transmitting rotation at a position immediately before the fully opened position and a position immediately before the fully closed position of the valve port 8 of the electrically operated valve A, and the rotational force of the rotor 5 of the electrically operated valve A is provided. In the control valve, the opening and closing of the valve port 8 of the motor-operated valve A and the switching of the flow path by the rotation of the valve 39 of the four-way valve B are performed in conjunction with each other. And a projection 56 is provided on the wall surface thereof so as to oppose the projection 56 to constitute a delay connection portion 55. The bypass valve 51 inserted into the opening has a delay connection portion 53 with a fan-shaped cutout in the upper half outer periphery. Similarly, the outer periphery of the lower half having the internal teeth 52 formed in the center is cut in a fan shape. Away, the valve seal part 5 further bottom
And a connecting rod 28 having a guide bush 26 of the transmission device C and an external tooth 29 provided at an upper end at a central portion thereof.
Are provided airtightly and rotatably, and a through hole 57 is provided. The delay connecting portion 53 of the bypass valve 51 and the delay connecting portion 55 of the valve body 39 connect the bypass valve 51 to the transmission device C and the valve body 39. When the delay is interlocked with a predetermined rotation angle, the space 61 of the motor-operated valve A and the space 62 of the four-way valve B are maintained until the valve element 39 rotates.
Are connected to each other.

【0030】[0030]

【発明の実施の形態】本発明の一実施例を図1〜図8に
基づき詳細に説明する。なお、従来技術の制御弁Zと同
じ部品については同一の符号を用いている。本発明の制
御弁は、図1に示す如く、外歯29から下側の伝達装置
C部及び電動弁A部については、従来技術の制御弁と構
造が同一のため従来技術と重複するので詳細な説明は省
略する。また、四方弁B部においては、冷房時と暖房時
の冷媒の流路を切り換える機能に関する構造は従来技術
と同じであるため、その点についての詳細な説明は省略
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described in detail with reference to FIGS. Note that the same reference numerals are used for the same components as the control valve Z of the related art. As shown in FIG. 1, the control valve of the present invention has the same structure as that of the control valve of the prior art since the transmission device C and the motor-operated valve A below the external teeth 29 have the same structure as the prior art. Detailed description is omitted. Further, in the four-way valve B, the structure relating to the function of switching the flow path of the refrigerant during cooling and during heating is the same as that of the prior art, and a detailed description thereof will be omitted.

【0031】本発明の制御弁においては、四方弁B部及
び伝達装置C部について以下の如く新規な事項が追加さ
れている。四方弁B部におけるプラスチック製の弁体3
9は、従来品と同様に、導入口33と通孔35と貫通孔
45、46が設けられると共に、その下半部に両貫通孔
45、46をつなぐ連通孔47並びに導出口34および
通孔36を気密的につなぐ気密連通孔48が設けられて
いる。また、弁体39の上面中心には圧縮コイルばね2
3を挿入するための孔22が設けられている。
In the control valve of the present invention, the following new items are added to the four-way valve B and the transmission device C as follows. Plastic valve element 3 in part B of four-way valve
9 is provided with an inlet 33, a through hole 35, and through holes 45 and 46, and a communication hole 47 connecting the two through holes 45 and 46, and an outlet 34 and a An airtight communication hole 48 for airtightly connecting the airtight holes 36 is provided. The compression coil spring 2 is located at the center of the upper surface of the valve body 39.
3 is provided.

【0032】本発明における弁体39は上記の構成に加
えて、図1及び図2(B)に示すように、前記弁体39
下部のボス24下面には、開口が設けられその壁面に突
起56が対向して設けられ遅延連結部55を構成してい
る。
The valve body 39 according to the present invention has the above-described structure and, as shown in FIG. 1 and FIG.
An opening is provided on the lower surface of the lower boss 24, and a projection 56 is provided on a wall surface of the opening so as to face the boss 24, thereby forming a delay connection portion 55.

【0033】図2(C)は、前記弁体39の開口に挿入
されるバイパス弁51であり、該バイパス弁51は、そ
の上半部外周が扇状に切り欠かれて遅延連結部53を構
成させると共に、下半部の外周も同様に扇状に切り欠か
かれている。又、中心部に内歯52が形成されると共に
底面を弁シール部54として構成させている。
FIG. 2C shows a bypass valve 51 inserted into the opening of the valve element 39. The bypass valve 51 has a delay connection portion 53 whose upper half outer periphery is cut out in a fan shape. At the same time, the outer periphery of the lower half is similarly cut out in a fan shape. Further, the inner teeth 52 are formed in the center portion, and the bottom surface is configured as a valve seal portion 54.

【0034】前記伝達装置Cのガイドブッシュ26に
は、その中心部に上端部に外歯29を設けた連結棒28
が気密的に且つ回転自在に設けられるのは従来と同じで
あるが、本発明ではこれに加えて、前記バイパス弁51
下半部の扇状の2つの切欠きと対峙して通孔57、57
が設けられている。
The guide bush 26 of the transmission device C has a connecting rod 28 provided with external teeth 29 at its upper end at the center.
Is airtightly and rotatably provided as in the prior art, but in the present invention, in addition to this, the bypass valve 51 is additionally provided.
The through holes 57, 57 face the two fan-shaped notches in the lower half.
Is provided.

【0035】従って、本発明の制御弁においては、前記
バイパス弁51の遅延連結部53と弁体39の遅延連結
部55とにより、バイパス弁51を、伝達装置C部及び
弁体39とそれぞれ所定の回転角度をもって前記遅延連
動させるのに際し、前記弁体39が回転するまでの間は
電動弁Aの空間61と前記四方弁Bの空間62が連通す
るようになっている。
Accordingly, in the control valve of the present invention, the bypass valve 51 is connected to the transmission device C and the valve body 39 by the delay connection part 53 of the bypass valve 51 and the delay connection part 55 of the valve body 39, respectively. The space 61 of the motor-operated valve A and the space 62 of the four-way valve B communicate with each other until the valve body 39 rotates when the delay is interlocked with the rotation angle of.

【0036】引き続き、本実施例の作動原理を図5〜図
8に基づき説明する。先ず最初に、暖房運転では、四方
弁B部の弁座37と弁体39の位置関係及び第バイパス
弁51の開閉状態は、図5(A)に示す如く、連通孔4
7により導入口33と通孔35とが連通され、気密連通
孔48により通孔36と導出孔34とが連通された状態
で、バイパス弁51が閉弁状態である。
Next, the operation principle of this embodiment will be described with reference to FIGS. First, in the heating operation, as shown in FIG. 5A, the positional relationship between the valve seat 37 and the valve element 39 of the four-way valve B and the open / close state of the first bypass valve 51 are determined.
The bypass valve 51 is in a closed state in a state where the inlet port 33 and the through hole 35 are communicated by 7 and the through hole 36 and the outlet hole 34 are communicated by the airtight communication hole 48.

【0037】次に暖房運転から冷房運転に切り換わる際
には、図8(A)で示す如く、暖房運転中に回転位置
(ハ)〜(ニ)間で制御されていた電動弁A部の回転子
5が、冷房運転に切り換わる途中で、まず(ホ)の位置
まで進み、図5(B)で示す如く、第2弁体51を開弁
状態にし、さらに、(ヘ)の位置まで進み、図5(C)
で示す如く、連通孔47により導入口33と通孔36と
が連通され、気密連通孔48により通孔35と導出孔3
4とが連通された状態に四方弁B部を切り換え、冷房運
転に移る。
Next, when the operation is switched from the heating operation to the cooling operation, as shown in FIG. 8A, the electric valve A which is controlled between the rotational positions (c) to (d) during the heating operation is controlled. While the rotor 5 switches to the cooling operation, the rotor 5 first advances to the position (e), as shown in FIG. 5 (B), opens the second valve body 51, and further moves to the position (f). Proceed, FIG. 5 (C)
As shown in the figure, the introduction hole 33 and the through hole 36 are communicated by the communication hole 47, and the through hole 35 and the outlet hole 3 are communicated by the airtight communication hole 48.
The four-way valve B is switched to a state where the communication with the valve 4 is established, and the cooling operation is started.

【0038】再び、冷房運転から暖房運転に切り換わる
際には、図8(B)で示す如く、冷房運転中に回転位置
(ハ)〜(ニ)間で制御されていた電動弁A部の回転子
5が、(ロ)の位置まで戻り、図5(D)に示す如く、
バイパス弁51を開状態にし、さらに、(イ)の位置ま
で戻り、図5(A)に示す如く、連通孔47により導入
口33と通孔35とが連通され、気密連通孔48により
通孔36と導出孔34とが連通された状態に四方弁B部
を切り換え、その後、暖房運転に移る。
When the operation is switched from the cooling operation to the heating operation again, as shown in FIG. 8B, the electric valve A which is controlled between the rotational positions (c) to (d) during the cooling operation is controlled. The rotor 5 returns to the position (b), and as shown in FIG.
The bypass valve 51 is opened and further returned to the position (a). As shown in FIG. 5A, the inlet 33 and the through hole 35 communicate with each other through the communication hole 47, and the air hole 48 connects with the airtight communication hole 48. The four-way valve B is switched to a state in which the 36 and the outlet hole 34 are communicated with each other, and then the heating operation is started.

【0039】他方、暖房運転から除霜運転に切り換わる
際には、図8(C)で示す如く、暖房運転中に回転位置
(ハ)〜(ニ)間で制御されていた電動弁A部の回転子
5が、(ホ)の位置まで進み、図6(B)で示す如く、
四方弁B部を切り換えないままバイパス弁51を開弁状
態にし、その後、除霜運転に移る。このバイパス弁51
の開弁により、圧縮機Fの吐出口から出た冷媒は、導入
管40→導入口33→貫通孔45→空間61→通孔51
→空間62→通孔58→開口18→パイプ19を経て、
室外熱交換器Dを通り、図13(B)に示す如く、通孔
管43→通孔36→気密連通孔48→導出口34→導出
管41を経て圧縮機Fに戻る。なお、除霜運転中は、バ
イパス弁51を開弁状態を維持するのに固定子コイル2
に通電する必要性がないことは従来の制御弁の原理から
明白である。
On the other hand, when the operation is switched from the heating operation to the defrosting operation, as shown in FIG. 8C, the motor-operated valve A which is controlled between the rotation positions (C) to (D) during the heating operation. Of the rotor 5 advances to the position (e), and as shown in FIG.
The bypass valve 51 is opened without switching the four-way valve B, and then the operation shifts to the defrosting operation. This bypass valve 51
When the valve is opened, the refrigerant flowing out of the discharge port of the compressor F is introduced into the inlet pipe 40 → the inlet port 33 → the through hole 45 → the space 61 → the through hole 51.
→ space 62 → through hole 58 → opening 18 → via pipe 19,
After passing through the outdoor heat exchanger D, as shown in FIG. 13 (B), the air returns to the compressor F via the through-hole pipe 43 → the through-hole 36 → the airtight communication hole 48 → the outlet 34 → the outlet pipe 41. During the defrosting operation, the stator coil 2 is used to keep the bypass valve 51 open.
It is clear from the principle of the conventional control valve that there is no need to energize the control valve.

【0040】再び、除霜運転から暖房運転に切り換わる
際には、図8(D)で示す如く、除霜運転中に回転位置
(ホ)の位置で制御されていた電動弁A部の回転子5
が、(ロ)の位置まで戻り、図6(A)で示す如く、四
方弁B部を切り換えないままバイパス弁51を閉弁状態
に戻し、その後、暖房運転に移る。
When the operation is switched from the defrosting operation to the heating operation again, as shown in FIG. 8D, the rotation of the motor-operated valve A controlled at the rotational position (e) during the defrosting operation is performed. Child 5
However, returning to the position (b), as shown in FIG. 6A, the bypass valve 51 is returned to the closed state without switching the four-way valve B, and then the heating operation is started.

【0041】上述の説明のように本発明の制御弁は、図
7で示す如く、電動弁A部の回転子5の回転位置を可変
させるにより電動弁A部の弁口8の絞り機能、四方弁B
部の弁体39の冷暖房切換機能および二方弁Gの機能に
相当する第2弁体51の開閉弁機能の3つの機能を制御
可能とするものである。また、回転子5の総ステップ数
や遅延連結部の遅延角度の値は、従来技術や本発明での
説明したものに限定されず、使用用途やコスト等を加味
して自由に設計できるものである。
As described above, the control valve of the present invention, as shown in FIG. 7, has a function of restricting the valve port 8 of the motor-operated valve A by changing the rotational position of the rotor 5 of the motor-operated valve A, thereby providing a four-way operation. Valve B
The three functions of the switching function of the second valve element 51 corresponding to the function of the cooling / heating switching of the valve element 39 of the section and the function of the two-way valve G can be controlled. Further, the total number of steps of the rotor 5 and the value of the delay angle of the delay connection portion are not limited to those described in the related art and the present invention, and can be freely designed in consideration of the use application and cost. is there.

【0042】[0042]

【発明の効果】本発明に係る制御弁は、前述した実施例
のとおり、膨張弁の機能を果たす電動弁A部と、冷房時
と暖房時の冷媒の流路を切り換える機能を果たす四方弁
B部からなる従来の制御弁において、四方弁の弁体に遅
延作動するバイパス弁51を新たに設け、このバイパス
弁51の外周面を扇状に切り欠くと共に底部には弁シー
ル部54を形成し、伝達装置Cのガイドブッシュ26に
は前記扇状の切欠きに対峙させて通孔を設けることによ
り、従来、冷凍サイクルのバイパス回路のオン・オフ制
御に用いられていた二方弁の機能を付加させたものであ
るから、一つの駆動源(固定子コイル2)にて前記の3
つの機能を1つの制御弁にて制御することができる。
As described above, the control valve according to the present invention comprises a motor-operated valve A which functions as an expansion valve and a four-way valve B which functions to switch the flow path of the refrigerant during cooling and heating. In the conventional control valve consisting of a part, a bypass valve 51 that operates delayed is newly provided in the valve body of the four-way valve, and the outer peripheral surface of the bypass valve 51 is notched in a fan shape, and a valve seal part 54 is formed at the bottom part, By providing a through hole in the guide bush 26 of the transmission device C so as to face the fan-shaped notch, the function of a two-way valve conventionally used for on / off control of the bypass circuit of the refrigeration cycle is added. Therefore, one drive source (stator coil 2) is used to
One function can be controlled by one control valve.

【0043】従って、 二方弁における電磁石や弁本体のほとんどの部品が不
要となるため、非常にコンパクト(省スペース)にな
る。 二方弁における電磁石や弁本体のほとんどの部品が不
要となるため、製造コストが安くなる。 二方弁におけるコントローラ及びリード線がいらなく
なるため、製造コストが安くなる。 二方弁機能は、自己保持機能を有する電動弁A部のモ
ーターと連動するため開弁中において、通電する必要が
なくなり、電気代が不要となる。 といった効果がある。
Accordingly, since the electromagnet and most of the valve body in the two-way valve are not required, the device is very compact (space saving). Since the electromagnet and most parts of the valve body in the two-way valve are not required, the manufacturing cost is reduced. Since the controller and the lead wire in the two-way valve are not required, the manufacturing cost is reduced. Since the two-way valve function is interlocked with the motor of the electrically operated valve A having the self-holding function, it is not necessary to energize the valve while the valve is open, and the electricity bill is unnecessary. There is such an effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の制御弁の一実施例の縦断面図。FIG. 1 is a longitudinal sectional view of one embodiment of a control valve of the present invention.

【図2】 本発明の制御弁の弁座、弁体とバイパス弁と
の分解斜視図で、(A)は弁座の斜視図、(B)は弁体
の斜視図、(C)は第2弁体の斜視図、(D)はガイド
ブッシュの斜視図。
FIG. 2 is an exploded perspective view of a valve seat, a valve body and a bypass valve of the control valve of the present invention, wherein (A) is a perspective view of the valve seat, (B) is a perspective view of the valve body, and (C) is a perspective view of the valve body. The perspective view of a 2 valve body, (D) is a perspective view of a guide bush.

【図3】 本発明の制御弁のバイパス弁の拡大斜視図
で、(A)は遅延連結部側からみた状態、(B)は内歯
側からみた状態を示す。
FIGS. 3A and 3B are enlarged perspective views of a bypass valve of the control valve of the present invention, wherein FIG. 3A shows a state viewed from the delay connection portion side, and FIG.

【図4】 本発明の制御弁の弁体の拡大斜視図で、遅延
連結部側からみた斜視図。
FIG. 4 is an enlarged perspective view of a valve body of the control valve according to the present invention, which is a perspective view as viewed from a delay connection portion side.

【図5】 冷房・暖房切換時における本発明の制御弁の
遅延連結部の作動状態及びバイパス弁の開閉弁状態を説
明するための平面図であり、(A)は暖房運転時、
(B)は冷房運転切換途中、(C)は冷房運転時、
(D)は暖房運転切換途中の状態を示す。
FIG. 5 is a plan view for explaining the operation state of the delay connection portion of the control valve and the opening / closing state of the bypass valve at the time of cooling / heating switching, and FIG.
(B) is during cooling operation switching, (C) is during cooling operation,
(D) shows a state during the switching of the heating operation.

【図6】 暖房・除霜切換時における本発明の制御弁の
遅延連結部の作動状態及びバイパス弁の開閉弁状態を説
明するための平面図であり、(A)は暖房運転時、
(B)は除霜運転時の状態を示す。
FIG. 6 is a plan view for explaining the operation state of the delay connection portion of the control valve and the opening / closing state of the bypass valve during switching between heating and defrosting according to the present invention;
(B) shows the state at the time of the defrosting operation.

【図7】 回転子の回転位置と電動弁の弁口流量、四方
弁の弁体位置及びバイパス弁の開閉弁状態との関係を示
すグラフチャート図。
FIG. 7 is a graph chart showing a relationship among a rotation position of a rotor, a valve opening flow rate of a motor-operated valve, a valve body position of a four-way valve, and an open / close state of a bypass valve.

【図8】 各運転モード切換時における回転子の回転位
置と四方弁の弁体位置及びバイパス弁の開閉弁状態との
関係を示すグラフチャート図であり、(A)は暖房運転
→冷房運転、(B)は冷房運転→暖房運転、(C)は暖
房運転→除霜運転、(D)は除霜運転→暖房運転の切換
時の状態を示す。
FIG. 8 is a graph chart showing a relationship between a rotation position of a rotor, a valve body position of a four-way valve, and an open / closed valve state of a bypass valve at the time of each operation mode switching, where (A) is a heating operation → a cooling operation; (B) shows the state at the time of switching from the cooling operation to the heating operation, (C) the heating operation → the defrosting operation, and (D) shows the state at the time of switching from the defrosting operation to the heating operation.

【図9】 従来技術の制御弁及び二方弁を用いた冷凍サ
イクル図であり、実線矢印は暖房運転時の冷媒の流れを
示し、破線矢印はバイパス回路Hにおける除霜運転時の
冷媒の流れを示す。
FIG. 9 is a refrigeration cycle diagram using a control valve and a two-way valve according to the related art, in which a solid arrow indicates a refrigerant flow during a heating operation, and a broken arrow indicates a refrigerant flow during a defrost operation in the bypass circuit H. Is shown.

【図10】 従来技術の二方弁の閉弁状態における縦断
面図。
FIG. 10 is a longitudinal sectional view of a conventional two-way valve in a closed state.

【図11】 従来技術の制御弁の暖房状態における縦断
面図。
FIG. 11 is a longitudinal sectional view of a conventional control valve in a heating state.

【図12】 従来技術の制御弁の弁座と弁体との分解斜
視図で、(A)は弁座の斜視図、(B)は弁体の斜視
図。
FIG. 12 is an exploded perspective view of a valve seat and a valve body of a conventional control valve, where (A) is a perspective view of the valve seat, and (B) is a perspective view of the valve body.

【図13】 従来技術の制御弁の弁座と弁体とを組み合
わせた状態における断面図で、(A)は図12のA−A
断面図、(B)は図12のB−B断面図。
13 is a cross-sectional view showing a state where a valve seat and a valve body of a conventional control valve are combined, and FIG.
Sectional drawing, (B) is BB sectional drawing of FIG.

【図14】 従来技術の制御弁の暖房時における弁座と
弁体の位置関係を示す平面図。
FIG. 14 is a plan view showing a positional relationship between a valve seat and a valve body during heating of a conventional control valve.

【図15】 従来技術の制御弁の冷房時における弁座と
弁体の位置関係を示す平面図。
FIG. 15 is a plan view showing a positional relationship between a valve seat and a valve body during cooling of a control valve according to the related art.

【図16】 従来技術の制御弁の遅延連結手段の一部切
欠斜視図。
FIG. 16 is a partially cutaway perspective view of a delay connection means of a control valve according to the related art.

【図17】 冷・暖切換時における従来技術の制御弁の
遅延連結手段の作動状態を説明するための平面図であ
り、(A)は暖房時、(B)〜(C)は弁口の絞り時、
(D)は暖房時の状態を示す平面図。
FIG. 17 is a plan view for explaining the operation state of the delay connection means of the control valve of the related art at the time of switching between cooling and warming, where (A) is for heating, and (B) to (C) are valve openings. At aperture,
(D) is a top view which shows the state at the time of heating.

【符号の説明】[Explanation of symbols]

A 電動弁 B 四方弁 C
伝達装置 D 室外側熱交換器 E 室内側熱交換器 F
圧縮機 G 二方弁 H バイパス回路 Z
制御弁 1 ケース 2 固定子コイル 3
針状弁 4 ねじ軸 5 回転子 6
弁ボディ 7 推進軸受 8 弁口 9
凸部 10 蓋 11 フランジ部 13a ストッパー片 13 ストッパー 1
4 上方の突出片 15 下方の突出片 16 遅延伝達手段 1
7 チャンバー 18 開口 19 パイプ 2
0 開口 21 パイプ 22 孔 2
3 圧縮コイルばね 24 ボス 25 内歯 2
6 ガイドブッシュ 27 鍔 28 連結棒 2
9 外歯 30 係合手段 31 弁本体 3
2 円筒状のケース 33 開口(導入口) 34 開口(導出口) 3
5 開口(通孔) 36 開口(通孔) 37 弁座 3
8 圧縮コイルばね 39 弁体 40 導入管 4
1 導出管 42 通孔管 43 通孔管 4
4 弁体ストッパー 45 貫通孔 46 貫通孔 4
7 連通孔 48 連通孔 51 バイパス弁 5
2 内歯 53 遅延連結部 54 弁シール部 5
5 遅延連結部 56 突起 57 通孔 5
8 通孔 59 通孔 60 係合手段 6
1,62 空間 101 弁本体 102 止めネジ 1
03 弁座 104 流入出パイプ 105 流入出パイプ 1
06 弁体 107 プランジャー 108 スプリング 1
09 吸引子 110 プランジャーチューブ 1
11 電磁石 112 コイル 113 ヨーク
A Motorized valve B Four-way valve C
Transmission device D Outdoor heat exchanger E Indoor heat exchanger F
Compressor G Two-way valve H Bypass circuit Z
Control valve 1 Case 2 Stator coil 3
Needle valve 4 Screw shaft 5 Rotor 6
Valve body 7 Propulsion bearing 8 Valve port 9
Convex part 10 Lid 11 Flange part 13a Stopper piece 13 Stopper 1
4 Upper projecting piece 15 Lower projecting piece 16 Delay transmission means 1
7 chamber 18 opening 19 pipe 2
0 opening 21 pipe 22 hole 2
3 Compression coil spring 24 Boss 25 Internal teeth 2
6 Guide bush 27 Flange 28 Connecting rod 2
9 External teeth 30 Engagement means 31 Valve body 3
2 Cylindrical case 33 Opening (inlet) 34 Opening (outlet) 3
5 Opening (through hole) 36 Opening (through hole) 37 Valve seat 3
8 compression coil spring 39 valve element 40 introduction pipe 4
DESCRIPTION OF SYMBOLS 1 Lead-out pipe 42 Through-hole pipe 43 Through-hole pipe 4
4 Valve body stopper 45 Through hole 46 Through hole 4
7 Communication hole 48 Communication hole 51 Bypass valve 5
2 Internal teeth 53 Delay connection part 54 Valve seal part 5
5 Delay connection part 56 Projection 57 Through hole 5
8 through hole 59 through hole 60 engaging means 6
1,62 space 101 valve body 102 set screw 1
03 Valve seat 104 Inflow / outflow pipe 105 Inflow / outflow pipe 1
06 Valve element 107 Plunger 108 Spring 1
09 Suction element 110 Plunger tube 1
11 electromagnet 112 coil 113 yoke

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16K 31/04 F16K 11/074 F25B 41/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F16K 31/04 F16K 11/074 F25B 41/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性体からなるケース1外周部の固定子
コイル2への通電によるケース1内の回転子5の回転に
より、この回転子5の中心下方に一体的に設けられたね
じ軸4を介してねじ軸先端の針状弁3を上下動させ、ケ
ース1の下端に設けた弁ボディ6下部の弁口8の開度を
制御する電動弁A部と、 少なくとも3つの開口を同心円上に設けた金属円板状の
弁座37を前記ケース1の上端に設け、この弁座37の
下面を摺動回転して前記3つの開口の少なくとも2つを
気密的に連通させ、他の1つの開口は開放状態とする弁
体39とからなる四方弁B部と、 前記電動弁A部の回転子5と四方弁B部の弁体39との
間に設けた、電動弁A部の弁口8が全開直前の位置と全
閉直前の位置において回転を伝える伝達装置C部とによ
り構成され、 前記電動弁A部の回転子5の回転力を利用して、電動弁
A部の弁口8の絞り開閉と四方弁B部の弁体39の回転
による流路切換とを連動して行なう制御弁において、 前記弁体39下部のボス24下面を開口してその壁面に
突起56を対向させて設けて遅延連結部55を構成し、 前記開口に挿入されるバイパス弁51には、その上半部
外周を扇状に切り欠いて遅延連結部53を設けると共
に、中心部に内歯52が形成された下半部の外周にも同
様に扇状に切り欠き、さらに底面に弁シール部54を形
成し、 前記伝達装置Cのガイドブッシュ26には、その中心部
に上端部に外歯29を設けた連結棒28を気密的に且つ
回転自在に設けると共に通孔57を設け、 前記バイパス弁51の遅延連結部53と弁体39の遅延
連結部55とにより、バイパス弁51を、伝達装置C部
及び弁体39とそれぞれ所定の回転角度をもって前記遅
延連動させるのに際し、前記弁体39が回転するまでの
間は電動弁Aの空間61と前記四方弁Bの空間62が連
通するようにしたことを特徴とする制御弁。
1. A screw shaft integrally provided below the center of the rotor 5 by rotation of the rotor 5 in the case 1 by energizing the stator coil 2 on the outer peripheral portion of the case 1 made of a non-magnetic material. A needle valve 3 at the tip of a screw shaft is moved up and down via a valve 4 to control an opening degree of a valve port 8 at a lower portion of a valve body 6 provided at a lower end of the case 1, and at least three openings are concentric. A metal disk-shaped valve seat 37 provided above is provided at the upper end of the case 1, and the lower surface of the valve seat 37 is slid and rotated so that at least two of the three openings are air-tightly connected. One opening is a four-way valve B portion including a valve body 39 that is opened, and a motor-operated valve A portion provided between the rotor 5 of the motor-operated valve A portion and the valve body 39 of the four-way valve B portion. The valve port 8 is constituted by a transmission device C for transmitting rotation at a position immediately before full opening and a position immediately before full closing, Control that utilizes the rotational force of the rotor 5 of the motor-operated valve A to interlock the opening and closing of the throttle port 8 of the motor-operated valve A and the flow path switching by rotation of the valve body 39 of the four-way valve B. In the valve, the lower surface of the boss 24 below the valve body 39 is opened, and a projection 56 is provided on the wall surface thereof so as to be opposed to form a delay connection portion 55. The bypass valve 51 inserted into the opening has an upper half thereof. The outer periphery is notched in a fan shape, and a delay connection portion 53 is provided. In the same manner, the outer periphery of the lower half portion in which the internal teeth 52 are formed is also notched in a fan shape, and a valve seal portion 54 is formed on the bottom surface. The guide bush 26 of the transmission device C is provided with a connecting rod 28 having an external tooth 29 at the upper end at the center thereof in an airtight and rotatable manner, and a through hole 57 is provided. By the connecting portion 53 and the delay connecting portion 55 of the valve body 39, When the valve 51 is interlocked with the transmission device C and the valve body 39 at a predetermined rotation angle, the space 61 of the electric valve A and the space between the four-way valve B are maintained until the valve body 39 rotates. A control valve, wherein the space 62 communicates.
JP07265009A 1995-09-18 1995-09-18 Control valve Expired - Fee Related JP3136086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07265009A JP3136086B2 (en) 1995-09-18 1995-09-18 Control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07265009A JP3136086B2 (en) 1995-09-18 1995-09-18 Control valve

Publications (2)

Publication Number Publication Date
JPH0979410A JPH0979410A (en) 1997-03-25
JP3136086B2 true JP3136086B2 (en) 2001-02-19

Family

ID=17411316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07265009A Expired - Fee Related JP3136086B2 (en) 1995-09-18 1995-09-18 Control valve

Country Status (1)

Country Link
JP (1) JP3136086B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240125398A1 (en) * 2021-02-15 2024-04-18 Eagle Industry Co., Ltd. Switching valve

Also Published As

Publication number Publication date
JPH0979410A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
JP4180786B2 (en) Electric switching valve and refrigeration cycle apparatus for refrigeration / refrigerator
JPS63134894A (en) Scroll compressor
JP6556000B2 (en) Direct acting solenoid valve and four-way switching valve equipped with it as a pilot valve
WO1998005907A1 (en) Transfer valve, method of controlling transfer valve, freezing cycle and method of controlling freezing cycle
JP2003148642A (en) Electric valve
JP2017025986A (en) Linear motion type solenoid valve and four-way selector with linear motion type solenoid valve acting as pilot valve
JPH10281321A (en) Control valve
JPH1030741A (en) Control valve
JP2001317839A (en) Combination valve of four-way selector valve and motorized expansion valve
JPH08247328A (en) Four way valve used for air conditioner
JP3136086B2 (en) Control valve
JPH0972447A (en) Control valve
JP2001343076A (en) Control valve
JP2711516B2 (en) Control valve
JP3150885B2 (en) Control valve
JP6595920B2 (en) Electric valve and four-way switching valve equipped with it as a pilot valve
JPH06221723A (en) Four-way switch valve for air conditioner
JP4142387B2 (en) Electric rotary flow path switching valve and refrigeration cycle apparatus for refrigeration / refrigerator
JP2001004052A (en) Solenoid controlled pilot type four-way valve
JP3327670B2 (en) Fluid compressors and air conditioners
JP2001153491A (en) Motor operated selector valve and refrigerating cycle equipment
JP2002005317A (en) Rotary four-way valve
JP2001153494A (en) Motor operated selector valve and refrigerating cycle equipment for freezer-refrigerator
JP3123901B2 (en) Composite valve for refrigeration cycle
JP2005076840A (en) Passage selector valve, and refrigerating cycle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees