JPH054155B2 - - Google Patents

Info

Publication number
JPH054155B2
JPH054155B2 JP62199796A JP19979687A JPH054155B2 JP H054155 B2 JPH054155 B2 JP H054155B2 JP 62199796 A JP62199796 A JP 62199796A JP 19979687 A JP19979687 A JP 19979687A JP H054155 B2 JPH054155 B2 JP H054155B2
Authority
JP
Japan
Prior art keywords
cleaning
steam
drying
vapor
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62199796A
Other languages
Japanese (ja)
Other versions
JPS6443384A (en
Inventor
Hideaki Kurokawa
Katsuya Ebara
Sankichi Takahashi
Harumi Matsuzaki
Hiroaki Yoda
Takehisa Nitsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19979687A priority Critical patent/JPS6443384A/en
Publication of JPS6443384A publication Critical patent/JPS6443384A/en
Publication of JPH054155B2 publication Critical patent/JPH054155B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体ウエハ、各種光学部品或は電
子部品或はそれらの製造用治具などの蒸気洗浄方
法並びに洗浄装置に係り、特に、洗浄に用いる蒸
気の高純度化を可能とし、洗浄効果の高い蒸気洗
浄方法および蒸気洗浄乾燥方法並びに蒸気洗浄乾
燥装置に関する。 〔従来の技術〕 近年、半導体集積度は著しく向上しており、こ
れに伴い半導体ウエハ表面に要求される清浄度も
より高いものになつてきている。昭和61年3月19
〜21日にかけて東京発明会館ホールで開催された
半導体基盤技術研究会主催の超LSIウルトラクリ
ーンテクノロジーシンポジウムNo.2「超純水・高
純度薬品供給系 プロシーデイング」第399〜419
頁には、ウエハ洗浄・乾燥技術について詳しく記
載されている。 前述の文献からも明らかなように、一般に、半
導体ウエハの洗浄は、ウエハ表面に付着した油脂
分を対象として溶剤(トリクレン、アセトン、
H2O2−NH4OH混合液、等)で、また金属分の
除去を対象として酸・アルカリ(HF、H2O2
NH4OH、HCl−H2O2混合液、等)を用いて汚
染物質を順次に洗い落し、最終的に超純水を用い
て洗浄した後、その超純水の水滴を除去(乾燥)
してから次の工程に送られる。ここで、用いる超
純水の純度は皆めて高く、比抵抗18MΩ・cm、
TOC50ppb以下、0.1μm以上の微粒子50個/ml以
下の水質を保持している。しかしながら、上記の
超純水を用いて洗浄しても、その水滴をうまく除
去しないと不良品の続出となるため、水滴除去
(乾燥)方法にも工夫がなされている。 従来かかる水滴除去(乾燥)方法には、熱風に
よるもの、水洗後に基板を回転させ、その遠心力
で機械的に水滴に飛散させるもの、有機溶剤の蒸
気(例えばイソプロピルアルコール)を用いて水
と溶剤とを置換してから、溶剤を乾燥させるもの
があり、それぞれ熱風乾燥法、スピンドライ法、
IPA蒸気乾燥法と呼んでおり、実際のウエハ洗浄
工程で用いられている。 超純水を用いた薬液の洗浄は、現状では超純水
を満たし、オーバーフローさせながらウエハーを
浸漬させ、水と薬液を置換させる方式をとつてい
る。 又、最近では、水を加熱して気化した蒸気によ
り洗浄する方法も報告されるようになつてきた。 尚、この種の方法に関連する公知例としては、
前述の文献のほかに特開昭61−174982号、特開昭
61−138582号、特開昭61−138583号、特開昭61−
200885号公報等がある。 〔発明が解決しようとする問題点〕 半導体ウエハ等の洗浄においては、上記のどの
洗浄・乾燥技術においても、最終的に被処理物
(被洗浄物)表面に不純物、例えば溶液中に含ま
れる微粒子や溶解している物質等が残留しないこ
とが望まれる。しかし、上記従来技術において
は、これらの点が不充分であり、不純物が残留す
る恐れがある。すなわち、熱風乾燥法では、基板
表面に付着する水滴を熱風により蒸発させること
から、水滴中に含まれる微粒子や溶解成分が析出
することで最終的にウエハ表面に不純物が残る恐
れがある。同様にスピンドライ法においても、全
ての水滴を除去することは不可能であるため、ウ
エハ表面、特に細かい溝中の水滴が乾燥する際、
熱風乾燥法と同様不純物が被洗浄物表面に残留す
る恐れがある。また、IPA蒸気乾燥法では、実際
に洗浄に用いた水をIPAで置換するため、純水中
の不純物の影響は少ないものの、IPAのミスト飛
散によるIPA中の不純物の付着および、水とIPA
との置換の問題が生じる。また、乾燥工程前段の
超純水でのウエハの薬液洗浄工程では、大量の超
純水をオーバーフローさせ、浸漬方法で薬液との
置換を行つているため、多量の水が必要となると
同時に、細かい溝部ではなかなか洗浄効果が上が
らず、集積度の増大に伴ない、不純物が残留しや
すくなる問題が生じる。 蒸気洗浄方法も蒸気中の不純物が被処理物表面
に付着残留するという問題がある。 本発明の目的は、従来の超純水に被処理物を浸
漬する方法及び蒸気洗浄方法にくらべて被処理物
表面の不純物残留を少なくできる高純度化した蒸
気の凝縮液を用いた蒸気洗浄方法および蒸気洗浄
乾燥方法並びに蒸気洗浄乾燥装置を提供するにあ
る。 〔問題点を解決するための手段〕 本発明による蒸気洗浄方法および蒸気洗浄乾燥
方法並びに蒸気洗浄乾燥装置のそれぞれの要旨
は、特許請求の範囲第1項および第7項並びに第
11項に記載されたとおりであり、これらの発明
に共通していえる特徴は、洗浄液を加熱して気化
し、その際に蒸気に同伴するミストを微多孔室膜
を透過させることにより除去して高純度化蒸気と
したのち凝縮させ、該凝縮液を被処理物と接触さ
せて被処理物表面を洗浄することである。 被処理物に接触した蒸気は、被処理物に潜熱を
奪われて凝縮し、被処理物を洗浄する作用をな
す。 洗浄液としては、水或は水に不溶性の有機溶剤
などを用いることができる。 本発明の洗浄方法を適用しうる被処理物として
は、半導体ウエハ、光デイスク或は磁気デイスク
を含む各種光学部品や電子部品或はそれらの製造
用治具がある。 半導体ウエハの蒸気洗浄に用いるときの水とし
ては、超純水を用いることが望ましい。 本発明を半導体ウエハの洗浄に適用する場合に
は、薬液処理した直後の半導体ウエハ或は薬液処
理したのち超純水中に浸漬して薬液を洗い落とし
た半導体ウエハに対して適用することが望まし
い。超純水中に半導体ウエハを浸漬して洗浄する
と、超純水中に含まれる微粒子が半導体ウエハの
溝に入り込み残留するおそれがあるが、その後で
本発明の蒸気洗浄を行うことにより残留する不純
物を洗い落とすことができる。 本発明の蒸気洗方法において、洗浄液として水
を用いる場合には、多孔室膜には疎水性多孔質膜
を用いることが望ましい。洗浄液として水に不溶
性の有機溶剤を用いる場合には、多孔質膜には親
水性多孔質膜を用いることが望ましい。 本発明は、洗浄液を気化し、更に気化した蒸気
に同伴するミストを除去した蒸気には、もはや不
揮性の微粒子は含まれていないか或は含まれてい
たとしても非常に僅かであり、従つて、この蒸気
を用いて洗浄すれば不純物の残留を著しくするこ
とができるという着想に基づく。蒸気に同伴する
ミストは、蒸気が水蒸気であれば疎水性多孔質膜
を用いることにより除去でき、蒸気が水に不溶性
の有機溶剤であれば親水性多孔質膜を用いること
により除去できる。 尚、このように多孔質膜を透過した蒸気の凝縮
水を用いて洗浄することも考えられなくはない
が、凝縮したときに容器等からの成分の溶出があ
るので蒸気のままで被処理物に接触させるのがよ
い。 従来の超純水に被処理物を接触させる洗浄方法
は、超純水中に含まれる微粒子を除去することは
意図していないしまた除去できない。従来の蒸気
による洗浄方法も、蒸気に同伴するミスト中の不
純物を除去することまでは意図していない。 〔作用〕 本発明は、例えば薬液洗浄を終えた半導体ウエ
ハ表面に付着している薬剤を、疎水性多孔質膜を
通つた水蒸気によつて置換洗浄する。疎水性多孔
質膜を用いることで、水蒸気に同伴するミストは
完全に除去できることから、水蒸気中には、水蒸
気と原水中に含まれる揮発成分(例えば有機物、
アンモニア、CO2ガス等)のみとなる。したがつ
て、水蒸気が半導体ウエハ表面で凝縮する際には
不揮発性成分は全て取り除かれているため、乾燥
後にはウエハ表面には、何の不純物も残らない。
特に本発明の水蒸気洗浄後に、同水蒸気の過熱蒸
気を使用して乾燥すると、蒸発温度よりも高い温
度で再蒸発するため、たとえTOC成分が液化し
いても、蒸発してしまうために、ウエハ上には何
も残らない。また、水蒸気を使用するため、被処
理物の溝の中にも入り易い、細かい部分の洗浄に
も有効となる。 本発明の蒸気洗浄方法は、ミストを除去した蒸
気を被処理物表面で凝縮させ、凝縮水で被処理物
に付着している汚染物を洗い落とす方法である。 蒸気が凝縮するときに、被処理物は蒸気の潜熱
を奪い温度が上昇する。洗浄工程の途中の段階で
被処理品の温度が上昇しすぎると、蒸気が凝縮し
なくなり洗浄工程が中断してしまう。従つて、洗
浄工程の最中には、被処理物表面が常に蒸気の凝
縮温度に保持されるように強制冷却することが望
ましい。この強制冷却方法としては、一例として
被処理物を載せる基板内に冷媒たとえば水の循環
通路を形成し、この通路に冷媒を流すことが望ま
しい。 本発明の洗浄方法において、ミストを除去した
後の水蒸気中には揮発性成分例えば有機物、アン
モニア、CO2ガス等が含まれている可能性があ
る。洗浄後に揮発性成分が被処理物表面に残留す
るというおそれは殆ど無いと考えられるが、水蒸
気中にはこのような揮発性成分は無いにこしたこ
とはない。以上のことから揮発性成分を予め除去
しておくことは望ましく、このための手段として
洗浄液を気化して多孔質膜を透過させる前の段階
で一度、洗浄液を加熱し沸騰させて揮発性成分を
揮発させて除去する処理を施すことが望ましい。
このように揮発性成分を除去する前処理を施すこ
とにより、揮発性成分及び不揮発性の微粒子を実
質的に含まない高純度の蒸気を用いて被処理物を
洗浄することができるようになる。 なお、蒸気洗浄中は被処理物の周囲の雰囲気を
蒸気飽和状態に保持することが望ましく、従つて
被処理物は密閉した室に収納しておき、蒸気洗浄
工程中、室の一部から不凝縮性ガスを抽気するこ
とが望ましい。 又、半導体ウエハの洗浄において、LSIの集積
度が増大し、パターン寸法が微細化すると、ウエ
ハの溝中に入つて凝縮した水が表面張力の関係か
ら、外に出て来なくなる場合も考えられるが、そ
の際は、上記洗浄工程を数回繰り返したり或はそ
の間に、減圧下でウエハを処理させることで、溝
中の水滴を溝外部に取り出すことが望ましい。 本発明の蒸気洗浄を終了したならば、通常なら
ば次の乾燥工程に移る。半導体ウエハなどでは、
文献「超純水・高純水薬品供給系 プロシーデイ
ング」第411頁に記載されているように乾燥工程
は不可欠である。 本発明では、蒸気洗浄工程で不純物残留を著し
く少なくできるので、従来の熱風乾燥法、スピン
ドライ法、IPA蒸気乾燥法を適用することが可能
である。 本発明の蒸気洗浄後における乾燥方法として、
疎水性多孔質膜を透過した過熱蒸気を用いる方法
を提案する。 過熱蒸気すなわち蒸気を沸点よりも高温に昇温
した蒸気は、被処理物表面の凝縮液を乾燥する作
用を有する。このような過熱蒸気は、液体を加熱
して気化した蒸気が多孔質膜を透過する前後の一
方の側又は両側にヒータを設けて蒸気を過熱する
ことにより、容易に作ることができる。従つて、
過熱蒸気を用いれば、洗浄及び乾燥の両方の工程
を同一の洗浄液を用いて実施することが可能とな
る。 更に過熱蒸気だけを用いて洗浄および乾燥の両
工程を実施することも可能である。これについて
は、別途第2図を用いて説明する。 なお、過熱蒸気を用いて乾燥する場合には、水
が切れにくいので、被処理物を収納する室を真空
ポンプで排気して被処理物の周囲を減圧したり或
はスピンドライ法と同じく被処理物を回転し、遠
心力を利用して水が切れやすくすることが望まし
い。 〔実施例〕 以下、本発明の実施例を示す図面について詳細
に説明する。本発明は、これらの実施例に限定さ
れるものではない。 実施例 1 第1図に本発明に係る洗浄装置の基本的実施例
を示す。ここでは洗浄液として水を用いる場合に
ついて説明する。本発明に係る蒸気洗浄装置10
0は、水蒸気発生部111と凝縮洗浄部112と
その間に存在する疎水性多孔質膜101とで構成
される。原水は原水入口105より水蒸気発生部
111に送られ、ヒータ102によつて加熱さ
れ、蒸発する。発生した水蒸気103は疎水性多
孔質膜101を通り、その際に同伴するミストを
分離する。膜を通過した水蒸気は、被洗浄物(被
処理物)107上で凝縮し、その凝縮水によつて
被洗浄物107上を洗浄する。被洗浄物107は
そのままでは温度が上昇し、凝縮できなくなるお
それがあるため、裏面を冷却水108によつて冷
却し、被洗浄物表面を蒸気が凝縮するように100
℃未満の温度に保持することが望ましい。洗浄し
汚れた水は、ドレン口109より洗浄装置の外部
に放出される。尚、凝縮洗浄部内は水蒸気飽和状
態が望ましいことから、抽気口110より不凝縮
性ガスを抽気することが望ましい。本実施例によ
れば、疎水性多孔質膜を通つた水蒸気によつて洗
浄できることから、少量の水でえ果的に洗浄が行
なえるとともに、乾燥後に被洗浄物表面に不純物
が残留することも非常に少なく、高い洗浄効果を
あげることができる。なお符号104は洗浄水の
液面を示し、符号109は洗浄水の排出口を示し
ている。 実施例 2 第2図に、過熱水蒸気による乾燥をも含めた場
合の一実施例を示す。本実施例の蒸気洗浄装置2
00は、水蒸気発生部111、水蒸気過熱部20
2、洗浄・乾燥部203とから成り、水蒸気過熱
部202と洗浄・乾燥部203の間に疎水性多孔
質膜101が配置される。蒸気発生部111中の
原水がヒータ102によつて加熱され水蒸気が発
生する。発生した水蒸気103は、さらに水蒸気
過熱部202において過熱用ヒータ207によつ
て過熱水蒸気となり、疎水性多孔質膜101を通
り、洗浄・乾燥部203に送られる。洗浄・乾燥
部203内には、被洗浄物107が移動可能洗浄
器208に設置されている。洗浄・乾燥部203
内に送られた過熱蒸気は、移動洗浄器208に取
り付けられた被洗浄物107表面に付着している
水滴を乾燥しながら飽和蒸気となり、後半は水蒸
気による洗浄を行なう。移動可能洗浄器208は
洗浄の最中に徐々に疎水性多孔質膜101の方向
に移動し、初めは洗浄工程を通り、次に乾燥工程
を経て装置外に出る。余つた水蒸気は、水蒸気循
環系209を通り、再び水蒸気過熱部に送られ
る。凝縮し、洗浄に用いた水はドレン出口109
より装置外に放出される。本実施例によれば、被
洗浄物の洗浄と乾燥が一度に、クリーンな水蒸気
雰囲気中で行なえるため、使用する水量が減少す
るとともに、効果的な洗浄が行なえる。 実施例 3 第3図は第1図の実施例に、スピン洗浄法を加
えたものである。本実施例の蒸気洗浄装置300
は、水蒸気発生部111と洗浄・乾燥部308と
からなり、その間に疎水性多孔質膜101が設置
されている。本実施例では、洗浄と乾燥はバツチ
操作で繰り返される。まず洗浄工程では、原水を
加熱ヒータ102で蒸発させ、発生した蒸気10
3を疎水性多孔質膜101でろ過し、洗浄・乾燥
部308に送る。洗浄・乾燥部308内にはスピ
ナー311が配置され、その表面に被洗浄物10
7が取り付けられ、回転用モータ307によつて
矢印方向に回転される。水蒸気は被洗浄物107
上に凝縮し、表面の不純物とともに、遠心力によ
つて表面から除去され、新しい水蒸気によつて再
度洗浄される。上記手法にて充分に洗浄された
後、乾燥工程に移る。乾燥工程では、水蒸気発生
部111にて発生した水蒸気103をさらに過熱
用ヒータ207により昇温して過熱蒸気とし、洗
浄・乾燥部308に送られる。本工程でも、スピ
ナー311を回転させることで、過熱蒸気を用い
て乾燥させ、飽和蒸気となつた蒸気は循環系31
0を通り再び水蒸気発生部111に送られる。尚
循環系入口部に疎水性膜を設置すると、スピナー
より発生するミストを除去することができるの
で、さらに効果的となる。本実施例によると、ス
ピナーを用いることで、被洗浄物表面の細かい溝
中にある水滴も除去できることから、より洗浄効
果を上げることができる。 なお、第3図において、過熱用ヒータ207を
洗浄・乾燥部側に設けるようにしてもよい。 実施例 4 第4図は、第1図の実施例の変形例である。 この実施例の蒸気洗浄装置は、水蒸気発生部1
11の上方に凝縮洗浄部112を位置させ、両者
間を疎水性多孔質膜101よりなる隔壁で仕切つ
てある。ヒータ102によつて加熱され気化した
蒸気103は疎水性多孔質膜101を透過する際
に同伴するミストが除去され、高純度の蒸気とな
つて被洗浄物107に接触し凝縮する。そして凝
縮水によつて洗浄がなされる。被洗浄物より落下
した凝縮水104aは、受け皿115に溜まる。 この実施例によれば、第1図の構造にくらべて
装置をコンパクトにできる。 実施例 5 水蒸気発生部の前段に、洗浄水中の揮発性成分
除去手段を設けた実施例について説明する。 第5図は、第1図の洗浄装置に揮発性成分除去
部500を付設したものである。水蒸気発生部に
送られる原水501をヒータ502で加熱して沸
騰させ、原水中に含まれる揮発性成分を揮発除去
させたのち、原水入口105を通して水蒸気発生
部111に導入するようにしたものである。揮発
性成分の除去は、原水の量にもよるが通常、原水
を沸騰させたのち十数分ないし数十分も保持すれ
ば十分である。 この実施例によれば、揮発性成分及び不揮発性
成分ともに非常に少ない蒸気によつて洗浄を行う
ことができ、洗浄に対する信頼性を高めることが
できる。 実施例 6 第6図は、洗浄・乾燥部に真空排気口を設けた
蒸気洗浄装置の実施例を示している。蒸気洗浄時
には、ヒータ102によつて原水を加熱して蒸気
103を発生させ、疎水性多孔質膜101を透過
させたのち被洗浄物107に接触させ、凝縮させ
て凝縮水により洗浄する。洗浄が終了したならば
ヒータ102のほかに過熱用ヒータ207を作動
し疎水性多孔質膜101を透過した蒸気を沸点よ
りも高い温度に上昇する。なお、この実施例では
過熱用ヒータ207を洗浄・乾燥部610側に設
けているが、第3図のように蒸気発生部側に設け
てもよい。過熱水蒸気250は、被洗浄物表面の
凝縮水を気化して乾燥させる作用がある。但し、
過熱水蒸気250で乾燥するだけでは水切れが悪
い。そこで乾燥工程中、真空ポンプ620により
洗浄・乾燥部610を減圧する。これにより被洗
浄物表面の水滴が飛散しやすくなり、水切れを良
くすることができる。 以上の実施例1〜5は、いずれも洗浄液として
水を用いた場合について説明したが、有効溶剤或
はその他の薬液洗浄においても、同様に適用でき
ることはいうまでもない。 〔発明の効果〕 本発明によると、多孔質膜を透過することで同
伴するミストを完全に除去し高純度化した蒸気を
凝縮させ、該凝縮液によつて、被洗浄物の洗浄を
行なうことから、洗浄後の不純物残渣を著しく少
なくすることができる。 さらに、過熱蒸気中での乾燥工程と併用するこ
とで、同一雰囲気下での洗浄・乾燥が実施できる
ため、外部からの汚染も無く、高い洗浄効果が得
られる。さらに、膜蒸留し、不揮発性の不純物は
ほぼ完全に除去できていることから、洗浄・乾燥
後に不純物が残留することも無く、効果的な洗浄
が可能となる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a steam cleaning method and a cleaning apparatus for semiconductor wafers, various optical components or electronic components, or jigs for manufacturing them, and particularly relates to a cleaning device. The present invention relates to a steam cleaning method, a steam cleaning drying method, and a steam cleaning/drying device that enable highly purified steam to be used for cleaning and have high cleaning effects. [Prior Art] In recent years, the degree of semiconductor integration has significantly improved, and as a result, the cleanliness required for the surface of semiconductor wafers has also become higher. March 19, 1985
Ultra-LSI Ultra Clean Technology Symposium No. 2 "Ultra-pure Water/High-Purity Chemical Supply System Proceedings" 399-419 sponsored by the Semiconductor Fundamental Technology Research Group held at the Tokyo Institute of Invention Hall from 21st to 21st
The page contains detailed information on wafer cleaning and drying technology. As is clear from the above-mentioned literature, semiconductor wafers are generally cleaned using solvents (triclene, acetone,
H 2 O 2 −NH 4 OH mixture, etc.), and acids and alkalis (HF, H 2 O 2
Contaminants are sequentially washed away using NH 4 OH, HCl-H 2 O 2 mixture, etc.), and finally washed with ultrapure water, and then the water droplets of the ultrapure water are removed (drying).
Then it is sent to the next process. The purity of the ultrapure water used here is high, with a specific resistance of 18MΩ・cm,
Maintains water quality with TOC of 50 ppb or less and 50 particles/ml of 0.1 μm or larger. However, even if the ultrapure water is used for cleaning, if the water droplets are not removed properly, a number of defective products will result. Therefore, methods for removing water droplets (drying) have also been devised. Conventional water droplet removal (drying) methods include using hot air, rotating the substrate after washing with water and mechanically scattering water droplets using the centrifugal force, and using organic solvent vapor (e.g. isopropyl alcohol) to remove water and the solvent. There are methods that dry the solvent after replacing it with the hot air drying method, spin drying method,
This method is called the IPA vapor drying method, and is used in the actual wafer cleaning process. The current method of cleaning a chemical solution using ultrapure water is to fill the wafer with ultrapure water and immerse the wafer while allowing it to overflow, thereby displacing the water and the chemical solution. In addition, recently, a method of cleaning using vaporized water by heating water has also been reported. Incidentally, known examples related to this type of method include:
In addition to the above-mentioned documents, JP-A-61-174982;
No. 61-138582, JP-A-61-138583, JP-A-61-
There are publications such as 200885. [Problems to be solved by the invention] When cleaning semiconductor wafers, etc., all of the above-mentioned cleaning and drying techniques end up with impurities, such as fine particles contained in the solution, on the surface of the object to be processed (object to be cleaned). It is desirable that no dissolved substances remain. However, the above-mentioned conventional techniques are insufficient in these respects, and there is a risk that impurities may remain. That is, in the hot air drying method, since water droplets adhering to the substrate surface are evaporated by hot air, there is a risk that fine particles and dissolved components contained in the water droplets will precipitate, ultimately leaving impurities on the wafer surface. Similarly, in the spin drying method, it is impossible to remove all water droplets, so when the water droplets on the wafer surface, especially in the fine grooves, dry,
Similar to the hot air drying method, there is a risk that impurities may remain on the surface of the object to be cleaned. In addition, in the IPA steam drying method, the water actually used for cleaning is replaced with IPA, so the effect of impurities in pure water is small, but it is also possible that impurities in IPA may adhere due to IPA mist scattering, and water and IPA may
The problem arises of replacement with . In addition, in the chemical cleaning process of wafers with ultrapure water before the drying process, a large amount of ultrapure water overflows and is replaced with the chemical solution using the immersion method. The cleaning effect is not easily achieved in the grooves, and as the degree of integration increases, the problem arises that impurities tend to remain. The steam cleaning method also has a problem in that impurities in the steam adhere and remain on the surface of the object to be treated. An object of the present invention is to provide a steam cleaning method using a highly purified steam condensate that can reduce the amount of impurities remaining on the surface of a workpiece compared to conventional methods of immersing the workpiece in ultrapure water and steam cleaning methods. and to provide a steam cleaning and drying method and a steam cleaning and drying apparatus. [Means for Solving the Problems] The gist of the steam cleaning method, steam cleaning drying method, and steam cleaning drying apparatus according to the present invention is described in claims 1, 7, and 11. The common feature of these inventions is that the cleaning liquid is heated and vaporized, and the mist that accompanies the vapor is removed by passing through a microporous chamber membrane to produce highly purified vapor. After that, it is condensed, and the condensed liquid is brought into contact with the object to be treated to clean the surface of the object to be treated. The steam that comes into contact with the object to be processed is deprived of latent heat by the object and condenses, thereby serving to clean the object. As the cleaning liquid, water or an organic solvent insoluble in water can be used. Objects to be processed to which the cleaning method of the present invention can be applied include semiconductor wafers, various optical parts and electronic parts including optical disks and magnetic disks, and jigs for manufacturing them. It is desirable to use ultrapure water as the water used for steam cleaning of semiconductor wafers. When the present invention is applied to cleaning semiconductor wafers, it is desirable to apply the present invention to semiconductor wafers that have just been treated with a chemical solution, or to semiconductor wafers that have been treated with a chemical solution and then immersed in ultrapure water to wash off the chemical solution. When a semiconductor wafer is immersed in ultrapure water for cleaning, there is a risk that the fine particles contained in the ultrapure water may enter the grooves of the semiconductor wafer and remain. However, by performing the steam cleaning of the present invention afterwards, the remaining impurities can be washed off. In the steam cleaning method of the present invention, when water is used as the cleaning liquid, it is desirable to use a hydrophobic porous membrane as the porous chamber membrane. When using a water-insoluble organic solvent as the cleaning liquid, it is desirable to use a hydrophilic porous membrane as the porous membrane. The present invention vaporizes the cleaning liquid and removes the mist that accompanies the vaporized vapor, and the vapor no longer contains non-volatile fine particles, or even if it does, it contains very few non-volatile particles. Therefore, the idea is that cleaning using this steam can significantly reduce the amount of impurities remaining. The mist accompanying the steam can be removed by using a hydrophobic porous membrane if the steam is water vapor, and can be removed by using a hydrophilic porous membrane if the steam is an organic solvent insoluble in water. Although it is possible to use the condensed water of the steam that has passed through the porous membrane for cleaning, it is possible that components may be leached from the container etc. when condensed. It is best to bring it into contact with. Conventional cleaning methods in which a workpiece is brought into contact with ultrapure water are not intended to and cannot remove fine particles contained in ultrapure water. Conventional steam cleaning methods are also not intended to remove impurities in the mist that accompanies the steam. [Function] In the present invention, for example, a chemical adhering to the surface of a semiconductor wafer after chemical cleaning is replaced and cleaned by water vapor passing through a hydrophobic porous membrane. By using a hydrophobic porous membrane, it is possible to completely remove the mist that accompanies water vapor.
ammonia, CO 2 gas, etc.). Therefore, when water vapor condenses on the semiconductor wafer surface, all nonvolatile components are removed, so no impurities remain on the wafer surface after drying.
In particular, when drying using superheated steam of the same steam after steam cleaning according to the present invention, the TOC component is re-evaporated at a temperature higher than the evaporation temperature, so even if the TOC component is liquefied, it will evaporate, resulting in nothing remains. Furthermore, since water vapor is used, it is effective for cleaning small parts that can easily get into the grooves of the object to be treated. The steam cleaning method of the present invention is a method in which steam from which mist has been removed is condensed on the surface of the object to be treated, and contaminants adhering to the object to be treated are washed away with condensed water. When the steam condenses, the object to be treated absorbs the latent heat of the steam and its temperature increases. If the temperature of the object to be treated rises too much during the cleaning process, the steam will no longer condense and the cleaning process will be interrupted. Therefore, during the cleaning process, it is desirable to perform forced cooling so that the surface of the workpiece is always maintained at the steam condensation temperature. As an example of this forced cooling method, it is desirable to form a circulation path for a refrigerant, such as water, in the substrate on which the object to be processed is mounted, and to flow the refrigerant through this path. In the cleaning method of the present invention, the water vapor after removing the mist may contain volatile components such as organic substances, ammonia, CO 2 gas, and the like. Although it is thought that there is almost no possibility that volatile components will remain on the surface of the object to be treated after cleaning, it is unlikely that such volatile components will be present in water vapor. For this reason, it is desirable to remove volatile components in advance, and as a means to do this, the cleaning solution is heated to boiling to remove volatile components before it is vaporized and passed through the porous membrane. It is desirable to perform a process of volatilizing and removing it.
By performing pre-treatment to remove volatile components in this way, it becomes possible to clean the object to be treated using high-purity steam that is substantially free of volatile components and non-volatile particulates. Note that during steam cleaning, it is desirable to maintain the atmosphere around the object to be treated in a steam-saturated state. Therefore, the object to be treated should be stored in a closed chamber, and during the steam cleaning process, it is desirable to keep the atmosphere around the object to be steam saturated. It is desirable to bleed the condensable gas. In addition, when cleaning semiconductor wafers, as the degree of integration of LSI increases and pattern dimensions become smaller, water that has entered the grooves of the wafer and condensed may not come out due to surface tension. However, in that case, it is desirable to remove the water droplets in the groove to the outside of the groove by repeating the cleaning process several times or by processing the wafer under reduced pressure during the cleaning process. Once the steam cleaning of the present invention has been completed, the next drying step is normally carried out. For semiconductor wafers, etc.
As described in the literature ``Ultrapure Water/High Pure Water Chemical Supply System Proceedings'' page 411, the drying process is essential. In the present invention, it is possible to significantly reduce residual impurities in the steam cleaning process, so conventional hot air drying methods, spin drying methods, and IPA steam drying methods can be applied. As a drying method after steam cleaning of the present invention,
We propose a method using superheated steam that has passed through a hydrophobic porous membrane. Superheated steam, that is, steam heated to a temperature higher than the boiling point, has the effect of drying the condensate on the surface of the object to be treated. Such superheated steam can be easily produced by heating the liquid and providing a heater on one or both sides of the porous membrane before and after the vapor permeates the porous membrane to superheat the vapor. Therefore,
Using superheated steam allows both cleaning and drying steps to be carried out using the same cleaning liquid. Furthermore, it is also possible to carry out both the washing and drying steps using only superheated steam. This will be explained separately using FIG. 2. Note that when drying using superheated steam, the water is difficult to drain, so the chamber containing the object to be treated is evacuated with a vacuum pump to reduce the pressure around the object, or the chamber containing the object to be processed is evacuated using a vacuum pump, or the chamber containing the object to be It is desirable to rotate the treated material and use centrifugal force to drain the water easily. [Example] Hereinafter, drawings showing examples of the present invention will be described in detail. The present invention is not limited to these examples. Embodiment 1 FIG. 1 shows a basic embodiment of a cleaning device according to the present invention. Here, a case will be explained in which water is used as the cleaning liquid. Steam cleaning device 10 according to the present invention
0 is composed of a steam generating section 111, a condensing cleaning section 112, and a hydrophobic porous membrane 101 existing therebetween. The raw water is sent from the raw water inlet 105 to the steam generating section 111, heated by the heater 102, and evaporated. The generated water vapor 103 passes through the hydrophobic porous membrane 101, and the accompanying mist is separated at that time. The water vapor that has passed through the membrane condenses on the object to be cleaned (object to be treated) 107, and the object to be cleaned 107 is washed with the condensed water. If the object to be cleaned 107 is left as it is, the temperature will rise and there is a risk that it will not be able to condense. Therefore, the back side is cooled with cooling water 108, and the surface of the object to be cleaned is heated 100 times so that the steam condenses.
It is desirable to keep the temperature below °C. The washed and dirty water is discharged from the drain port 109 to the outside of the washing device. Note that since it is desirable that the inside of the condensing cleaning section be saturated with water vapor, it is desirable to bleed the non-condensable gas through the bleed port 110. According to this example, since cleaning can be performed using water vapor that has passed through the hydrophobic porous membrane, it is possible to effectively clean with a small amount of water, and there is no possibility that impurities will remain on the surface of the object to be cleaned after drying. Very little amount and high cleaning effect can be achieved. Note that the reference numeral 104 indicates the liquid level of the washing water, and the reference numeral 109 indicates the outlet for the washing water. Example 2 FIG. 2 shows an example in which drying using superheated steam is also included. Steam cleaning device 2 of this embodiment
00 is a steam generating section 111, a steam superheating section 20
2. The hydrophobic porous membrane 101 is arranged between the steam superheating section 202 and the washing/drying section 203. Raw water in the steam generating section 111 is heated by the heater 102 to generate steam. The generated water vapor 103 is further turned into superheated water vapor by the superheating heater 207 in the water vapor superheating section 202, and is sent to the cleaning/drying section 203 through the hydrophobic porous membrane 101. Inside the cleaning/drying section 203, the object to be cleaned 107 is installed in a movable washer 208. Washing/drying section 203
The superheated steam sent inside becomes saturated steam while drying water droplets adhering to the surface of the object to be cleaned 107 attached to the mobile washer 208, and the latter half of the cleaning is performed with steam. The movable washer 208 gradually moves toward the hydrophobic porous membrane 101 during cleaning, first passing through a cleaning process, then a drying process, and then exiting the apparatus. The remaining steam passes through the steam circulation system 209 and is sent to the steam superheating section again. The condensed water used for cleaning is drained from the drain outlet 109.
is released outside the device. According to this embodiment, since the object to be cleaned can be washed and dried at the same time in a clean steam atmosphere, the amount of water used can be reduced and effective cleaning can be performed. Embodiment 3 FIG. 3 shows the embodiment shown in FIG. 1 with the addition of a spin cleaning method. Steam cleaning device 300 of this embodiment
consists of a steam generating section 111 and a cleaning/drying section 308, between which a hydrophobic porous membrane 101 is installed. In this example, washing and drying are repeated in batch operations. First, in the cleaning process, raw water is evaporated with a heater 102, and the generated steam 10
3 is filtered through a hydrophobic porous membrane 101 and sent to a washing/drying section 308. A spinner 311 is arranged in the cleaning/drying section 308, and the object to be cleaned 10 is placed on the surface of the spinner 311.
7 is attached and rotated in the direction of the arrow by a rotation motor 307. Water vapor is the object to be cleaned 107
It condenses on top, is removed from the surface by centrifugal force along with surface impurities, and is washed again by fresh water vapor. After being sufficiently washed using the above method, the drying process is started. In the drying process, the steam 103 generated in the steam generating section 111 is further heated by the superheating heater 207 to become superheated steam, and then sent to the cleaning/drying section 308 . In this step as well, by rotating the spinner 311, superheated steam is used to dry the steam, and the steam that has become saturated steam is transferred to the circulation system 31.
0 and is sent to the steam generating section 111 again. If a hydrophobic membrane is installed at the inlet of the circulation system, the mist generated from the spinner can be removed, making it even more effective. According to this embodiment, by using a spinner, water droplets in fine grooves on the surface of the object to be cleaned can be removed, so that the cleaning effect can be further improved. In addition, in FIG. 3, the overheating heater 207 may be provided on the cleaning/drying section side. Embodiment 4 FIG. 4 is a modification of the embodiment shown in FIG. The steam cleaning device of this embodiment has a steam generating section 1
A condensing cleaning section 112 is located above the cleaning section 11, and a partition wall made of a hydrophobic porous membrane 101 partitions the two. When the steam 103 heated and vaporized by the heater 102 passes through the hydrophobic porous membrane 101, accompanying mist is removed, and the steam becomes highly pure steam, which comes into contact with the object to be cleaned 107 and condenses. Cleaning is then performed with condensed water. Condensed water 104a that has fallen from the object to be cleaned collects in a saucer 115. According to this embodiment, the apparatus can be made more compact than the structure shown in FIG. Example 5 An example in which means for removing volatile components in the wash water is provided upstream of the steam generating section will be described. FIG. 5 shows the cleaning device shown in FIG. 1 with a volatile component removal section 500 added thereto. Raw water 501 to be sent to the steam generating section is heated by a heater 502 to boil it to volatilize and remove volatile components contained in the raw water, and then introduced into the steam generating section 111 through the raw water inlet 105. . Although the removal of volatile components depends on the amount of raw water, it is usually sufficient to boil the raw water and then hold it for ten to several tens of minutes. According to this embodiment, cleaning can be performed using very little steam for both volatile and non-volatile components, and the reliability of cleaning can be improved. Embodiment 6 FIG. 6 shows an embodiment of a steam cleaning apparatus in which a vacuum exhaust port is provided in the cleaning/drying section. During steam cleaning, raw water is heated by the heater 102 to generate steam 103, which is passed through the hydrophobic porous membrane 101 and then brought into contact with the object to be cleaned 107, condensed and cleaned with the condensed water. When the cleaning is completed, in addition to the heater 102, the overheating heater 207 is operated to raise the temperature of the steam that has passed through the hydrophobic porous membrane 101 to a temperature higher than the boiling point. In this embodiment, the overheating heater 207 is provided on the washing/drying section 610 side, but it may be provided on the steam generating section side as shown in FIG. The superheated steam 250 has the effect of vaporizing and drying the condensed water on the surface of the object to be cleaned. however,
Drying only with superheated steam at 250°C does not drain water well. Therefore, during the drying process, the cleaning/drying section 610 is depressurized by the vacuum pump 620. This makes it easier for water droplets to scatter on the surface of the object to be cleaned, allowing for better water drainage. Although Examples 1 to 5 above have all been described using water as the cleaning liquid, it goes without saying that they can be similarly applied to cleaning with effective solvents or other chemical solutions. [Effects of the Invention] According to the present invention, highly purified vapor is condensed by completely removing accompanying mist by passing through a porous membrane, and the object to be cleaned is cleaned with the condensed liquid. Therefore, the amount of impurity residue after washing can be significantly reduced. Furthermore, by using the drying process in superheated steam in combination, cleaning and drying can be carried out in the same atmosphere, so there is no external contamination and a high cleaning effect can be obtained. Furthermore, since non-volatile impurities are almost completely removed through membrane distillation, no impurities remain after cleaning and drying, making effective cleaning possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は、いずれも本発明の実施
例を示す概略構成図である。 101……疎水性多孔質膜、102……ヒー
タ、103……水蒸気、107……被洗浄物、1
11……水蒸気発生部、112……凝縮洗浄部、
207……過熱用ヒータ、250……過熱水蒸
気、500……揮発性成分除去部。
1 to 6 are schematic configuration diagrams showing embodiments of the present invention. 101...Hydrophobic porous membrane, 102...Heater, 103...Water vapor, 107...Object to be cleaned, 1
11... Steam generation section, 112... Condensation cleaning section,
207...Heater for superheating, 250...Superheated steam, 500...Volatile component removal section.

Claims (1)

【特許請求の範囲】 1 微多孔質膜により仕切られた洗浄液蒸気発生
室と、洗浄処理すべき被処理物を収める蒸気洗浄
室と、を具備する蒸気洗浄装置を使用し、洗浄液
蒸気発生室において発生させた洗浄液蒸気を微多
孔質膜を通して蒸気洗浄室へ移行させ、その際洗
浄液蒸気に同伴するミストを微多孔質膜により除
去し、該同伴ミストが除去された洗浄液蒸気を蒸
気洗浄室内において凝縮させて被処理物表面に凝
縮液として付着させ、該凝縮液により被処理物表
面の洗浄を行なうことを特徴とする蒸気洗浄方
法。 2 前記洗浄液は、該液中の揮発成分が前処理に
よつて除去されていることを特徴とする特許請求
の範囲第1項に記載の蒸気洗浄方法。 3 前記洗浄液蒸気が純水を蒸発させて得られる
水蒸気である場合において、前記微多孔質膜は疎
水性微多孔質膜であることを特徴とする特許請求
の範囲第1項または第2項記載の蒸気洗浄方法。 4 前記被処理物が、蒸気洗浄処理の前処理とし
て、薬液処理された半導体ウエハ、磁気デイスク
および光デイスクのいずれかであることを特徴と
する特許請求の範囲第3項記載の蒸気洗浄方法。 5 前記洗浄液蒸気が水に対して不溶性の有機溶
剤を蒸発させて得られる蒸気である場合におい
て、前記微多孔質膜は親水性微多孔質膜であるこ
とを特徴とする特許請求の範囲第1項または第2
項記載の蒸気洗浄方法。 6 前記被処理物表面に付着される凝縮液は、該
被処理物表面を前記蒸気が凝縮する温度に強制冷
却することにより得られることを特徴とする特許
請求の範囲第3項または第5項に記載の蒸気洗浄
方法。 7 微多孔質膜により仕切られた洗浄液蒸気発生
室と、洗浄乾燥処理すべき被処理物を収める蒸気
洗浄乾燥室と、を具備する蒸気洗浄乾燥装置を使
用し、洗浄液蒸気発生室において発生した洗浄液
蒸気を微多孔質膜を通して蒸気洗浄乾燥質へ移行
させ、その際洗浄液蒸気に同伴するミストを微多
孔質膜により除去し、該同伴ミストが除去された
洗浄液蒸気を蒸気洗浄乾燥室内において凝縮させ
て被処理物表面に凝縮液として付着させ、該凝縮
液により被処理物表面の洗浄を行ない、次いで乾
燥手段を用いて乾燥を行なうことを特徴とする蒸
気洗浄乾燥方法。 8 前記乾燥手段は、洗浄液蒸気を過熱蒸気にす
る加熱手段であり、該過熱蒸気により乾燥を行な
うことを特徴とする特許請求の範囲第7項に記載
の蒸気洗浄乾燥方法。 9 前記乾燥手段は、被処理物を装着するように
した回転体からなるスピナーであり、該スピナー
の高速回転により被処理表面に付着する凝縮液を
遠心力を利用して飛散させ乾燥を行なうことを特
徴とする特許請求の範囲第7項記載の蒸気洗浄乾
燥方法。 10 前記乾燥手段は、洗浄液蒸気を過熱蒸気に
する加熱手段および被処理物を装着するようにし
た回転体からなるスピナーの組合せであり、過熱
蒸気による乾燥とスピナーの高速回転により被処
理物表面に付着する凝縮液を遠心力を利用して飛
散させる乾燥とを併用したことを特徴とする特許
請求の範囲第7項記載の蒸気洗浄乾燥方法。 11 洗浄用液体を収容する洗浄液槽および該槽
内の液体を加熱して洗浄液蒸気を発生するための
加熱手段を有する洗浄蒸気発生室と、該洗浄蒸気
発生室に隣接して配設され、洗浄処理すべき被処
理物を収容し該被処理物表面を洗浄蒸気の凝縮液
により洗浄する蒸気洗浄乾燥室と、を具備し、洗
浄蒸気発生室と蒸気洗浄乾燥室との間を洗浄蒸気
発生室にて発生した洗浄液蒸気に同伴するミスト
を透過させない微多孔性膜で仕切るとともに、蒸
気洗浄乾燥室には被処理物表面に付着する洗浄液
蒸気の凝縮液の乾燥により除去するための乾燥手
段を設けたことを特徴とする蒸気洗浄乾燥装置。 12 前記被処理物表面を洗浄する凝縮液を得る
手段として、被処理物表面を蒸気が凝縮する温度
に強制冷却する手段を設けたことを特徴とする特
許請求の範囲第11項記載の蒸気洗浄乾燥装置。 13 前記乾燥手段は、洗浄液蒸気を加熱手段に
より過熱蒸気とし、該過熱蒸気を用いて乾燥を行
なうものであることを特徴とする特許請求の範囲
第11項記載の蒸気洗浄乾燥装置。 14 前記乾燥手段は、被処理物を装着するよう
にした回転体からなるスピナーであり、該スピナ
ーの高速回転により被処理物表面に付着する凝縮
液を遠心力を利用して飛散させ乾燥を行なうもの
であることを特徴とする特許請求の範囲第11項
記載の蒸気洗浄乾燥装置。 15 前記蒸気洗浄乾燥室には、洗浄処理中、該
室内を蒸気飽和状態に保つための不凝縮性ガス抽
気手段が付設されていることを特徴とする特許請
求の範囲第11項記載の蒸気洗浄乾燥装置。
[Claims] 1. Using a steam cleaning device comprising a cleaning liquid vapor generation chamber partitioned by a microporous membrane and a steam cleaning chamber containing a workpiece to be cleaned, in the cleaning liquid vapor generation chamber. The generated cleaning liquid vapor is transferred to the steam cleaning chamber through a microporous membrane, and at this time, the mist accompanying the cleaning liquid vapor is removed by the microporous membrane, and the cleaning liquid vapor from which the entrained mist has been removed is condensed in the steam cleaning chamber. A steam cleaning method characterized in that the vapor is allowed to adhere to the surface of a workpiece as a condensate, and the surface of the workpiece is cleaned with the condensate. 2. The steam cleaning method according to claim 1, wherein volatile components in the cleaning liquid are removed by pretreatment. 3. In the case where the cleaning liquid vapor is water vapor obtained by evaporating pure water, the microporous membrane is a hydrophobic microporous membrane, according to claim 1 or 2. steam cleaning method. 4. The steam cleaning method according to claim 3, wherein the object to be processed is one of a semiconductor wafer, a magnetic disk, and an optical disk that has been treated with a chemical solution as a pretreatment for the steam cleaning process. 5. Claim 1, wherein the cleaning liquid vapor is vapor obtained by evaporating a water-insoluble organic solvent, and the microporous membrane is a hydrophilic microporous membrane. term or second
Steam cleaning method described in section. 6. Claim 3 or 5, characterized in that the condensate that adheres to the surface of the object to be treated is obtained by forcibly cooling the surface of the object to a temperature at which the vapor condenses. Steam cleaning method described in. 7 Using a steam cleaning/drying device comprising a cleaning liquid vapor generation chamber partitioned by a microporous membrane and a steam cleaning/drying chamber containing the workpiece to be cleaned and dried, the cleaning liquid generated in the cleaning liquid vapor generation chamber is The steam is transferred to the steam cleaning drying material through a microporous membrane, the mist accompanying the cleaning liquid vapor is removed by the microporous membrane, and the cleaning liquid vapor from which the entrained mist has been removed is condensed in the steam cleaning drying chamber. A steam cleaning/drying method characterized in that a condensate is deposited on the surface of a workpiece, the surface of the workpiece is cleaned with the condensate, and then dried using a drying means. 8. The steam cleaning and drying method according to claim 7, wherein the drying means is a heating means for converting cleaning liquid vapor into superheated steam, and the drying is performed using the superheated steam. 9. The drying means is a spinner consisting of a rotating body on which the object to be treated is mounted, and the spinner rotates at high speed to scatter the condensate adhering to the surface of the object to be treated using centrifugal force to perform drying. A steam cleaning and drying method according to claim 7, characterized in that: 10 The drying means is a combination of a heating means for converting the cleaning liquid vapor into superheated steam and a spinner consisting of a rotating body to which the object to be treated is attached. 8. The steam cleaning and drying method according to claim 7, further comprising drying in which adhering condensate is scattered using centrifugal force. 11 A cleaning liquid tank containing a cleaning liquid, a cleaning vapor generation chamber having a heating means for heating the liquid in the tank to generate cleaning liquid vapor, and a cleaning vapor generation chamber disposed adjacent to the cleaning vapor generation chamber, A cleaning steam generation chamber is provided between the cleaning steam generation chamber and the steam cleaning drying chamber, and a steam cleaning and drying chamber that accommodates the object to be treated and cleans the surface of the object with condensed liquid of the cleaning steam. In addition to partitioning the chamber with a microporous membrane that does not allow the mist accompanying the cleaning liquid vapor generated in the chamber to pass through, the steam cleaning and drying chamber is equipped with a drying means to dry and remove the condensate of the cleaning liquid vapor that adheres to the surface of the workpiece. A steam cleaning drying device characterized by: 12. Steam cleaning according to claim 11, characterized in that means for forcibly cooling the surface of the workpiece to a temperature at which steam condenses is provided as means for obtaining a condensate for cleaning the surface of the workpiece. drying equipment. 13. The steam cleaning and drying apparatus according to claim 11, wherein the drying means converts the cleaning liquid vapor into superheated steam using a heating means, and performs drying using the superheated steam. 14 The drying means is a spinner consisting of a rotating body on which the object to be processed is mounted, and the high speed rotation of the spinner scatters the condensate adhering to the surface of the object to be processed using centrifugal force to perform drying. 12. The steam cleaning and drying apparatus according to claim 11, which is a steam cleaning/drying apparatus. 15. The steam cleaning according to claim 11, wherein the steam cleaning drying chamber is provided with non-condensable gas extraction means for keeping the chamber saturated with steam during the cleaning process. drying equipment.
JP19979687A 1987-08-12 1987-08-12 Steam washing method and washer Granted JPS6443384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19979687A JPS6443384A (en) 1987-08-12 1987-08-12 Steam washing method and washer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19979687A JPS6443384A (en) 1987-08-12 1987-08-12 Steam washing method and washer

Publications (2)

Publication Number Publication Date
JPS6443384A JPS6443384A (en) 1989-02-15
JPH054155B2 true JPH054155B2 (en) 1993-01-19

Family

ID=16413763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19979687A Granted JPS6443384A (en) 1987-08-12 1987-08-12 Steam washing method and washer

Country Status (1)

Country Link
JP (1) JPS6443384A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829937B2 (en) * 2008-07-28 2011-12-07 東京エレクトロン株式会社 Cleaning apparatus and cleaning method for removing deposits or particles adhering to parts of a semiconductor manufacturing apparatus
JP6246973B1 (en) * 2017-07-11 2017-12-13 ジャパン・フィールド株式会社 Degreasing and solvent removal cleaning method for objects to be cleaned
CN112474589B (en) * 2020-10-28 2022-01-11 哈尔滨工程大学 Mobile robot camera field of vision synthesizes cleaning device based on bionical transient membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125282A (en) * 1983-12-13 1985-07-04 有限会社タス技術研究所 Dustless cleaning and drying apparatus
JPS60246638A (en) * 1984-05-22 1985-12-06 Matsushita Electric Ind Co Ltd High-pressure jet washing machine
JPS6123324A (en) * 1984-07-11 1986-01-31 Hitachi Ltd Drying apparatus
JPS61129019A (en) * 1984-11-26 1986-06-17 Hitachi Ltd Absorbing type temperature circuit
JPS61138582A (en) * 1984-12-12 1986-06-26 島田理化工業株式会社 Organic solvent vapor drying method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125282A (en) * 1983-12-13 1985-07-04 有限会社タス技術研究所 Dustless cleaning and drying apparatus
JPS60246638A (en) * 1984-05-22 1985-12-06 Matsushita Electric Ind Co Ltd High-pressure jet washing machine
JPS6123324A (en) * 1984-07-11 1986-01-31 Hitachi Ltd Drying apparatus
JPS61129019A (en) * 1984-11-26 1986-06-17 Hitachi Ltd Absorbing type temperature circuit
JPS61138582A (en) * 1984-12-12 1986-06-26 島田理化工業株式会社 Organic solvent vapor drying method

Also Published As

Publication number Publication date
JPS6443384A (en) 1989-02-15

Similar Documents

Publication Publication Date Title
US5105556A (en) Vapor washing process and apparatus
US4911761A (en) Process and apparatus for drying surfaces
US4984597A (en) Apparatus for rinsing and drying surfaces
US5273589A (en) Method for low pressure rinsing and drying in a process chamber
US6012472A (en) Method and arrangement for drying substrates after treatment in a liquid
US6199298B1 (en) Vapor assisted rotary drying method and apparatus
KR20020046140A (en) Substrate processing unit
KR100231952B1 (en) Method for removing liquid on substrate surface
JPS62169420A (en) Method and apparatus for surface treatment
JPH06103686B2 (en) Surface drying treatment method and device
JPH054155B2 (en)
JPS62183804A (en) Method for replenishing and/or regenerating treatment liquid
JP3634147B2 (en) Method for refining chemicals for semiconductor device manufacturing and regeneration system thereof
EP0428784B1 (en) Process for drying surfaces
JPH04251930A (en) Method and apparatus for drying washed wafer
JP3009006B2 (en) Equipment for drying semiconductor substrates
JP5129911B2 (en) Moisture removal device
US5682913A (en) Vapor rinse-vapor dry processing tool
JP2555086B2 (en) Surface treatment equipment
JPS62198126A (en) Processor
JP3980210B2 (en) Wafer drying apparatus and wafer drying method
JPH06275596A (en) Vapor treatment device
JP2005177652A (en) Washing/drying apparatus and washing/drying method
JPS63160232A (en) Processing method and apparatus
JPH04199715A (en) Semiconductor drying system