JPS61129019A - Absorbing type temperature circuit - Google Patents

Absorbing type temperature circuit

Info

Publication number
JPS61129019A
JPS61129019A JP24794784A JP24794784A JPS61129019A JP S61129019 A JPS61129019 A JP S61129019A JP 24794784 A JP24794784 A JP 24794784A JP 24794784 A JP24794784 A JP 24794784A JP S61129019 A JPS61129019 A JP S61129019A
Authority
JP
Japan
Prior art keywords
steam
aqueous solution
membrane
chamber
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24794784A
Other languages
Japanese (ja)
Other versions
JPH0224572B2 (en
Inventor
Akira Yamada
章 山田
Yasuo Koseki
小関 康雄
Hideaki Kurokawa
秀昭 黒川
Sankichi Takahashi
燦吉 高橋
Katsuya Ebara
江原 勝也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24794784A priority Critical patent/JPS61129019A/en
Publication of JPS61129019A publication Critical patent/JPS61129019A/en
Publication of JPH0224572B2 publication Critical patent/JPH0224572B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To separate fine liquid droplets with high accuracy, by using an aqueous solution of a chemical substance low in steam partial pressure and mounting an aqueous solution concentrator and a dilution device while arranging a membrane selectively permeating only steam along the boiling surface of the aqueous solution concentrator. CONSTITUTION:In a concn. unit 101', the steam from a dilute solution 13 introduced into a concn. chamber 34 and boiled and evaporated under heating, and accompanied splash are filtered by a hydrophobic membrane 55 and the splash is prevented from transmission while only steam is transmitted through said membrane 55 to be condensed under cooling. In a dilution absorber 102', water droplets accompanied by steam generated from an evaporator 24 are perfectly separated by a hydrophobic membrane 45 and only pure steam is absorbed with a concentrate 11 in an absorbing chamber 23 and, therefore, dilution is entirely performed by the absorption of steam and latent heat of condensation is perfectly recovered.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、例えば臭化リチュウム水溶液のごとく、水蒸
気分圧の低い化学物質の水溶液を用い、該水溶液を加熱
して沸騰せしめて発生した水蒸気を冷却して凝縮せしめ
る水溶液濃縮器、及び、水を加熱して沸騰せしめて発生
した水蒸気を前記の濃縮液で作られた濃縮液に吸収せし
める希釈器を備えて、冷熱又は温熱を得るように構成さ
れた吸収式の温度回生器に関するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention uses an aqueous solution of a chemical substance with a low water vapor partial pressure, such as an aqueous lithium bromide solution, and heats the aqueous solution to boil it to release the generated water vapor. An aqueous solution concentrator that cools and condenses water, and a diluter that absorbs water vapor generated by heating and boiling water into a concentrate made from the concentrate, and is configured to obtain cold or hot heat. This relates to an absorption type temperature regenerator.

第4図はこの種の温度回生器の構造を説明するための系
統図である。
FIG. 4 is a system diagram for explaining the structure of this type of temperature regenerator.

この温度回生器の基本システムは、濃縮ユニット101
と、希釈ユニット102とによって構成されている。上
記の濃縮ユニット101は濃縮室34と凝縮室33とを
備えており、上記の希釈ユニット102は蒸発室24と
吸収室23とを備えている。
The basic system of this temperature regenerator is the concentration unit 101
and a dilution unit 102. The concentration unit 101 described above includes a concentration chamber 34 and a condensation chamber 33, and the dilution unit 102 described above includes an evaporation chamber 24 and an absorption chamber 23.

吸収式温度回生器の原理は、臭化リチウム等の水溶液の
吸湿性を利用し、その濃厚液に密閉した空間で水蒸気を
吸収させると、凝縮熱と希釈熱により発熱することを利
用した高温エネルギーの発生(吸収式ヒートポンプ)方
法とそれにより水蒸気圧が下がシ、水がより低温で蒸発
することを利用して低温エネルギーを発生する(吸収式
冷凍機)方法の2通りがある。
The principle of the absorption type temperature regenerator is to utilize the hygroscopicity of an aqueous solution such as lithium bromide, and when the concentrated liquid absorbs water vapor in a closed space, it generates heat due to condensation heat and dilution heat, which generates high-temperature energy. There are two methods: one is to generate low-temperature energy (absorption heat pump), and the other is to generate low-temperature energy by utilizing the lower water vapor pressure and evaporation of water at a lower temperature (absorption chiller).

以下臭化リチウム水溶液を例にとシ、具体的に説明を加
える。
A specific explanation will be given below using a lithium bromide aqueous solution as an example.

輌4図の希釈ユニツ)102の吸収室23に濃度60%
の臭化リチウム水溶液を入れ、蒸発室24に水を入れて
、室内を真空にしていく。吸湿性の大きい臭化リチウム
は、水蒸気分圧が低いために、蒸発せずに、同一温度で
も蒸発室24内の水のみ蒸発°がおこり、蒸発室24の
水は蒸発潜熱をうばわれて温度が下がる。一方吸収室2
3内の臭化リチウムは、蒸発室24で発生した水蒸気1
4を吸収し、その凝縮熱と希釈熱により発熱し温度が逆
に上がる現象を示す。この現象は、第5図の臭化リチウ
ム水溶液の蒸気圧線図(Dthring線図)で説明で
きる。例えば、蒸発室24へ50C程度の低温の熱エネ
ルギーを供給し水を40Cで蒸発させると、希釈ユニッ
ト102内の絶対圧力は57mHgとなる。発生した水
蒸気は濃度60%の臭化リチウム水溶液へ吸収され、発
熱すると同時に水溶液は希釈される。水溶液濃度が55
%になったとすると、その時の吸収温度は75Cに71
−シ、吸収室23より70C位の高温の熱エネルギーが
得られる。反対に吸収室23の濃度55%の臭化リチウ
ム水溶液を、外部よシ熱をうばい冷却し、40Cに保て
ば、エニット内の絶対圧力は9.3151 Hgに低下
して、蒸発室24内の水の蒸発が激しくなり温度が下が
9.10C位になシ、蒸発室24から15C程度のより
低温の熱エネルギーが得られる。
60% concentration in the absorption chamber 23 of 102 (dilution unit in Figure 4)
A lithium bromide aqueous solution is poured into the evaporation chamber 24, water is poured into the evaporation chamber 24, and the chamber is evacuated. Lithium bromide, which is highly hygroscopic, has a low water vapor partial pressure, so it does not evaporate, but only the water in the evaporation chamber 24 evaporates even at the same temperature, and the water in the evaporation chamber 24 loses its latent heat of evaporation to a lower temperature. goes down. On the other hand, absorption chamber 2
The lithium bromide in 3 is the water vapor 1 generated in the evaporation chamber 24.
4 and generates heat due to its condensation heat and dilution heat, causing the temperature to rise. This phenomenon can be explained by the vapor pressure diagram (Dthring diagram) of the lithium bromide aqueous solution shown in FIG. For example, when low-temperature thermal energy of about 50 C is supplied to the evaporation chamber 24 to evaporate water at 40 C, the absolute pressure inside the dilution unit 102 becomes 57 mHg. The generated water vapor is absorbed into a lithium bromide aqueous solution with a concentration of 60%, generating heat and simultaneously diluting the aqueous solution. Aqueous solution concentration is 55
%, the absorption temperature at that time is 75C and 71
- Thermal energy at a high temperature of about 70C can be obtained from the absorption chamber 23. On the other hand, if the 55% concentration lithium bromide aqueous solution in the absorption chamber 23 is kept at 40C by avoiding external heat, the absolute pressure inside Enit will drop to 9.3151 Hg, and the lithium bromide solution in the evaporation chamber 24 will be The water evaporates rapidly and the temperature drops to about 9.10C, and thermal energy at a lower temperature of about 15C is obtained from the evaporation chamber 24.

一般に吸湿性水溶液の水蒸気分圧は、濃度が増加すると
急激に低下し供給エネルギーと得られる熱エネルギーの
温度差は大きくなる。つtシ、吸収式システムの性能も
、濃縮ユニットでより高濃度まで水溶液を濃縮するかに
かかつている。
Generally, the water vapor partial pressure of a hygroscopic aqueous solution decreases rapidly as the concentration increases, and the temperature difference between supplied energy and obtained thermal energy increases. However, the performance of absorption systems also depends on concentrating the aqueous solution to higher concentrations in the concentrating unit.

以上のように吸収式システムは、濃縮ユニット101で
濃縮された水が蒸発室24へ入シ、蒸発し温度が下が9
発生した水蒸気14が吸収室23で、濃縮ユニット10
1から供給された濃厚液11に吸収されて発熱する。高
温の熱エネルギーを得るには、蒸発室24の温度が下が
らないように熱を供給すれば、吸収室23から、供給し
た熱より高温の熱が得られる。また低温の熱エネルギー
を得るには、吸収室23の温度があがらないように、吸
収室温度より低い温度の熱を供給し、吸収室23より熱
をうばい冷却すると、蒸発室24から、供給した熱(冷
却)より低い温度の熱が得られる。希釈ユニット102
の蒸発室24へ供給した水12は水蒸気14となり吸収
室23内で濃厚液11に吸収され、希釈された希薄i1
3は再び濃縮ユニット101へ入る。
As described above, in the absorption system, water concentrated in the concentration unit 101 enters the evaporation chamber 24, evaporates, and the temperature drops until 9.
The generated water vapor 14 is transferred to the absorption chamber 23 and the concentration unit 10.
It is absorbed by the concentrated liquid 11 supplied from 1 and generates heat. To obtain high-temperature thermal energy, if heat is supplied so that the temperature of the evaporation chamber 24 does not drop, heat higher in temperature than the supplied heat can be obtained from the absorption chamber 23. In addition, in order to obtain low-temperature thermal energy, heat at a temperature lower than the absorption chamber temperature is supplied so that the temperature of the absorption chamber 23 does not rise, and when the heat is cooled from the absorption chamber 23, the heat is supplied from the evaporation chamber Heat at a lower temperature than heat (cooling) can be obtained. Dilution unit 102
The water 12 supplied to the evaporation chamber 24 becomes water vapor 14 and is absorbed by the concentrated liquid 11 in the absorption chamber 23, resulting in diluted diluted liquid i1.
3 enters the concentration unit 101 again.

以上に説明した吸収式温度回生器に所望の機能を発揮さ
せる為に、沸騰して発生した蒸気の中に含まれている微
細な液滴を除去して純粋な蒸気を循環させなければなら
ない。この液滴除去に関する技術については、社団法人
日本冷凍協会編“吸収冷凍機とその応用”に詳しく報じ
られている。
In order for the above-described absorption type temperature regenerator to perform the desired function, it is necessary to remove the fine droplets contained in the steam generated by boiling and circulate pure steam. The technology for removing droplets is reported in detail in ``Absorption Refrigerating Machines and Their Applications,'' edited by the Japan Refrigeration Association.

上記の文献に示された方法は、沸騰蒸発面に対して空間
を介して波形スクラバーを設け、このスクラバーによっ
て微細液滴を除去するものであって、前記の空間の部分
は、微細液滴の内で比較的大きい粒径の液滴を自由落下
せしめて分離する為に設けられている。この分離対象で
ある液滴は、比較的大粒径であっても、その径はミクロ
ンオーダー程度のものであるから、蒸気中に半ば浮遊し
つつ徐々に降下する。従って、この区域における蒸気を
大きくすることができない。
In the method shown in the above-mentioned document, a wave-shaped scrubber is provided through a space with respect to the boiling evaporation surface, and the scrubber removes fine droplets, and the part of the space is a part of the fine droplets. It is provided to allow relatively large droplets to fall freely and separate them. Even if the droplets to be separated are relatively large, their diameter is on the order of microns, so they gradually descend while partially suspended in the steam. Therefore, it is not possible to increase the steam in this area.

また、微細液滴を除去する為に設けた前記スクラバーも
、蒸気速度が大きくなると除去性能が低下するため、蒸
気速度を犬きくとれない。したがって、前記空間部及び
スクラバ一部の蒸気速度制限から空間容積を大きくとる
必要があυ、装置が大型化する。
Further, the scrubber provided to remove fine droplets cannot keep up with the steam velocity because its removal performance decreases as the steam velocity increases. Therefore, due to steam velocity limitations in the space and part of the scrubber, it is necessary to increase the space volume, which increases the size of the apparatus.

第4図に示した従来技術に係る吸収式温度回生器におい
ては、濃縮ユニット101の濃縮室34で希薄液13は
加熱される。この時、濃縮ユニット101は減圧されて
いるために希薄液は沸騰し蒸発する。この水蒸気中には
臭化リチウムを含む液滴が存在するために飛沫除去器3
5を設け、これを除去した後、水蒸気14のみが凝縮室
33へ導入され冷却されて凝縮し復水される。も−し飛
沫除去器35による液滴の分離がない場合には凝縮室3
3へ臭化リチウムが混入し、純水が得られずに、次第に
復水中の臭化リチウム濃度が増し、極端なケースでは第
5図に示した温度線図の純水の温度−圧力では操作出来
ずに運転不能となる。現状ではこれを回避するために定
期的に、純水の交換及び臭化リチウム水溶液の補充を行
っている。
In the prior art absorption temperature regenerator shown in FIG. 4, the dilute liquid 13 is heated in the concentration chamber 34 of the concentration unit 101. At this time, since the concentration unit 101 is under reduced pressure, the diluted liquid boils and evaporates. Since there are droplets containing lithium bromide in this water vapor, the droplet remover 3
After removing the water vapor 14, only the water vapor 14 is introduced into the condensation chamber 33, where it is cooled, condensed, and condensed. If the droplets are not separated by the droplet remover 35, the condensation chamber 3
If lithium bromide is mixed into the condensate, pure water cannot be obtained, and the lithium bromide concentration in the condensate gradually increases. If you are unable to do so, you will be unable to drive. Currently, to avoid this, pure water is replaced and lithium bromide aqueous solution is replenished periodically.

したがって、飛沫除去器25.35の除去性能は重要で
あり、この性能向上のためには前述したように濃縮室3
4、吸収室23の空間容積を大きくとって蒸気速匿を低
下させて同伴飛沫中の比較的大粒子を自由落下で分離し
、さらに残りの飛沫を飛沫除去器25.35で分離して
おり、この時にも除去性能は蒸気速度に関係するために
容積を犬きくしている。
Therefore, the removal performance of the droplet remover 25.35 is important, and in order to improve this performance, the concentration chamber 3
4. The space volume of the absorption chamber 23 is increased to reduce vapor velocity, and relatively large particles in the entrained droplets are separated by free fall, and the remaining droplets are further separated by the droplet remover 25.35. In this case as well, the removal performance is related to the steam velocity, so the volume is critical.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為されたもので、蒸気中の
微細液滴の分離性能が良く、シかも蒸気の最高流速に対
する許容度が大きくて装置全体を小形に構成し得る吸収
式温度回生器を提供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and is an absorption type temperature control system that has good separation performance for fine droplets in steam, has a large tolerance for the maximum flow rate of steam, and allows the entire device to be made compact. The aim is to provide a regenerator.

〔発明の概要〕[Summary of the invention]

上記の目的を達成する為、本発明は、第4図について説
明した吸収式温度回生器の基本的な構成、即ち、水蒸気
分圧の低い化学物質の水溶液を用い、練水溶液を加熱し
て沸騰せしめて発生した水蒸気を冷却して凝縮せしめる
水溶液濃縮器、及び、水を加熱して沸騰せしめて発生し
た水蒸気を前記の濃縮液で作られた濃縮液に吸収せしめ
る希釈器を備えて冷熱又は温熱を得る構造の吸収式温度
回生器に改良を加え、蒸気を選択的に透過せしめて液体
の透過を阻止する膜を構成して、該膜を前記水溶液濃縮
器の沸騰面に沿って配設したことを特徴とする。
In order to achieve the above object, the present invention has the basic configuration of the absorption type temperature regenerator explained with reference to FIG. It is equipped with an aqueous solution concentrator that cools and condenses the water vapor generated, and a diluter that absorbs the water vapor generated by heating and boiling water into a concentrated liquid made from the above-mentioned concentrated liquid. An absorption type temperature regenerator with a structure to obtain the above was improved, and a membrane was constructed that selectively allows vapor to pass through and blocks liquid from passing through, and the membrane was arranged along the boiling surface of the aqueous solution concentrator. It is characterized by

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の1実施例を第1図乃至第3図について説
明する。
Next, one embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG.

本実施例は、第4図に示した従来技術に係る吸収式温度
回生器に本発明を適用して改良した1例であって、第1
図(本例)において第4図(従来例)と同一の図面参照
番号を付した部材は従来技術におけると同様、乃至は類
似の構成部材である。
This embodiment is an example of improving the absorption type temperature regenerator according to the prior art shown in FIG. 4 by applying the present invention.
In the figure (this example), members given the same drawing reference numbers as in FIG. 4 (prior art example) are the same or similar components as in the prior art.

本例(第1図)を従来例(第4図)と比較して異なる点
を次に述べる。
The differences between this example (FIG. 1) and the conventional example (FIG. 4) will be described below.

本例における濃縮ユニット1011では濃縮室34と凝
縮室33との間の蒸気通路に疎水性多孔質膜55を配設
し、希釈ユニット102’では蒸発室24と吸収希釈室
23との間の蒸気通路に疎水性多孔質膜45を配しであ
る。
In the concentration unit 1011 in this example, a hydrophobic porous membrane 55 is disposed in the steam passage between the concentration chamber 34 and the condensation chamber 33, and in the dilution unit 102', the steam passage between the evaporation chamber 24 and the absorption dilution chamber 23 is disposed. A hydrophobic porous membrane 45 is arranged in the passage.

本発明により濃縮室34へ導入され加熱されて沸騰蒸発
する希薄液13からの水蒸気14と同伴飛沫は前記疎水
性膜55で濾過され、飛沫は透過せずに、水蒸気14の
みが透過し、冷却されて復水される。この復水は純水で
ある。一方、希釈吸収器102′では蒸発器24で発生
した水蒸気14中の同伴水滴は疎水性膜45で完全に分
離され、吸収室23では純粋な水蒸気14のみが濃縮液
11に吸収されるため、希釈は全て蒸気の吸収であり凝
縮潜熱として完全に回収される。
According to the present invention, the water vapor 14 from the dilute liquid 13 introduced into the concentration chamber 34, heated and boiled and evaporated, and accompanying droplets are filtered by the hydrophobic membrane 55, and the droplets do not pass through, only the water vapor 14 passes through, and the water vapor 14 is cooled. and condensed water. This condensate is pure water. On the other hand, in the dilution absorber 102', entrained water droplets in the water vapor 14 generated in the evaporator 24 are completely separated by the hydrophobic membrane 45, and in the absorption chamber 23, only pure water vapor 14 is absorbed into the concentrated liquid 11. All dilution is absorption of steam and is completely recovered as latent heat of condensation.

第2図は本発明に用いる疎水性多孔質膜の通気抵抗の一
例を示した図表で、孔径が大きくなると当然のことなが
ら圧力損失が低下している。さらに第3図は疎水性多孔
質膜による水蒸気透過状況を顕微鏡下による観察をもと
に模式的に示したもので疎水性多孔質膜1は孔2を有し
ている。ここに液滴4を含んだ水蒸気14が当該膜に接
近しても、疎水性である九めに液滴4は膜1に接触出来
ず、破線10で示される境界線が形成され、液滴4は透
過されない。したがって孔径より小さい粒径の液滴も分
離可能となる。この現象は、第2図に示した孔径と圧力
損失との関係において孔径5μm以上では流速Vが早く
ても、急激に圧力損失が低下していることから説明でき
る。すなわち孔径が5μm以上になると第3図に示した
気液境界線10が孔の中で一致せず開口した状態となり
、液滴4も通過できるようになるためである。以上のミ
クロ的観察から、当該疎水性多孔質膜の孔径を1μm乃
至5μmとすることによって実用的効果を発揮せしめる
ことができる。
FIG. 2 is a chart showing an example of the ventilation resistance of the hydrophobic porous membrane used in the present invention, and as the pore diameter increases, the pressure loss naturally decreases. Further, FIG. 3 schematically shows the state of water vapor permeation through the hydrophobic porous membrane based on observation under a microscope, and the hydrophobic porous membrane 1 has pores 2. In FIG. Even if the water vapor 14 containing the droplet 4 approaches the membrane, the droplet 4 cannot come into contact with the membrane 1 because it is hydrophobic, and a boundary line shown by a broken line 10 is formed, and the droplet 4 is not transmitted. Therefore, droplets with a particle size smaller than the pore size can also be separated. This phenomenon can be explained by the fact that in the relationship between the pore diameter and pressure loss shown in FIG. 2, when the pore diameter is 5 μm or more, the pressure loss decreases rapidly even if the flow velocity V is high. That is, when the pore diameter becomes 5 μm or more, the gas-liquid boundary line 10 shown in FIG. 3 does not coincide within the pore and becomes open, allowing the droplet 4 to pass through. From the above microscopic observation, practical effects can be exhibited by setting the pore diameter of the hydrophobic porous membrane to 1 μm to 5 μm.

第6図は本発明の他の実施例を示すもので、疎水性多孔
質膜55は濃縮ユニット101にのみ設けた場合であっ
て、濃縮液側からの飛沫防止のみを対称にした例である
FIG. 6 shows another embodiment of the present invention, in which the hydrophobic porous membrane 55 is provided only in the concentration unit 101, and is an example in which only the prevention of splashes from the concentrate side is provided. .

以上に述べた如く、本実施例の温度回生器によれば、水
蒸気中に含まれている飛沫の分離が可能であジ、さらに
φ型化が可能となる。また本発明の効果は濃度を高めた
時にさらに発揮できる。すなわち、前述したように、濃
縮器で濃度を高める程、希釈ユニットでの冷熱及び温熱
の変化幅が大きくとれることになるが、高濃度になるに
従って、粘性が増し、発泡現象が起こり易く、同伴飛沫
の増加傾向を示すので、本例の如き疎水性多孔質膜が極
めて有効となってくる。
As described above, according to the temperature regenerator of this embodiment, it is possible to separate droplets contained in water vapor, and furthermore, it is possible to form a φ type. Further, the effects of the present invention can be further exhibited when the concentration is increased. In other words, as mentioned above, the higher the concentration in the concentrator, the wider the range of change in cold and heat in the dilution unit. Since the droplets tend to increase, a hydrophobic porous membrane like the one in this example becomes extremely effective.

〔発明の効果〕〔Effect of the invention〕

以上に詳述した如く、本発明の吸収式温度回生器によれ
ば、蒸気中に含まれる微細な液滴を高精度で分離するこ
とができ、しかも蒸気の流速を比較的大きくとれるので
装置全体を小形軽量に構成し得るという優れた実用的効
果を奏する。
As described in detail above, according to the absorption type temperature regenerator of the present invention, fine droplets contained in steam can be separated with high precision, and the flow rate of steam can be kept relatively high, so that the entire device This has an excellent practical effect in that it can be configured to be small and lightweight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の吸収式温度回生器の1実施例を示す系
統図、第2図は孔径と圧力損失との関係を示す図表、第
3図は疎水性多孔質の膜の特性を説明する模式図、第4
図は従来の吸収式温度回生器の1例を示す系統図、第5
図は温度と蒸気圧との関係を示す図表、第6図は前記と
異なる実施例の系統図である。 1・・・疎水性多孔質膜、2・・・孔、11・・・濃厚
液、12・・・水、13・・・希薄液、14・・・水蒸
気、23・・・吸収室、24・・・蒸発室、25・・・
飛沫除去器、33・・・凝縮室、34・・・濃縮室、3
5・・・飛沫除去器、45・・・疎水性多孔質膜、55
・・・疎水性多孔質膜、101.101’・・・濃縮ユ
ニット、102.102’・・・希釈ユニット。
Figure 1 is a system diagram showing one embodiment of the absorption type temperature regenerator of the present invention, Figure 2 is a chart showing the relationship between pore diameter and pressure loss, and Figure 3 explains the characteristics of a hydrophobic porous membrane. Schematic diagram, 4th
The figure is a system diagram showing an example of a conventional absorption temperature regenerator.
The figure is a chart showing the relationship between temperature and vapor pressure, and FIG. 6 is a system diagram of an embodiment different from the above. DESCRIPTION OF SYMBOLS 1... Hydrophobic porous membrane, 2... Pore, 11... Concentrated liquid, 12... Water, 13... Dilute liquid, 14... Water vapor, 23... Absorption chamber, 24 ...evaporation chamber, 25...
Droplet remover, 33... Condensation chamber, 34... Concentration chamber, 3
5... Splash remover, 45... Hydrophobic porous membrane, 55
... Hydrophobic porous membrane, 101.101'... Concentration unit, 102.102'... Dilution unit.

Claims (1)

【特許請求の範囲】 1、水蒸気分圧の低い化学物質の水溶液を用い、該水溶
液を加熱して沸騰せしめて発生した水蒸気を冷却して凝
縮せしめる水溶液濃縮器、及び、水を加熱して沸騰せし
めて発生した水蒸気を前記の濃縮液で作られた濃縮液に
吸収せしめる希釈器を備えて、冷熱及び温熱の少なくと
も何れか一方を得る温度回生器において、蒸気を選択的
に透過せしめて液体の透過を阻止する膜を構成して、該
膜を前記水溶液濃縮器の沸騰面に沿つて配設したことを
特徴とする吸収式温度回生器。 2、前記の膜は、沸騰面から離間させて設けたものであ
ることを特徴とする特許請求の範囲第1項に記載の吸収
式温度回生器。 3、前記の膜は、孔径1乃至5μmの疎水性多孔質膜で
あることを特徴とする特許請求の範囲第1項に記載の吸
収式温度回生器。
[Claims] 1. An aqueous solution concentrator that uses an aqueous solution of a chemical substance with a low water vapor partial pressure, heats the aqueous solution to boiling, and cools and condenses the generated water vapor; and In a temperature regenerator that is equipped with a diluter that absorbs the generated water vapor into a concentrated liquid made from the above-mentioned concentrated liquid, and which obtains at least one of cold heat and warm heat, the vapor is selectively permeated to form a liquid. An absorption type temperature regenerator, comprising a membrane that blocks permeation, and the membrane is disposed along the boiling surface of the aqueous solution concentrator. 2. The absorption type temperature regenerator according to claim 1, wherein the membrane is provided at a distance from the boiling surface. 3. The absorption type temperature regenerator according to claim 1, wherein the membrane is a hydrophobic porous membrane with a pore diameter of 1 to 5 μm.
JP24794784A 1984-11-26 1984-11-26 Absorbing type temperature circuit Granted JPS61129019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24794784A JPS61129019A (en) 1984-11-26 1984-11-26 Absorbing type temperature circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24794784A JPS61129019A (en) 1984-11-26 1984-11-26 Absorbing type temperature circuit

Publications (2)

Publication Number Publication Date
JPS61129019A true JPS61129019A (en) 1986-06-17
JPH0224572B2 JPH0224572B2 (en) 1990-05-30

Family

ID=17170911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24794784A Granted JPS61129019A (en) 1984-11-26 1984-11-26 Absorbing type temperature circuit

Country Status (1)

Country Link
JP (1) JPS61129019A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221881A (en) * 1987-03-11 1988-09-14 Hitachi Ltd Waste liquid concentrator, waste liquid treatment apparatus and waste liquid concentration method
JPS6443384A (en) * 1987-08-12 1989-02-15 Hitachi Ltd Steam washing method and washer
US5575835A (en) * 1995-08-11 1996-11-19 W. L. Gore & Associates, Inc. Apparatus for removing moisture from an environment
US5687576A (en) * 1995-07-24 1997-11-18 Mitsubishi Denki Kabushiki Kaisha Water-evaporation type cooling system based on electrolytic reaction and water-evaporation type cooling method therefor
EP2088389A1 (en) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Absorption cooling machine
CN101943502A (en) * 2010-08-17 2011-01-12 浙江大学 Thermally driven absorption refrigerating system based on semipermeable membrane
US8069687B2 (en) 2005-06-17 2011-12-06 Evonik Degussa Gmbh Working media for refrigeration processes
US8500892B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8696928B2 (en) 2009-12-07 2014-04-15 Evonik Degussa Gmbh Operating medium for an absorption refrigeration device
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
CN105241113A (en) * 2015-10-30 2016-01-13 连云港市巨生实业有限公司 Improved lithium bromide absorption water chilling unit
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
JP2019135436A (en) * 2018-02-05 2019-08-15 アイシン精機株式会社 Absorption type heat pump device
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104082A (en) * 1978-02-02 1979-08-15 Mitsubishi Rayon Co Ltd Gas filtration
JPS60179103A (en) * 1984-02-27 1985-09-13 Hitachi Ltd Process and apparatus for concentrating aqueous solution and process and apparatus for recovering heat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104082A (en) * 1978-02-02 1979-08-15 Mitsubishi Rayon Co Ltd Gas filtration
JPS60179103A (en) * 1984-02-27 1985-09-13 Hitachi Ltd Process and apparatus for concentrating aqueous solution and process and apparatus for recovering heat

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221881A (en) * 1987-03-11 1988-09-14 Hitachi Ltd Waste liquid concentrator, waste liquid treatment apparatus and waste liquid concentration method
JPS6443384A (en) * 1987-08-12 1989-02-15 Hitachi Ltd Steam washing method and washer
JPH054155B2 (en) * 1987-08-12 1993-01-19 Hitachi Ltd
US5687576A (en) * 1995-07-24 1997-11-18 Mitsubishi Denki Kabushiki Kaisha Water-evaporation type cooling system based on electrolytic reaction and water-evaporation type cooling method therefor
US5575835A (en) * 1995-08-11 1996-11-19 W. L. Gore & Associates, Inc. Apparatus for removing moisture from an environment
US8069687B2 (en) 2005-06-17 2011-12-06 Evonik Degussa Gmbh Working media for refrigeration processes
EP2088389A1 (en) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Absorption cooling machine
WO2009098155A1 (en) * 2008-02-05 2009-08-13 Evonik Degussa Gmbh Absorption type refrigerating machine
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
US8500892B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8500867B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8623123B2 (en) 2009-02-02 2014-01-07 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethyl piperidine
US8696928B2 (en) 2009-12-07 2014-04-15 Evonik Degussa Gmbh Operating medium for an absorption refrigeration device
CN101943502A (en) * 2010-08-17 2011-01-12 浙江大学 Thermally driven absorption refrigerating system based on semipermeable membrane
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
CN105241113A (en) * 2015-10-30 2016-01-13 连云港市巨生实业有限公司 Improved lithium bromide absorption water chilling unit
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
JP2019135436A (en) * 2018-02-05 2019-08-15 アイシン精機株式会社 Absorption type heat pump device

Also Published As

Publication number Publication date
JPH0224572B2 (en) 1990-05-30

Similar Documents

Publication Publication Date Title
JPS61129019A (en) Absorbing type temperature circuit
JPH0223212B2 (en)
JP2011078879A (en) Apparatus and method for cleaning water
JPH0924249A (en) Membrane evaporator and membrane distillation method
US3316736A (en) Absorption refrigeration systems
NL9000783A (en) MEMBRANE SEPARATION PROCESS FOR DEWATERING A GAS, VAPOR OR LIQUID MIXTURE BY PERVAPORATION, VAPOR PERMEATION OR GAS SEPARATION.
KR101168499B1 (en) Membrane concentrator for absorption chillers
CA1279483C (en) Air conditioning process and apparatus
EP2212629A1 (en) Non-vacuum absorption refrigeration
FI81501C (en) Procedure for icing
JPS6351044B2 (en)
JPH03282167A (en) Absorptive type freezer
SE460870B (en) ABSORPTION TYPE COOLING SYSTEM
LV13714B (en) Method of transferring the heat energy
JPS63315887A (en) Cooling tower using hydrophobic porous membrane and absorbing type temperature regenerator
JPS61272565A (en) Absorption type refrigerator
JPH01219453A (en) Absorption type refrigerator
JP4184196B2 (en) Hybrid absorption heat pump system
JPS5832301B2 (en) absorption refrigerator
JPH05203284A (en) Absorption water cooler/heater
SU1270531A1 (en) Method of heat exchange between liquid and solid surface
JP2021522466A (en) Separation by solidification used in absorption heating and cooling systems that function in crystallization / freezing / icing methods
JP2639991B2 (en) Absorption refrigerator
KR0160817B1 (en) Liquid mixture separating apparatus of absortive type airconditioner
JPH0198866A (en) Absorption type cold and hot heat generator and absorber and condenser used for said generator