LV13714B - Method of transferring the heat energy - Google Patents

Method of transferring the heat energy Download PDF

Info

Publication number
LV13714B
LV13714B LVP-06-129A LV060129A LV13714B LV 13714 B LV13714 B LV 13714B LV 060129 A LV060129 A LV 060129A LV 13714 B LV13714 B LV 13714B
Authority
LV
Latvia
Prior art keywords
working
substance
absorbent
heat
liquid
Prior art date
Application number
LVP-06-129A
Other languages
Latvian (lv)
Inventor
Uldis Silins
Original Assignee
Energijas Centrs Sia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energijas Centrs Sia filed Critical Energijas Centrs Sia
Priority to LVP-06-129A priority Critical patent/LV13714B/en
Priority to EP07834471A priority patent/EP2092251A1/en
Priority to PCT/LV2007/000003 priority patent/WO2008063039A1/en
Publication of LV13714B publication Critical patent/LV13714B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/047Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for absorption-type refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

The offered method of transferring the heat energy from low heat temperature source to the user of higher temperature heat energy provides increase of the efficiency of the heat pump as there is no necessity for extra heat energy to separate the working substance from the absorbent substance. The special conditions at selection of both working and absorbent substances ensures it: there must be partial solubility of working liquid into the absorbent liquid during the cycle of the heat energy transfer at the whole temperature range, besides the both liquids must be of different density, as well as the absorbent liquid must have lower partial vapour pressure than the working liquid at the temperature of the absorber. The absorption is active enough, as the working liquid solutes into absorbent liquid due to the higher pressure of the vapour, but desorption occurs spontaneously. It is possible as the concentration of the working liquid into the absorption liquid exceeds equilibrium concentration at the given temperature of desorption. ?? ?? ?? ??

Description

SILTUMENERĢIJAS PĀRNESES PAŅĒMIENSHEAT TRANSFER TECHNIQUES

Tehnikas jomaTechnical field

Izgudrojums attiecas uz siltumsūkņiem un siltumenerģijas pārneses paņēmieniem siltumenerģijas pārvietošanai no siltumenerģijas avota ar zemāku temperatūru uz siltumenerģijas patērētāju ar augstāku temperatūru un var tikt izmantots siltumapgādē, gaisa kondicionēšanas iekārtās, aukstuma sistēmās un citās jomās.The invention relates to heat pumps and methods for transferring heat from a lower temperature source of heat to a higher temperature consumer of heat and may be used in heat supply, air conditioning, refrigeration and other applications.

Tehnikas līmenisState of the art

Ir zināmi absorbcijas siltumsūkņi un paņēmieni siltumenerģijas pārvietošanai no siltumenerģijas avota ar zemāku temperatūru uz siltumenerģijas patērētāju ar augstāku temperatūru, kas ietver darba vielas iztvaicēšanu ar iztvaicētāja palīdzību, radušos tvaiku absorbēšanu absorbenta vielā, darba vielas un absorbenta vielas šķīduma spiediena palielināšanu, darba vielas atdalīšanu no absorbenta vielas pievadot siltumenerģiju darba vielas un absorbenta vielas šķīdumam, darba vielas kondensāciju novadot siltumenerģiju, darba vielas un absorbenta vielas spiediena samazināšanu. Plaši pielietoti absorbcijas siltumsūkņi ar vielu pāriem: HĻO - darba viela; LiBr ūdens šķīdums - absorbenta viela; NH3 - darba viela; EEO - absorbenta viela.Absorption heat pumps and techniques for transferring heat from a lower-temperature heat source to a higher-temperature heat consumer are known, which includes evaporating the working substance by means of an evaporator, increasing the pressure of the resulting vapor in the absorbent material, increasing the pressure of the working material and absorbent solution. by applying heat to the solution of the working substance and the absorbent substance, condensing the working substance by releasing heat, reducing the pressure of the working substance and the absorbent substance. Widespread absorption heat pumps with substance pairs: HLO - working substance; LiBr aqueous solution - absorbent material; NH3 - working substance; EEO - absorbent material.

Zināmo tehnisko risinājumu trūkums ir augsta potenciāla siltumenerģijas nepieciešamība darba vielas un absorbenta vielas šķīduma separācijai, kā arī siltumenerģijas novadīšanas nepieciešamība, kondensējot darba vielu, kas ierobežo sasniedzamo absorbcijas siltumsūkņu un siltumenerģijas pārneses paņēmienu lietderības koeficientu.The lack of known technical solutions is the need for high potential thermal energy for separating the solution of the working substance and the absorbent material, as well as the need for heat dissipation by condensing the working material, which limits the achievable efficiency of absorption heat pumps and heat transfer techniques.

Kā tuvākais zināmais tehniskais risinājums, kas pieņemts par prototipu, ir šķidrās fāzes separācijas paņēmiens absorbcijas aukstuma iekārtās, (ASV patents 4,283,918, 18.08.1981 .,”Liquid phase separation in absorption refrigeration”, SKI3 F25B 15/00), saskaņā ar kuru par absorbcijas siltumsūkņa darba vielu izvēlas vielu, kas ir pilnībā šķīstoša absorbenta vielā relatīvi zemajā absorbcijas temperatūrā un daļēji šķīstoša absorbenta vielā augstākās temperatūrās, ļaujot nodalīt darba vielu no absorbenta šķīduma šķidrā veidā nodalot divus šķīdumus vienu no otra. Šis paņēmiens siltumenerģijas pārvietošanai ietver sekojošus secīgus soļus: darba vielas un absorbenta vielas šķīduma spiediena palielināšana, lai novērstu darba vielas iztvaikošanu separēšanas laikā; darba vielas un absorbenta vielas šķīduma temperatūras palielināšana virs pilnas šķīdības intervāla; ar darba vielu pārākā šķīduma nodalīšana no ar absorbentu pārākā šķīduma; darba vielas šķīduma un absorbenta vielas šķīduma atsevišķa atdzesēšana; ar darba vielu pārākā šķīduma spiediena pazemināšana līdz līmenim, kurā iespējama darba vielas iztvaikošana un siltumenerģijas uzņemšana dzesēšanas efekta iegūšanai; ar absorbentu pārākā šķīduma spiediena pazemināšana līdz iztvaicētāja spiediena līmenim; darba vielas tvaika absorbcija ar absorbentu pārākajā šķīdumā. ASV patentā 4,283,918 izklāstītais paņēmiens ļauj samazināt absorbcijas siltumsūkņa darba cikla realizēšanai nepieciešamo siltumenerģijas daudzumu, jo atšķirībā no plaši izmantotajiem paņēmieniem, šī paņēmiena realizācijai šķidrumu nav nepieciešams iztvaicēt, bet tikai sasildīt. Šķidrumu sasildīšanai nepieciešams mazāks siltumenerģijas daudzums nekā iztvaicēšanai. Tomēr zināmā paņēmiena trūkums ir nepieciešamība pievadīt papildus siltumenerģiju, lai sasniegtu daļējas šķīdības stāvokli šķīdumu atdalīšanai, kas ierobežo sasniedzamo absorbcijas siltumsūkņa un siltumenerģijas pārneses paņēmiena lietderības koeficientu. Bez tam, zināmā paņēmiena realizāciju apgrūtina tādu vielu pāra izvēle, kas atbilstu noteiktajiem kritērijiem.The closest known technical solution adopted as a prototype is the liquid phase separation method in absorption refrigerating equipment (U.S. Patent 4,283,918, Aug. 18, 1981 to Liquid phase separation in absorption refrigeration, SKI 3 F25B 15/00), according to which the substance which is completely soluble in the absorbent material at relatively low absorption temperature and partially soluble in the absorbent material at higher temperatures is selected as the working material of the absorption heat pump, allowing the working substance to be separated from the absorbent solution by liquid separation of the two solutions. This method of transferring thermal energy involves the following sequential steps: increasing the pressure of the solution of the working substance and of the absorbent material to prevent evaporation of the working substance during separation; increasing the temperature of the working agent and absorbent agent solution above the full solubility range; separating the working solution superior from the absorbent superior solution; separately cooling the working solution and the absorbent solution; lowering the pressure of the bulk solution of the working substance to a level where evaporation of the working substance and absorption of thermal energy is possible to obtain the cooling effect; lowering the pressure of the absorbent superior solution to the level of the evaporator; vapor absorption of the working substance with absorbent in the main solution. The technique disclosed in U.S. Patent 4,283,918 allows to reduce the amount of thermal energy required to carry out the duty cycle of an absorption heat pump because, unlike commonly used techniques, this technique does not require the liquid to be evaporated but merely heated. Heating of liquids requires less heat than evaporation. However, the disadvantage of the known technique is the need to add additional heat to achieve a partial solubility condition for solution separation, which limits the achievable efficiency of the absorption heat pump and the heat transfer technique. In addition, the realization of a known technique is complicated by the choice of a pair of substances that meet the criteria set.

Izgudrojuma atklāšanaDisclosure of Invention

Izgudrojuma mērķis ir paaugstināt absorbcijas siltumsūkņa un paņēmiena siltumenerģijas pārvietošanai lietderības koeficientu.The object of the invention is to increase the efficiency of the absorption heat pump and the method of transferring heat energy.

Izvirzītais mērķis tiek sasniegts ar tādu darba vielas un absorbenta vielas izmantošanu siltumsūknī, kas ierobežoti šķīst viens otrā visos siltumenerģijas pārneses procesa posmos un ļauj šķidro darba vielu atdalīt no absorbenta vielas, nostādinot vai separējot šķīdumus bez papildus siltumenerģijas pievadīšanas.The stated aim is achieved by the use of a working substance and an absorbent substance in a heat pump which is soluble in each other at all stages of the heat transfer process and allows the liquid working substance to be separated from the absorbent by settling or separating the solutions without additional heat supply.

Saskaņā ar piedāvāto paņēmienu, absorbenta vielai, salīdzinājumā ar darba vielu ir augstāka vārīšanās temperatūra pie iekārtas darba spiediena, zemāks tvaiku spiediens absorbera darba temperatūru intervālā un atšķirīgs blīvums. Absorbenta vielas un darba vielas tvaika spiediens ietekmē iekārtas īpatnējo jaudu un iespējamo darba temperatūru starpību - jo lielāka abu vielu tvaiku spiediena starpība, jo vairāk darba vielas izšķīst absorbenta vielā un mazāk nepieciešams cirkulēt šķīdumus. Starp vielu pāriem, kas var tikt izmantotas piedāvātā paņēmiena realizācijai, var minēt sekojošus: ūdens - transformatoru eļļa; freons 134a - ūdens; freons 134a - transformatoru eļļa; ūdens - heksadekāns; ūdens oktadekāns; ūdens - oleīnskābe.According to the proposed process, the absorbent material has a higher boiling point at the operating pressure of the apparatus, a lower vapor pressure within the operating temperature range of the absorber, and a different density relative to the working substance. The vapor pressure of the absorbent and the working substance affect the difference between the specific power of the plant and the possible operating temperatures - the greater the difference in vapor pressure between the two substances, the more the working substance dissolves in the absorbent and less circulation is required. Among the pairs of substances that can be used to implement the proposed process, the following can be mentioned: water - transformer oil; freon 134a - water; freon 134a - transformer oil; water - hexadecane; water octadecane; water - oleic acid.

Paņēmiens siltumenerģijas pārvietošanai no siltumenerģijas avota ar zemāku temperatūru 10 uz siltumenerģijas patērētāju ar augstāku temperatūru ir paskaidrots ar pievienotiem rasējumiem: Fig. 1 un Fig. 2 attēlotas siltumenerģijas pārneses blokshēmas (varianti), kurThe method for transferring heat from a lower temperature source 10 to a higher temperature consumer is explained in the accompanying drawings: FIG. 1 and FIG. 2 shows block diagrams (variants) of heat transfer where:

AV ir absorbenta viela, DV ir darba viela un AV/DV - absorbenta vielas un darba vielas emulsija.AV is the absorbent substance, DV is the working substance and AV / DV is the absorbent substance and the working substance emulsion.

Siltumenerģijas pārneses paņēmiena realizācijai darba vielas iztvaicētājam pievada zema potenciāla siltumenerģiju un iztvaicē darba vielu, kuras tvaiku pievada absorberim, kurā atrodas absorbenta viela (Fig. 1). Darba vielas tvaika absorbcija absorbenta vielā norisinās pēc Henri likuma nosacījumiem - tvaiku masa, kas noteiktā temperatūrā izšķīst dotajā šķidruma tilpumā, ir tieši proporcionāla tvaika parciālajam spiedienam. Ja darba vielas tvaika spiediens pārsniedz darba vielas un absorbenta vielas tvaiku līdzsvara spiedienu virs absorbenta vielas, ko nosaka absorbenta vielas zemais tvaika spiediens un zemā darba vielas šķīdība absorbenta vielā absorbcijas temperatūrā, tad absorbera izejā darba vielas daudzums absorbenta vielā pārsniedz šķīdības līdzsvaru (kas nav atkarīgs no spiediena absorberi, bet tikai no šķīduma temperatūras), tādēļ darba viela izdalās šķidruma pilienu veidā absorbenta vielas slānī. Atkarībā no vielu īpašībām absorbcijas (kondensācijas) siltums izdalās darba vielas tvaikam šķīstot absorbenta vielas šķīdumā vai darba vielai izdaloties no absorbenta vielas šķīduma. Abos gadījumos paaugstinās absorbenta vielas šķīduma temperatūra izejā no absorbera. Temperatūras paaugstināšanās var izraisīt darba vielas iztvaikošanu, jo tā pārsniedz darba vielas iztvaicētāja temperatūru. Kamēr absorbenta vielas šķīdumā darba viela ir nelielu pilienu veidā, to šķidrumu robežvirsmas spraiguma ietekmē darba vielas iztvaikošana nenotiek (līdz noteiktam temperatūras paaugstinājumam). Tā kā absorbenta vielai un darba vielai ir atšķirīgi blīvumi, tad darba vielas pilieni konsolidējas un cenšas veidot atsevišķu darba vielas šķidruma slāni, kurā virsmas spraiguma spēks ir mazs un vairs neierobežo darba vielas tendenci iztvaikot (sekundārā vārīšanās). Darba vielas tendenci iztvaikot paaugstinātā temperatūrā var ierobežot starpšķidrumu robežvirsmas spraiguma spēki, kas paaugstina darba vielas vārīšanās temperatūru, ja darba viela atrodas zem absorbenta vielas slāņa. Darba vielas tendenci iztvaikot paaugstinātā temperatūrā var ierobežot arī paaugstinot darba vielas un absorbenta vielas emulsijas spiedienu ar šķidruma sūkņa palīdzību līdz spiedienam, kas atbilst darba vielas iztvaikošanas spiedienam pie absorbera temperatūras. Darba vielas tendenci iztvaikot var ierobežot, pazeminot šķidruma temperatūru līdz darba vielas vārīšanās temperatūrai, ja šķidrums no absorbera kā emulsija tiek separēts (piemēram, ar centrifūgas palīdzību), un vārīšanās notiek jau atdalītajā darba vielas slānī.In order to realize a heat transfer technique, the working substance evaporator feeds low-potential thermal energy and evaporates the working substance, which vapor is fed to the absorber containing the absorbent material (Fig. 1). The vapor absorption of the working substance in the absorbent material is governed by Henri's Law - the mass of vapor that dissolves at a given temperature in a given volume of liquid is directly proportional to the partial pressure of the vapor. If the vapor pressure of the active substance is greater than the equilibrium vapor pressure of the active substance and the absorbent above the absorbent, determined by the low vapor pressure of the absorbent and the low solubility of the active substance in the absorbent, the amount of active substance in the absorbent pressure absorbers, but only from the temperature of the solution), so that the working substance is released in the form of liquid droplets in the absorbent layer. Depending on the properties of the substances, the heat of absorption (condensation) is released when the vapor of the working substance dissolves in the solution of the absorbent substance or when the working substance is released from the solution of the absorbent substance. In both cases, the temperature of the absorbent solution at the outlet of the absorber increases. An increase in temperature can cause evaporation of the working substance because it exceeds the temperature of the working substance evaporator. As long as the working substance is in the form of small drops in the solution of the absorbent substance, there is no evaporation of the working substance (up to a certain temperature increase) due to the tension of the liquid interface. Because the absorbent material and the working material have different densities, the working material drops consolidate and tend to form a separate working fluid layer with a low surface tension force and no longer limiting the working material's tendency to evaporate (secondary boiling). The tendency of the active substance to evaporate at elevated temperature may be limited by the interfacial interface surface tension forces that increase the boiling point of the working substance when the working substance is below the absorbent layer. The tendency of the active substance to evaporate at elevated temperature may also be limited by raising the pressure of the working substance and absorbent substance by means of a liquid pump to a pressure corresponding to the evaporating pressure of the working substance at the absorber temperature. The tendency of the active substance to evaporate can be limited by lowering the liquid temperature to the boiling point of the working substance if the liquid is removed from the absorber as an emulsion (e.g., by centrifugation) and boiling occurs in the already separated working material layer.

Tādējādi, darba vielas nodalīšana no absorbenta vielas (desorbcija) norisinās patvaļīgi darba viela noslāņojas no absorbenta vielas nostādinātajā - atdalītājā līdz koncentrācijai, kas atbilst darba vielas šķīdībai temperatūrā, līdz kurai atdzesē absorbenta vielas šķīdumu, novadot kondensācijas/absorbcijas siltumu. Darba vielas nodalīšana no absorbenta vielas saskaņā ar piedāvāto paņēmienu var tikt veikta arī aktīva tipa separatorā, piemēram centrifūgā.Thus, the separation of the active substance from the absorbent material (desorption) occurs arbitrarily, and the working substance is stratified from the absorbent material in a settable separator to a concentration corresponding to the solubility of the active substance at a temperature to cool the absorbent solution by releasing condensation / absorption heat. Separation of the working agent from the absorbent material according to the proposed process may also be performed in an active-type separator such as a centrifuge.

Ar darba vielu piesātināto absorbenta vielu no nostādinātajā pievada absorbera ieejai.An absorbent substance saturated with a working substance is introduced from the settled inlet into the absorber inlet.

Darba vielu no nostādinātajā atkal pievada darba vielas iztvaicētājam un cikls atkārtojas. Ja darba vielas iztvaikošanas ierobežošanai izmanto spiediena paaugstināšanu, tad katru no šķīdumu līnijām aprīko ar spiediena reduktoru. Izvēloties vielu pāri: ūdens - transformatoru eļļa, siltumenerģijas pārnese var tikt veikta izmantojot Fig. 1 attēloto blokshēmu, savukārt pie vielu pāra: freons 134a - ūdens, siltumenerģijas pārnese var tikt veikta izmantojot Fig.The working substance from the settler is returned to the working substance evaporator and the cycle is repeated. If a pressure boost is used to control evaporation of the working substance, each of the solution lines shall be fitted with a pressure reducer. When selecting a substance pair: water - transformer oil, heat transfer can be performed using Figs. 1, while for the substance pair: freon 134a - water, heat transfer can be accomplished using FIG.

2 attēloto blokshēmu.2 is a flow chart.

Tādējādi, atšķirībā no prototipa, piedāvātajā paņēmienā nav nepieciešams papildus siltuma ģenerators un siltuma novadīšana darba vielas un absorbenta vielas nodalīšanai, kas ievērojami paaugstina siltumsūkņa un siltumenerģijas pārneses paņēmiena lietderības koeficientu.Thus, unlike the prototype, the proposed process does not require an additional heat generator and heat transfer to separate the working material from the absorbent material, which significantly increases the efficiency of the heat pump and the heat transfer technique.

Izgudrojuma realizācijas piemersExemplary embodiment of the invention

Siltumenerģijas pārneses paņēmiena realizācijai izvēlējas vielu pāri: darba viela - ūdens, absorbenta viela - transformatoru eļļa. Iekārta, kas darbojas ar piedāvāto paņēmienu, siltumu no siltuma avota ar temperatūru 70°C patērē darba vielas - ūdens - iztvaicēšanai tvaika ģeneratorā; spiediens 31 kPa. Ūdens tvaiku no tvaika ģeneratora ievada absorberā, kurā tvaiks absorbējas absorbcijas vielā - transformatoru eļļā, jo tvaika spiediens tvaika ģeneratorā (31 kPa) ir vairākkārt lielāks par ūdens tvaika / eļļas tvaiku spiedienu - 5 kPa, kas ir līdzsvarā ar eļļu pie absorbera temperatūras - 100° C (eksperimentālās iekārtas dati;For the realization of the heat transfer technique, a couple of substances were chosen: working substance - water, absorbent substance - transformer oil. The plant, which operates in the proposed method, consumes heat from a heat source at a temperature of 70 ° C for evaporation of the working substance - water - in a steam generator; pressure 31 kPa. Water vapor from the steam generator is introduced into the absorber where the vapor is absorbed in the absorbent material - transformer oil, since the vapor pressure in the vapor generator (31 kPa) is several times higher than the water vapor / oil vapor pressure of 5 kPa, which equilibrates with oil at the absorber temperature ° C (experimental data;

ar dziļāku vakuumu var būt zemāks spiediens). Ūdens šķīdība pie 100° C transformatoru eļļā - 772 ppm svara vienībās; pie 70°C - 331 ppm; šķīdības palielinājums, ievērojot Henri likumu: [331 ppm * (31 kPa / 5 kPa)] - 772 ppm = 1280 ppm. Absorbenta vielu ar šķidruma sūkņa palīdzību novada atpakaļ absorberā caur ūdens atdalītāju un siltuma noņēmēju ar temperatūru 100° C un ūdens saturu 772 ppm. Ūdens atdalās no eļļas nostādinātajā un to aizvada uz tvaika ģeneratoru. Tātad, ņemot vērā, ka darba vielas nodalīšana no absorbenta vielas norisinās patvaļīgi, paņēmiena realizācijai nav nepieciešama papildus siltumenerģija, lai vielas atdalītu vienu no otras. Līdz ar to piedāvātā siltumenerģijas pārneses paņēmiena lietderības koeficients palielinās 2,5 - 3 reizes.with a deeper vacuum may be lower pressure). Water solubility at 100 ° C in transformer oil - 772 ppm by weight; at 70 ° C - 331 ppm; solubility increase following Henri's Law: [331 ppm * (31 kPa / 5 kPa)] - 772 ppm = 1280 ppm. The absorbent material is returned to the absorber via a liquid pump via a water separator and heat separator at 100 ° C and a water content of 772 ppm. The water separates from the oil in the settler and is led to a steam generator. Thus, given that the separation of the working substance from the absorbent material is arbitrary, the process does not require additional thermal energy to separate the substances from one another. As a result, the efficiency of the proposed heat transfer method increases 2.5 - 3 times.

Claims (7)

1. Paņēmiens siltumenerģijas pārvietošanai no siltumenerģijas avota ar zemāku temperatūru uz siltumenerģijas patērētāju ar augstāku temperatūru, kas ietver darba1. A method of transferring heat from a heat source at a lower temperature to a higher temperature consumer of heat, which includes 5 vielas tvaika ražošanu patērējot zema potenciāla siltuma avota siltumenerģiju, tvaika plūsmas novadīšanu uz tvaika / šķidruma absorberi, izdalītā paaugstinātas temperatūras siltuma novadīšanu siltuma patērētājam, darba vielas un absorbenta vielas plūsmu spiediena paaugstināšanu cirkulācijas nodrošināšanai, darba vielas un absorbenta vielas emulsijas pievadīšanu emulsijas separatoram, separatorā atdalītās5 production of substance vapor by consuming low potential heat source heat energy, transfer of steam flow to the vapor / liquid absorber, transferring the elevated temperature heat to the heat consumer, increasing the pressure of the working substance and absorbent material flow to provide circulation of the working substance and absorbent substance to emulsion separator separated 10 šķidrās darba vielas atkārtotu pievadīšanu iztvaicētājam un absorbenta vielas pievadīšanu absorberim, kas raksturīgs ar to, ka darba viela un absorbenta viela ir ierobežoti šķīstošas viena otrā visās absorbcijas siltumsūkņa darba temperatūrās.Re-introducing the liquid working substance into the evaporator and introducing the absorbent material into the absorber, characterized in that the working substance and the absorbent material are sparingly soluble in each other at all operating temperatures of the absorption heat pump. 2. Paņēmiens saskaņā ar 1. punktu, kas raksturīgs ar to, ka darba viela ir šķīdums.Process according to claim 1, characterized in that the working substance is a solution. 3. Paņēmiens saskaņā ar 1. vai 2. punktu, kas raksturīgs ar to, ka darba vielas atdalīšanu no absorbenta vielas veic aktīva tipa separatorā, piemēram, centrifūgā.The process according to claim 1 or 2, characterized in that the separation of the working substance from the absorbent material is carried out in an active-type separator such as a centrifuge. 4. Paņēmiens saskaņā ar jebkuru no 1. līdz 3. punktam, kas raksturīgs ar to, kaA process according to any one of claims 1 to 3, characterized in that 20 veicot darba vielas un absorbenta vielas separāciju, darba vielu iztvaicē pazeminot darba vielas temperatūru līdz vārīšanās temperatūrai, pie kam darba vielas vārīšanās notiek separatorā darba vielas slānī.By separating the working material from the absorbent material, the working material is evaporated down to a boiling point whereby the working material boils in a separator in the working material layer. 5. Paņēmiens saskaņā ar 1. vai 2. punktu, kas raksturīgs ar to, ka darba vielas5. A process according to claim 1 or 2, characterized in that the working substances 25 atdalīšanu no absorbenta vielas veic nostādinātājā, ļaujot vielām patvaļīgi noslāņoties.Separation of the absorbent material from the absorbent material is carried out in a settler, allowing the materials to separate arbitrarily. 6. Paņēmiens saskaņā ar jebkuru no 1. līdz 5. punktam, kas raksturīgs ar to, ka ar nolūku novērst darba vielas vārīšanos separācijas laikā, darba vielas un absorbentaA process according to any one of claims 1 to 5, characterized in that, in order to prevent boiling of the working substance during the separation, 30 vielas emulsijas spiedienu paaugstina ar šķidruma sūkņa palīdzību līdz spiedienam, kas atbilst darba vielas iztvaikošanas spiedienam pie absorbera temperatūras.The pressure of the emulsion of 30 substances is raised by means of a liquid pump to a pressure corresponding to the evaporation pressure of the working substance at the temperature of the absorber. 7. Paņēmiens saskaņā ar jebkuru no 1. līdz 6. punktam, kas raksturīgs ar to, ka pēc absorbcijas veikšanas, darba vielu, absorbenta vielu un/vai absorbenta vielas un darba vielas emulsiju novada caur siltummaini.A process according to any one of claims 1 to 6, characterized in that, after absorption, the emulsion of the active substance, the absorbent substance and / or the absorbent substance and the working substance is passed through a heat exchanger.
LVP-06-129A 2006-11-21 2006-11-21 Method of transferring the heat energy LV13714B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
LVP-06-129A LV13714B (en) 2006-11-21 2006-11-21 Method of transferring the heat energy
EP07834471A EP2092251A1 (en) 2006-11-21 2007-09-25 Method of thermal energy transfer
PCT/LV2007/000003 WO2008063039A1 (en) 2006-11-21 2007-09-25 Method of thermal energy transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-06-129A LV13714B (en) 2006-11-21 2006-11-21 Method of transferring the heat energy

Publications (1)

Publication Number Publication Date
LV13714B true LV13714B (en) 2008-06-20

Family

ID=39153926

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-06-129A LV13714B (en) 2006-11-21 2006-11-21 Method of transferring the heat energy

Country Status (3)

Country Link
EP (1) EP2092251A1 (en)
LV (1) LV13714B (en)
WO (1) WO2008063039A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026830A1 (en) * 2013-08-19 2015-02-26 University Of Maryland Microemulsion-enabled water capture and recovery
US20160209090A1 (en) * 2013-08-19 2016-07-21 University Of Maryland Microemulsion-enabled heat transfer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2354884A (en) * 1941-04-25 1944-08-01 Servel Inc Refrigeration
US2638760A (en) * 1949-02-07 1953-05-19 Lindley E Mills Method of refrigeration using conjugate solutions
US2689466A (en) * 1951-06-30 1954-09-21 Servel Inc Absorption refrigeration unit with a centrifugal separator
US2963875A (en) * 1953-05-18 1960-12-13 Lindley E Mills Heat pump
US3353366A (en) * 1966-01-27 1967-11-21 Allied Chem Absorption refrigeration systems
US4138855A (en) * 1976-06-25 1979-02-13 Exxon Research & Engineering Co. Transferring heat from relatively cold to relatively hot locations
US4283918A (en) * 1979-07-20 1981-08-18 Intertechnology/Solar Corporation Liquid phase separation in absorption refrigeration
JPH04222652A (en) * 1990-12-25 1992-08-12 Hitachi Zosen Corp Separation apparatus for liquid mixture and air-conditioning apparatus using the same
LV13175B (en) * 2002-09-05 2004-08-20 Uldis Silins Method and device for heat energy conversion into mechanical and/or electrical energy
DE102004024967A1 (en) * 2004-05-21 2005-12-08 Basf Ag New absorption media for absorption heat pumps, absorption chillers and heat transformers

Also Published As

Publication number Publication date
EP2092251A1 (en) 2009-08-26
WO2008063039A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
US4966007A (en) Absorption refrigeration method and apparatus
EP3156751B1 (en) Heat dissipation systems with hygroscopic working fluid
JPS61129019A (en) Absorbing type temperature circuit
CN1188643C (en) Preparation of heat sink materials
US5018368A (en) Multi-staged desiccant refrigeration device
JPH09512332A (en) Absorption cooling device and method
JP2006343042A (en) Operating method for single/double effect absorption refrigerating machine
EP0183316B1 (en) Absorption-resorption heat pump
JP6165150B2 (en) Dehumidifier and method of using the same
JP2023553415A (en) Systems and methods for efficiently capturing carbon dioxide
EP0198539B1 (en) Method of operating an absorption heat pump or refrigerator, and an absorption heat pump or refrigerator
CZ2001788A3 (en) Absorption refrigeration machine using the Platen-Munters system
US3990264A (en) Refrigeration heat recovery system
US4018583A (en) Refrigeration heat recovery system
LV13714B (en) Method of transferring the heat energy
CN109862756A (en) The active heat control system of low latitude emergency and method based on porous material evaporation-cooled device
CA1279483C (en) Air conditioning process and apparatus
USRE30252E (en) High temperature heat recovery in refrigeration
US3922873A (en) High temperature heat recovery in refrigeration
CA1073186A (en) Apparatus and process for deuterium exchange
WO1989000271A1 (en) Self-contained cooling apparatus
Tucker et al. Vacuum dehydration using liquid absorbents
CN110339584A (en) Negative pressure Low Temperature Thermal pump-type enrichment facility
Jeong et al. Pumping characteristics of a thermosyphon applied for absorption refrigerators with working pair of LiBr/water
US2497819A (en) Refrigerating system