JPH0536418B2 - - Google Patents

Info

Publication number
JPH0536418B2
JPH0536418B2 JP1160696A JP16069689A JPH0536418B2 JP H0536418 B2 JPH0536418 B2 JP H0536418B2 JP 1160696 A JP1160696 A JP 1160696A JP 16069689 A JP16069689 A JP 16069689A JP H0536418 B2 JPH0536418 B2 JP H0536418B2
Authority
JP
Japan
Prior art keywords
solvent
alcohol
water
column
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1160696A
Other languages
Japanese (ja)
Other versions
JPH0327336A (en
Inventor
Yoshikazu Kano
Hirotoshi Horizoe
Tetsuya Tanimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUSHOSANGYOSHO KISO SANGYOKYOKUCHO
Original Assignee
TSUSHOSANGYOSHO KISO SANGYOKYOKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUSHOSANGYOSHO KISO SANGYOKYOKUCHO filed Critical TSUSHOSANGYOSHO KISO SANGYOKYOKUCHO
Priority to JP1160696A priority Critical patent/JPH0327336A/en
Publication of JPH0327336A publication Critical patent/JPH0327336A/en
Publication of JPH0536418B2 publication Critical patent/JPH0536418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はアルコールの精製濃縮方法に関し、合
成アルコール、使用済アルコール水溶液及び発酵
アルコール等から高純度のアルコールを省エネル
ギー的に濃縮精製するのに適した方法に関する。 〔従来の技術〕 甘しよ、さつまいも、とうもろこし等の炭水化
物を原料とする発酵アルコールは、飲料用及び工
業用として重要な出発原料であるが、発酵法で得
られるアルコール水溶液のアルコール濃度は10〜
20wt%と低いため、約95〜100wt%まで濃縮する
必要がある。 従来、この濃縮法として蒸留法が用いられてき
たが、大部分を占める水も80〜100℃まで昇温せ
ねばならず、経済的に不利であり、これに替わる
省エネルギー型の濃縮法の開発が望まれている。 一方、省エネルギー型の濃縮法として超臨界状
態又は擬臨界状態の炭酸ガスを用いてアルコール
を水より抽出・分離して濃縮する方法が提案され
ている。(特開昭56−56201及び同59−141528号公
報) しかしながら、炭酸ガスを溶剤として用いた場
合アルコールの選択的抽出には限界があり、最大
濃縮度は約91wt%が限界であり、これ以上に濃
縮することは不可能であることが最近報告されて
いる。又、炭酸ガス中へのアルコールの溶解度は
十分に大きくないことより、大量の炭酸ガス(10
%アルコール水溶液1重量部に対して15重量部以
上)を必要とするという問題点があり、その改善
が望まれている。 このため、現在、アルコール濃縮度を向上させ
かつアルコール溶解度を大きくできる方法が望ま
れている。 〔発明が解決しようとする課題〕 本発明は、アルコール濃縮度を91wt%以上に
向上でき、かつアルコール溶解度が大きくでき少
量の溶剤量でアルコールを濃縮回収できる経済的
なアルコール濃縮方法を提供しようとするもので
ある。 〔課題を解決するための手段〕 すなわち、本発明は向流抽出塔の上部よりアル
コール及び水を主成分とする原料を下部よりプロ
パン、プロピレン、n−ブタン及びi−ブタンよ
りなる群のうちの一つの溶剤を供給し、向流抽出
塔内を該溶剤の超臨界状態又は擬臨界状態に維持
するようにして両者を向流で接触させ、向流抽出
塔上部より濃縮アルコールを含んだ溶剤相を抜き
出す一次脱水工程、該溶剤相を冷却し、水分に富
んだ重液相と濃縮アルコールを含んだ軽液相に重
力沈降分離し、該重液相は前記向流抽出塔上部へ
還流する二次脱水工程、該軽液相の圧力を該溶剤
の上部臨界圧力以下に減圧後、溶剤抽出蒸留塔に
導入し、塔底より実質的に水分を含まないアルコ
ールと溶剤の塔底混合液体を、塔頂より実質的に
アルコールを含まない水分と溶剤の混合蒸気を
各々抜き出す三次脱水工程、及び該塔底混合液体
を蒸留操作により溶剤とアルコールに分離する脱
溶剤工程からなることを特徴とするアルコールの
脱水方法である。 本発明は全てのアルコール水溶液の濃縮精製に
適用しうるものであるが、その一例として発酵ア
ルコールについて云えばアルコール濃度は約
10wt%前後で残りは水である。又、合成アルコ
ールではアルコール濃度は約20wt%前後で残り
は水である。 一方、本発明で云う溶剤とは下記のものを云
う。 溶剤名 化学式 臨界温度 臨界圧力 TC Pc (℃) (atm) プロピレン C3ll6 92 45.6 プロパン C3ll8 96.8 41.9 n−ブタン n−C4ll10 152.2 37.5 i−ブタン i−C4ll10 135.1 36.0 又、本発明で云う溶剤の超臨界状態とは溶剤の
臨界温度Tc及び臨界圧力Pc以上の温度及び圧力
に維持した状態であり、擬臨界状態とはその臨界
温度Tc以下であるが、80℃以上の温度であり、
圧力はその温度における溶剤の飽和蒸気気圧以上
に保持した状態をいう。 以下、本発明の一実施例を第1図に従つて詳述
する。 第1図において、1は向流抽出塔(充填塔、棚
段塔又は多段抽出塔などが好ましい。)、2は原料
であるアルコールを含む水溶液の原料供給ライ
ン、3は抽出残液(水が主成分)の取出しライ
ン、4は溶剤相(溶剤と1次濃縮アルコール混合
相)取出しライン、5は冷却器、6は重力沈降
槽、7は重液相(水が主成分で少量のアルコー
ル、溶剤を含む)取出しライン、8は軽液相(溶
剤と2次濃縮アルコール混合物)取出しライン、
9は重力沈降槽6内重液の液位調整弁、10は重
力沈降槽6の圧力調整弁、11は重液還流ライ
ン、12は溶剤抽出塔原料供給ライン、13は溶
剤抽出塔、14は塔底混合液体(無水アルコール
と溶剤からなる)取出しライン、15は塔底液位
調整弁、16は塔頂蒸気(溶剤と水からなる)取
出しライン、17は圧縮機、18はボイラー(熱
交換器)、19は水分離槽、20は水抜出しライ
ン、21は溶剤抜出しライン、22,23は溶剤
還流ライン、24は溶剤加熱器、25は溶剤供給
ラインである。 原料のアルコール水溶液1重量部を原料供給ラ
イン2より、又溶剤3〜6重量部を溶剤供給ライ
ン25より向流抽出塔1に供給し、該溶剤を超臨
界状態又は擬臨界状態でアルコール水溶液と向流
接触させることにより、密度の低い溶剤相は上昇
しながらアルコール水溶液よりアルコールを選択
的に抽出し、溶剤相取出しライン4より軽液とし
て取り出される。 この際、温度の増加とともに該溶剤へのアルコ
ールの溶解度は増加するが、逆にアルコールの選
択性は減少するので、本発明方法てはこの点を考
慮し、使用する溶剤の種類に応じて該向流抽出塔
1の好ましい操作条件の範囲を設定すべきであ
る。 該向流抽出塔1では、アルコールはほぼ完全に
抽出され、抽出アルコール濃度は50〜90wt%程
度に1次濃縮すればよく、そのためには、温度は
80℃以上とし、圧力は使用溶剤の飽和蒸気圧以上
又は臨界圧力以上にすべきである。 次に、溶剤相取出しライン4から取出された溶
剤相を冷却器5で冷却することにより、重力分離
槽6で重液相取出しライン7からの重液相と軽液
相取出しライン8からの軽液相に相分離し、水が
主成分で僅かなアルコールと溶剤を含有する重液
相と、溶剤が主成分で2次濃縮されたアルコール
を含有している軽液相に相分離する。冷却温度は
低ければ低い程、軽液相中のアルコール濃度は高
くなるが、アルコール濃度の最大値は約95wt%
でありこれ以上は濃縮できなかつた。 該重力沈降槽6の好ましい圧力は、前記向流抽
出塔1と同一で、好ましい温度は1次脱水工程よ
り低くしなければならぬが、その温度は溶剤の種
類により異なり、軽液相中のアルコール濃度が約
95wt%になるように設定すべきであるが、最終
的に全体の熱エネルギーバランスから最適化する
のが好ましい。また、前記重液相は少量のアルコ
ールと溶剤を回収するために液位調整弁9、重液
還流ライン11を介し該向流抽出塔1の上部付近
へ還流するのが好ましい。 次に、前記軽液相は圧力調整弁10で溶剤の臨
界圧力以下に減圧され、溶剤抽出蒸留塔13に供
給される。溶剤抽出蒸留塔13上部の溶剤還流ラ
イン22より後記の工程から送られてくる溶剤を
アルコールの抽出材として溶剤抽出蒸留塔13に
供給し抽出蒸留を行うことにより、塔底混合液体
取出しライン14より水分を実質的に含まない無
水アルコールと溶剤の混合液体を塔頂蒸気取出し
ライン16よりアルコールを実質的に含まない水
分と溶剤の混合ガスを取出す。 該塔底混合液体取出しライン14からの混合液
体は、沸点が大幅に異なる2成分系(アルコール
と溶剤)であり通常の蒸留により容易に無水アル
コールと溶剤に分離でき、実質的に水分及び溶剤
を含まない無水アルコールが得られる。 溶剤抽出塔13においては、溶剤を、溶剤の蒸
気と液が共存する状態に保持し、溶剤の蒸気と液
が共存する条件下でアルコール水溶液と接触させ
ると、アルコールは親和力の差異により選択的に
溶剤に抽出され、更にアルコールに対して溶剤が
多量に液相中に存在する条件下では、水分は液相
に殆んど溶解せず、溶剤蒸気相中の水分濃度が水
の飽和濃度以下になるような条件を設定すると、
水分を溶剤蒸気相へ選択的に移行させることがで
きる。かくして溶剤を媒体にアルコールと水の分
離ができ、無水アルコールが得られる。 抽出蒸留塔13内で溶剤の蒸気は液が共存する
条件とするためには、温度は溶剤の臨界温度Tc
以下で、圧力はこの温度における液相組成に対応
した平衡蒸気圧(最大値は溶剤の臨界圧力Pc)
にすべきである。 なお、溶剤還流ライン22からの溶剤の量は溶
剤抽出塔原料供給ライン12からの原料中のアル
コール濃度、製品アルコール濃度により変えるべ
きであり、溶剤還流ライン22からの溶剤の量は
抽出蒸留塔13の段数により一般の蒸留と同じよ
うに化学工学的手法により経済的な量に決定され
るべきである。 抽出蒸留塔13の塔頂蒸気取出しライン16か
らの塔頂蒸気(溶剤と水からなり、実質的にアル
コールを含まない)は、圧縮機17で再圧縮され
た後、その断熱圧縮熱を、該抽出蒸留塔13のリ
ボイラー18の熱源として利用後、水分離槽19
で水抜出しライン20、溶剤抜出しライン21に
より水と溶剤に分離後、溶剤還流ライン22及び
23により溶剤を循環使用する。 抽出蒸留塔13の塔頂と塔底の温度差は4〜10
℃と小さく圧縮機17の少ない圧縮比によりリボ
イラー18で熱交換可能で既存の蒸留法に較べて
大幅にエネルギーの節約ができる。 なお、溶剤還流ライン23の溶剤は冷却器5で
熱を与えられ、加熱器24で温度を調整後溶剤供
給ライン25より向流抽出塔1の下部から供給さ
れる。 以下、本発明の実施例をあげて本発明を詳細に
説明する。 実施例 1 第2図に示すように、アルコール10wt%、水
90wt%からなる原料を原料供給ライン2より1
Kg/hの流量で向流抽出塔(内径50mm、高さ4
m)1の上部より、又、プロパン溶剤を5Kg/h
の流量で下部の溶剤供給ライン25より供給し、
向流抽出操作を温度130℃、圧力100Kg/cm2Gで行
つた。 次に、向流抽出塔1の塔頂の溶剤相取出しライ
ン4から取出された溶剤相は熱交換器5で60℃に
冷却され、重力沈降槽6で軽液と重液に分離し、
重液は向流抽出塔上部へ重液還流ライン11より
全量還流させた。軽液は圧力調整弁10により圧
力100Kg/cm2Gから圧力19Kg/cm2Gに減圧後、抽
出蒸留塔13の中部へ導入され、その塔頂の溶剤
ライン22よりプロパン溶剤を2.5Kg/hで供給
し、プロパンによる抽出蒸留を行つた。 この結果、第2図に示すような物質収支とな
り、原料10wt%アルコールは、1次濃縮で80wt
%、2次濃縮で95wt%、最終の3次濃縮で
99.9wt%にまで濃縮され、無水アルコールとプロ
パン混合物が塔底混合液体取出しライン14より
得られた。 無水アルコールとプロパンは共沸点がなく、又
沸点差が大きく通常の蒸留操作により完全に分離
できた。 一方、アルコール損失は全工程を通じてみられ
なかつた。 又、抽出蒸留塔13の塔頂及び塔底温度は各々
57℃及び61℃と小さく、塔頂ガスの再圧縮熱を利
用したヒートポンプシステムにとつて非常に有利
であり、圧縮機のわずかな圧縮比によりリボイラ
ーの熱源を全量補えることが、プロセスシミユレ
ーシヨンにより確認され、全工程の所要エネルギ
ーは約800kcal/Kg・エタノールとなり、既存蒸
留法の約1/3〜1/5の省エネルギーが達せられるこ
とがわかつた。 実施例 2 実施例1において、溶剤としてプロパンの他に
プロピレン、n−ブタン及びi−ブタンを用い、
向流抽出塔、重力沈降槽、抽出蒸留塔の温度、圧
力を変えた試験を行ない、好ましい温度及び圧力
の範囲を把握した。
[Industrial Field of Application] The present invention relates to a method for purifying and concentrating alcohol, and more particularly, to a method suitable for concentrating and purifying high-purity alcohol from synthetic alcohol, used alcohol aqueous solution, fermented alcohol, etc. in an energy-saving manner. [Prior art] Fermented alcohol made from carbohydrates such as amashiyo, sweet potato, and corn is an important starting material for beverages and industrial use, but the alcohol concentration of the alcohol aqueous solution obtained by the fermentation method is 10 to 10.
Since it is low at 20wt%, it is necessary to concentrate it to about 95-100wt%. Conventionally, distillation has been used as a concentration method, but water, which makes up most of the water, must be heated to 80 to 100°C, which is economically disadvantageous.Therefore, an alternative energy-saving concentration method has been developed. is desired. On the other hand, as an energy-saving concentration method, a method has been proposed in which alcohol is extracted and separated from water using carbon dioxide gas in a supercritical or quasi-critical state and then concentrated. (JP-A-56-56201 and JP-A No. 59-141528) However, when carbon dioxide gas is used as a solvent, there is a limit to the selective extraction of alcohol, and the maximum concentration is limited to approximately 91 wt%. It has recently been reported that it is impossible to concentrate In addition, since the solubility of alcohol in carbon dioxide gas is not large enough, a large amount of carbon dioxide gas (10
There is a problem that 15 parts by weight or more is required per 1 part by weight of aqueous alcohol solution, and an improvement is desired. For this reason, there is currently a need for a method that can improve alcohol concentration and increase alcohol solubility. [Problems to be Solved by the Invention] The present invention aims to provide an economical method for concentrating alcohol that can increase alcohol concentration to 91 wt% or more, increase alcohol solubility, and concentrate and recover alcohol with a small amount of solvent. It is something to do. [Means for Solving the Problems] That is, the present invention supplies a raw material mainly consisting of alcohol and water from the upper part of a countercurrent extraction column to a material selected from the group consisting of propane, propylene, n-butane, and i-butane from the lower part. One solvent is supplied, and the two are brought into contact with each other in countercurrent so as to maintain the inside of the countercurrent extraction column in a supercritical or quasi-critical state of the solvent, and the solvent phase containing concentrated alcohol is added from the top of the countercurrent extraction column. In the primary dehydration step, the solvent phase is cooled and separated by gravity sedimentation into a water-rich heavy liquid phase and a light liquid phase containing concentrated alcohol, and the heavy liquid phase is refluxed to the upper part of the countercurrent extraction column. In the next dehydration step, after reducing the pressure of the light liquid phase to below the upper critical pressure of the solvent, it is introduced into a solvent extraction distillation column, and the bottom mixed liquid of alcohol and solvent that does not contain substantially water is produced from the bottom of the column. An alcohol characterized by comprising a tertiary dehydration step in which a mixed vapor of water and solvent that does not substantially contain alcohol is extracted from the top of the column, and a desolvation step in which the mixed liquid at the bottom of the column is separated into solvent and alcohol by a distillation operation. This is a dehydration method. The present invention can be applied to the concentration and purification of all alcohol aqueous solutions, but as an example, in the case of fermented alcohol, the alcohol concentration is approximately
It is around 10wt% and the rest is water. Furthermore, in synthetic alcohol, the alcohol concentration is around 20wt%, with the remainder being water. On the other hand, the solvent referred to in the present invention refers to the following. Solvent name Chemical formula Critical temperature Critical pressure TC Pc (℃) (atm) Propylene C 3 ll 6 92 45.6 Propane C 3 ll 8 96.8 41.9 n-Butane n-C 4 ll 10 152.2 37.5 i-Butane i-C 4 ll 10 135.1 36.0 In addition, the supercritical state of a solvent as referred to in the present invention is a state in which the solvent is maintained at a temperature and pressure above its critical temperature Tc and critical pressure Pc, and the quasi-critical state is a state below its critical temperature Tc, but 80 The temperature is above ℃,
Pressure refers to the state maintained above the saturated vapor pressure of the solvent at that temperature. An embodiment of the present invention will be described in detail below with reference to FIG. In Fig. 1, 1 is a countercurrent extraction column (preferably a packed column, tray column, or multistage extraction column), 2 is a raw material supply line for an aqueous solution containing alcohol as a raw material, and 3 is an extraction residual liquid (water is 4 is a solvent phase (solvent and primary concentrated alcohol mixed phase) extraction line, 5 is a cooler, 6 is a gravity settling tank, 7 is a heavy liquid phase (main component is water with a small amount of alcohol, 8 is a light liquid phase (solvent and secondary concentrated alcohol mixture) takeoff line;
9 is a liquid level adjustment valve for the heavy liquid in the gravity settling tank 6, 10 is a pressure adjustment valve for the gravity settling tank 6, 11 is a heavy liquid reflux line, 12 is a solvent extraction column raw material supply line, 13 is a solvent extraction column, and 14 is a 15 is a bottom liquid level adjustment valve, 16 is a top steam (composed of solvent and water) takeout line, 17 is a compressor, 18 is a boiler (heat exchange 19 is a water separation tank, 20 is a water extraction line, 21 is a solvent extraction line, 22 and 23 are solvent reflux lines, 24 is a solvent heater, and 25 is a solvent supply line. 1 part by weight of the raw alcohol aqueous solution is supplied from the raw material supply line 2 and 3 to 6 parts by weight of the solvent is supplied from the solvent supply line 25 to the countercurrent extraction column 1, and the solvent is converted into an alcohol aqueous solution in a supercritical or pseudocritical state. Through countercurrent contact, the low-density solvent phase rises and selectively extracts alcohol from the alcohol aqueous solution, and is taken out as a light liquid through the solvent phase removal line 4. At this time, as the temperature increases, the solubility of alcohol in the solvent increases, but conversely the selectivity of alcohol decreases.The method of the present invention takes this point into account and adjusts the solubility of alcohol according to the type of solvent used. A range of preferred operating conditions for the countercurrent extraction column 1 should be established. In the countercurrent extraction column 1, alcohol is almost completely extracted, and the extracted alcohol concentration only needs to be primarily concentrated to about 50 to 90 wt%.
The temperature should be 80°C or higher, and the pressure should be higher than the saturated vapor pressure or critical pressure of the solvent used. Next, by cooling the solvent phase taken out from the solvent phase take-out line 4 in the cooler 5, the heavy liquid phase from the heavy liquid phase take-out line 7 and the light liquid phase from the light liquid phase take-out line 8 are separated in the gravity separation tank 6. The liquid phase separates into a heavy liquid phase containing water as the main component and a small amount of alcohol and solvent, and a light liquid phase containing solvent as the main component and secondary concentrated alcohol. The lower the cooling temperature, the higher the alcohol concentration in the light liquid phase, but the maximum alcohol concentration is approximately 95wt%.
Therefore, it was not possible to concentrate it any further. The preferred pressure of the gravity settling tank 6 is the same as that of the countercurrent extraction column 1, and the preferred temperature must be lower than that of the primary dehydration step, but the temperature varies depending on the type of solvent, and the temperature in the light liquid phase Alcohol concentration is approx.
It should be set to 95wt%, but it is preferable to optimize it based on the overall thermal energy balance. Further, the heavy liquid phase is preferably refluxed to the vicinity of the upper part of the countercurrent extraction column 1 via the liquid level adjustment valve 9 and the heavy liquid reflux line 11 in order to recover a small amount of alcohol and solvent. Next, the light liquid phase is reduced in pressure to below the critical pressure of the solvent by a pressure regulating valve 10 and is supplied to a solvent extractive distillation column 13 . The solvent sent from the process described below is supplied from the solvent reflux line 22 at the top of the solvent extraction distillation column 13 to the solvent extraction distillation column 13 as an extraction material for alcohol, and extractive distillation is performed. A liquid mixture of anhydrous alcohol and a solvent that does not substantially contain water is taken out from the top vapor extraction line 16 as a mixed gas of water and a solvent that does not substantially contain alcohol. The mixed liquid from the bottom mixed liquid take-out line 14 is a two-component system (alcohol and solvent) with significantly different boiling points, and can be easily separated into anhydrous alcohol and solvent by ordinary distillation, substantially eliminating water and solvent. Anhydrous alcohol free is obtained. In the solvent extraction tower 13, the solvent is maintained in a state where the solvent vapor and liquid coexist, and when it is brought into contact with an alcohol aqueous solution under the conditions where the solvent vapor and liquid coexist, the alcohol is selectively extracted due to the difference in affinity. Under conditions where water is extracted with a solvent and a large amount of solvent is present in the liquid phase relative to the alcohol, water is hardly dissolved in the liquid phase and the water concentration in the solvent vapor phase falls below the saturation concentration of water. If you set conditions such that
Moisture can be selectively transferred to the solvent vapor phase. In this way, alcohol and water can be separated using a solvent, and anhydrous alcohol can be obtained. In order to create a condition where the solvent vapor and liquid coexist in the extractive distillation column 13, the temperature must be set to the critical temperature Tc of the solvent.
In the following, pressure is the equilibrium vapor pressure corresponding to the liquid phase composition at this temperature (the maximum value is the critical pressure of the solvent Pc)
should be. Note that the amount of solvent from the solvent reflux line 22 should be changed depending on the alcohol concentration in the raw material from the solvent extraction column raw material supply line 12 and the product alcohol concentration. The number of stages should be determined to be an economical amount using chemical engineering techniques in the same way as in general distillation. The overhead vapor (consisting of solvent and water and substantially free of alcohol) from the overhead vapor take-off line 16 of the extractive distillation column 13 is recompressed in the compressor 17, and then its heat of adiabatic compression is transferred to the After being used as a heat source for the reboiler 18 of the extractive distillation column 13, the water separation tank 19
After separation into water and solvent through a water extraction line 20 and a solvent extraction line 21, the solvent is circulated and used through solvent reflux lines 22 and 23. The temperature difference between the top and bottom of the extractive distillation column 13 is 4 to 10
℃ and the small compression ratio of the compressor 17 allows heat exchange in the reboiler 18, resulting in significant energy savings compared to existing distillation methods. The solvent in the solvent reflux line 23 is given heat by the cooler 5, and after its temperature is adjusted by the heater 24, it is supplied from the lower part of the countercurrent extraction column 1 through the solvent supply line 25. Hereinafter, the present invention will be explained in detail by giving examples of the present invention. Example 1 As shown in Figure 2, alcohol 10wt%, water
Raw material consisting of 90wt% is transferred from raw material supply line 2 to 1
Countercurrent extraction tower (inner diameter 50 mm, height 4
m) 5 kg/h of propane solvent from the top of 1.
is supplied from the lower solvent supply line 25 at a flow rate of
A countercurrent extraction operation was carried out at a temperature of 130° C. and a pressure of 100 Kg/cm 2 G. Next, the solvent phase taken out from the solvent phase take-off line 4 at the top of the countercurrent extraction tower 1 is cooled to 60°C in a heat exchanger 5, separated into a light liquid and a heavy liquid in a gravity settling tank 6,
The entire amount of the heavy liquid was refluxed to the upper part of the countercurrent extraction column through the heavy liquid reflux line 11. After reducing the pressure of the light liquid from 100 Kg/cm 2 G to 19 Kg/cm 2 G by the pressure regulating valve 10, it is introduced into the middle of the extractive distillation column 13, and 2.5 Kg/h of propane solvent is supplied from the solvent line 22 at the top of the column. Extractive distillation with propane was carried out. As a result, the material balance is as shown in Figure 2, and the raw material 10wt% alcohol is 80wt after primary concentration.
%, 95wt% in the second concentration, and 95wt% in the final tertiary concentration.
It was concentrated to 99.9 wt%, and a mixture of absolute alcohol and propane was obtained from the bottom mixed liquid take-off line 14. Anhydrous alcohol and propane have no azeotropic point and have a large difference in boiling point, so they can be completely separated by normal distillation. On the other hand, no alcohol loss was observed throughout the entire process. In addition, the top and bottom temperatures of the extractive distillation column 13 are respectively
They are small at 57℃ and 61℃, which is very advantageous for heat pump systems that utilize the heat of recompression of tower gas, and the process simulation shows that the heat source of the reboiler can be completely supplemented with a small compression ratio of the compressor. It was confirmed by Shion that the energy required for the entire process is approximately 800 kcal/kg of ethanol, which is approximately 1/3 to 1/5 the energy saving of existing distillation methods. Example 2 In Example 1, propylene, n-butane and i-butane were used in addition to propane as the solvent,
Tests were conducted by varying the temperature and pressure of the countercurrent extraction tower, gravity settling tank, and extractive distillation tower, and the preferred temperature and pressure ranges were determined.

【表】【table】

【表】 比較例 実施例1において、溶剤としてCO2、エタン、
n−ヘキサン、ベンゼンを用いた試験を行なつた
が、表2に示すように無水アルコールは得られな
かつた。
[Table] Comparative example In Example 1, CO 2 , ethane,
Tests using n-hexane and benzene were conducted, but as shown in Table 2, no absolute alcohol was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は以上詳記したようにアルコール濃度10
〜20wt%の水溶液から水分を分離して無水アル
コールを製造するに際し、特定の溶剤(プロピレ
ン、プロパン、n−ブタン、i−ブタン)を用
い、その溶剤としての特定の特性を温度、圧力を
変化させ巧みに利用すにことにより1次、2次、
及び3次濃縮を行ない、容易に専売法及びJIS規
格を満たすアルコール濃度(99.2wt%以上の無水
アルコールが得られ、かつ、既存の蒸留法に較べ
て、溶剤の圧縮熱をリボイラー熱源に利用するヒ
ートポンプシステムにより大幅な省エネルギーが
できるという効果を奏する。
As detailed above, the present invention has an alcohol concentration of 10
When producing anhydrous alcohol by separating water from ~20wt% aqueous solution, specific solvents (propylene, propane, n-butane, i-butane) are used, and the specific properties of the solvent are controlled by changing temperature and pressure. By skillful use, primary, secondary,
and tertiary concentration to easily obtain anhydrous alcohol with an alcohol concentration (99.2wt% or more) that meets the proprietary law and JIS standards.Compared to existing distillation methods, the heat of compression of the solvent is used as a reboiler heat source. The heat pump system has the effect of significantly saving energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するためのプロセスフロ
ー、第2図は実施例1の結果を示すプロセスフロ
ー及び物質収支を示す図である。
FIG. 1 is a process flow for implementing the present invention, and FIG. 2 is a diagram showing a process flow and material balance showing the results of Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 向流抽出塔の上部よりアルコール及び水を主
成分とする原料を下部よりプロパン、プロピレ
ン、n−ブタン及びi−ブタンよりなる群のうち
の一つの溶剤を供給し、向流抽出塔内を該溶剤の
超臨界状態又は擬臨界状態に維持するようにして
両者を向流で接触させ、向流抽出塔上部より濃縮
アルコールを含んだ溶剤相を抜き出す一次脱水工
程、該溶剤相を冷却し、水分に富んだ重液相と濃
縮アルコールを含んだ軽液相に重力沈降分離し、
該重液相は前記向流抽出塔上部へ還流する二次脱
水工程、該軽液相の圧力を該溶剤の上部臨界圧力
以下に減圧後、溶剤抽出蒸留塔に導入し、塔底よ
り実質的に水分を含まないアルコールと溶剤の塔
底混合液体を、塔頂より実質的にアルコールを含
まない水分と溶剤の混合蒸気を各々抜き出す三次
脱水工程、及び該塔底混合液体を蒸留操作により
溶剤とアルコールに分離する脱溶剤工程からなる
ことを特徴とするアルコールの脱水方法。
1. A raw material mainly consisting of alcohol and water is supplied from the upper part of the countercurrent extraction tower, and one solvent from the group consisting of propane, propylene, n-butane, and i-butane is supplied from the lower part, and the inside of the countercurrent extraction tower is A primary dehydration step in which the solvent is kept in a supercritical or quasi-critical state by contacting them in countercurrent flow, and a solvent phase containing concentrated alcohol is extracted from the upper part of the countercurrent extraction column; the solvent phase is cooled; Gravitational sedimentation separation into a heavy liquid phase rich in water and a light liquid phase containing concentrated alcohol.
The heavy liquid phase is refluxed to the upper part of the countercurrent extraction column in a secondary dehydration step, and after the pressure of the light liquid phase is reduced to below the upper critical pressure of the solvent, it is introduced into the solvent extractive distillation column, and substantially removed from the bottom of the column. A tertiary dehydration step is carried out in which the bottom mixed liquid of alcohol and solvent that does not contain water is extracted from the top of the tower, and the mixed vapor of water and solvent that does not substantially contain alcohol is extracted from the top of the tower, and the mixed liquid at the bottom of the tower is removed as a solvent by distillation. A method for dehydrating alcohol, characterized by comprising a desolvent step of separating it into alcohol.
JP1160696A 1989-06-26 1989-06-26 Dehydration of alcohol Granted JPH0327336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160696A JPH0327336A (en) 1989-06-26 1989-06-26 Dehydration of alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160696A JPH0327336A (en) 1989-06-26 1989-06-26 Dehydration of alcohol

Publications (2)

Publication Number Publication Date
JPH0327336A JPH0327336A (en) 1991-02-05
JPH0536418B2 true JPH0536418B2 (en) 1993-05-31

Family

ID=15720494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160696A Granted JPH0327336A (en) 1989-06-26 1989-06-26 Dehydration of alcohol

Country Status (1)

Country Link
JP (1) JPH0327336A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763693A (en) * 1995-02-24 1998-06-09 Mitsui Chemicals, Inc. Process for producing isopropyl alcohol
TW338031B (en) * 1995-02-24 1998-08-11 Mitsui Toatsu Chemicals Process for producing isopropyl alcohol
JP2008299224A (en) * 2007-06-01 2008-12-11 Kyoritsu Denki Kk Vibration method for evaluating camera shake correcting function
CN102040471B (en) * 2010-11-16 2013-07-10 广东中科天元新能源科技有限公司 Distillation dehydration device and process for co-producing ethanol fuels and custom grade edible alcohols
JPWO2016080531A1 (en) * 2014-11-20 2017-09-07 国立大学法人名古屋大学 Concentrated dehydration method of butanol

Also Published As

Publication number Publication date
JPH0327336A (en) 1991-02-05

Similar Documents

Publication Publication Date Title
US5294304A (en) Process for the recovery of absolute ethanol by vapor compression extractive distillation
JPH04193304A (en) Condensing and refining method for alcohol
CA2330137C (en) Method for separating a c4 hydrocarbon mixture
US3745092A (en) Recovery and purification of ethylene oxide by distillation and absorption
GB2102930A (en) Recovery of condensable hydrocarbons from natural gas
CN105237370A (en) Method for producing cyclohexanone by cyclohexanol dehydrogenation
US4529413A (en) Recovering dessicant-antifreeze from admixture with water and hydrogen sulfide
JPH0536418B2 (en)
JPH0825915B2 (en) Method for obtaining 1,3-butadiene
AU2013325329B2 (en) Process for the removal of CO2 from acid gas
JPH02184643A (en) Production of anhydrous alcohol
JPS6225985A (en) Method of concentrating and purifying alcohol
JPS6229990A (en) Purification of ethanol
JPH035432A (en) Method for dehydrating alcohol with n-butane
JPH03157340A (en) Production of anhydrous alcohol
US6018061A (en) Process for recovering 3,4-epoxy-1-butene
JP2571743B2 (en) Manufacturing method of absolute ethanol
CN109771980B (en) Heterogeneous azeotropic rectification method for separating mixture of 2-pentanone, 4-heptanone, water and carbon dioxide
JPH035431A (en) Method for dehydrating alcohol with propylene
JPH0329393B2 (en)
CN105218342A (en) The processing method of pimelinketone is produced in a kind of cyclohexanol dehydrogenation
JPS6225983A (en) Method of concentrating and purifying alcohol
JPH0578535B2 (en)
RU2202079C2 (en) Method of preparation of hydrocarbon gas
JPH035433A (en) Method for dehydrating alcohol with i-butane

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term