JPS6225985A - Method of concentrating and purifying alcohol - Google Patents

Method of concentrating and purifying alcohol

Info

Publication number
JPS6225985A
JPS6225985A JP60165979A JP16597985A JPS6225985A JP S6225985 A JPS6225985 A JP S6225985A JP 60165979 A JP60165979 A JP 60165979A JP 16597985 A JP16597985 A JP 16597985A JP S6225985 A JPS6225985 A JP S6225985A
Authority
JP
Japan
Prior art keywords
alcohol
solvent
liquid
raw material
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60165979A
Other languages
Japanese (ja)
Inventor
Hirotoshi Horizoe
浩俊 堀添
Hiroshi Makihara
牧原 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60165979A priority Critical patent/JPS6225985A/en
Publication of JPS6225985A publication Critical patent/JPS6225985A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain a highly concentrated alcohol having low content of impurities with reduced energy, by adding a low concentrated aqueous solution of an alcohol containing impurities from the top of a multi-stage extraction device of counter flow contact type, feeding a solvent from the bottom of the device and blending both in a supercritical state of the solvent. CONSTITUTION:A mixture consisting of 10-20% alcohol, a small amount of a high-boiling impurities and the rest of water is fed from the top of a multi- stage extraction device of counter flow contact type, a solvent (CO2, 2-4C hydrocarbon, etc.) for the alcohol is fed from the bottom of the device, the interior of the device 3 is made in a supercritical state of the solvent and both are brought into contact with eath other. A light solution is taken out from the top part 6 of the device 3, fed through the reducing valve 7 to the separating column 8, separated into the highly concentrated alcohol 10 with low impurity content and a heavy impurity solution, the latter is added to a mixture of the raw material and fed again to the multi-stage extraction device 3 of counter flow contact type.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発酵アルコール等から、高純度のアルコール
を省エネルギー的に濃縮精製し得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for concentrating and purifying highly pure alcohol from fermented alcohol and the like in an energy-saving manner.

〔従来の技術〕[Conventional technology]

甘しよ、さつまいも、とうもろこし等の炭水化物を原料
とする発酵アルコールは、飲料用及び工業用として重要
な出発原料であるが、発酵法で得られるアルコール水溶
液のアルコール濃度は10〜20 vt%と低いため、
約95〜100vt%まで濃縮する必要がある。
Fermented alcohol made from carbohydrates such as amashiyo, sweet potato, and corn is an important starting material for beverages and industrial use, but the alcohol concentration of the alcohol aqueous solution obtained by the fermentation method is as low as 10 to 20 vt%. For,
It is necessary to concentrate to about 95-100 vt%.

従来、この濃縮法として蒸留法が用いられてきたが、大
部分を占める水も80〜100℃まで昇温せねばならず
、経済的に不利でアシ、これに替わる省エネルギー型の
濃縮法の開発が望まれている。
Conventionally, distillation has been used as a concentration method, but water, which makes up most of the water, must be heated to 80 to 100 degrees Celsius, which is economically disadvantageous.Therefore, an alternative energy-saving concentration method has been developed. is desired.

従来、省エネルギー型の濃縮法として超臨界状態又は擬
臨界状態の炭酸ガス、エチレン、エタンを用いてアルコ
ール分水より抽出・分離して濃縮する方法が提案されて
いる。(特開昭56−56201及び同59−1415
28号公報)しかしながら、この方法で濃縮された発酵
アルコール中には高沸点不純物(04〜O5系7−ゼル
油)等の副生成物が混入しており、これらも分離除去す
る必要があるが、この分離除去法として従来は蒸留法に
よる精留塔が用いられているが、この際、濃縮アルコー
ルを再昇温し、蒸発及び凝縮を行わせねばならず熱負荷
が増大し全体として、省エネルギー的な方法とは云えな
いという欠点があった。
Conventionally, as an energy-saving concentration method, a method has been proposed in which carbon dioxide, ethylene, or ethane in a supercritical or quasi-critical state is used to extract and separate alcohol from water and concentrate. (Unexamined Japanese Patent Publication No. 56-56201 and No. 59-1415
(No. 28) However, the fermented alcohol concentrated by this method contains by-products such as high-boiling point impurities (04-05 type 7-zel oil), and these also need to be separated and removed. Conventionally, a rectification column using a distillation method has been used for this separation and removal method, but in this case, the concentrated alcohol must be reheated and evaporated and condensed, increasing the heat load and reducing overall energy savings. The drawback was that it could not be called a standard method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記した超臨界状態又は擬臨界状態の炭酸ガス
、エチレン、エタンなどを用いてアルコールを水より分
離して得た濃縮アルコールから省エネルギー的に実質的
に水、高沸点不純物を含まない濃縮アルコールを得る方
法を提供しようとするものである。
The present invention is an energy-saving method for concentrating alcohol obtained by separating alcohol from water using carbon dioxide, ethylene, ethane, etc. in a supercritical or quasi-critical state, substantially free of water and high-boiling impurities. It seeks to provide a way to obtain alcohol.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明はアルコール及び高沸点不純物からなる
有機液体溶質と水との原料混合物を多段向流接触抽出装
置の上部よυ供給し、溶解溶剤を該多段向流接触抽出装
置の下部より供給し、該原料混合物と該溶剤を、該溶剤
が超臨界状態又は擬臨界状態になるような条件下で向流
接触させ、該多段向流接触抽出装置の上部より軽液を、
下部より重液を取り出し、次に、該軽液は実質的に高沸
点不純物が相分離するに必要な圧力まで減圧後、不純物
分離槽に導入し重質不純物液と軽質精製液に分離し、該
重質不純物液を前記多段向流接触抽出装置の原料混合物
供給部分と溶剤供給部分との間に導入することを特徴と
するアルコールの濃縮精製方法である。
That is, the present invention supplies a raw material mixture of an organic liquid solute consisting of alcohol and high-boiling impurities and water to the upper part of a multistage countercurrent catalytic extraction device, supplies a dissolving solvent from the bottom of the multistage countercurrent catalytic extraction device, The raw material mixture and the solvent are brought into countercurrent contact under conditions such that the solvent becomes a supercritical state or a quasi-critical state, and a light liquid is brought into contact with the solvent from the upper part of the multistage countercurrent contact extraction device.
The heavy liquid is taken out from the lower part, and then the light liquid is depressurized to the pressure necessary for substantially phase separation of high-boiling point impurities, and then introduced into an impurity separation tank and separated into a heavy impurity liquid and a light purified liquid, This method is characterized in that the heavy impurity liquid is introduced between the raw material mixture supply section and the solvent supply section of the multistage countercurrent catalytic extraction device.

本発明で使用する溶解溶剤としては、アルコールを良く
溶かし、水及び重質不純物を溶かしにくい溶剤が用いら
れ、特開昭56−56021号公報にみられるC02や
炭素数2〜4の(’2H4−(q&のような炭化水素及
びこれらの混合物などの他に、臨界温度がアルコールの
沸点以下である無機又は有機の溶剤又はこれらの混合溶
剤が使用可能である。下表に主な溶剤を示す。
The dissolving solvent used in the present invention is a solvent that dissolves alcohol well but does not easily dissolve water and heavy impurities. -(In addition to hydrocarbons such as q& and mixtures thereof, inorganic or organic solvents or mixed solvents thereof whose critical temperature is below the boiling point of alcohol can be used. The main solvents are shown in the table below. .

溶剤者      臨界温度 Co、         3 t I C3tH,9,7 C2迅        32.4 C3馬        92.3 (HsH,、96,8 04式。       152.0 溶解溶剤としては、臨界温度が常温に近い程、またアル
コールとの親和力の大きいもの程、省エネルギー効果が
大きいので好ましい。一般に溶解溶剤は、原料アルコー
ル1重量部に対して2〜6重量部添加されるが、アルコ
ールとの親和力の大きい溶解溶剤の場合は、その添加量
は上記範囲より小にすることができる。
Solvent critical temperature Co, 3 t I C3tH,9,7 C2 speed 32.4 C3 horse 92.3 (HsH,,96,8 04 formula. 152.0 As a dissolving solvent, the closer the critical temperature is to room temperature, the more Also, the greater the affinity with alcohol, the greater the energy-saving effect, so it is preferable.Generally, the dissolving solvent is added in an amount of 2 to 6 parts by weight per 1 part by weight of the raw material alcohol; can be added in an amount smaller than the above range.

本発明にいう超臨界状態とは、溶解溶剤の臨界温度以上
かつ臨界圧力以上の温度、圧力条件での状態を意味し、
擬臨界状態とは、溶解溶剤の臨界温度Tc以下で、対臨
界温度Tr= ’r/’ro(但し0.90<Tr<1
.0 )の温度Tで、圧力はその温度における溶解溶剤
の飽和蒸気圧以上の状態を意味する。擬臨界状態では超
臨界状態より溶解溶剤の溶解度が増す場合があるが、溶
解速度は減少する傾向にある。
The supercritical state as used in the present invention refers to a state under temperature and pressure conditions that are higher than the critical temperature and critical pressure of the dissolving solvent,
A quasi-critical state is a temperature below the critical temperature Tc of the dissolving solvent, relative to the critical temperature Tr='r/'ro (however, 0.90<Tr<1
.. At a temperature T of 0 ), the pressure means a state equal to or higher than the saturated vapor pressure of the dissolving solvent at that temperature. Although the solubility of the dissolving solvent may increase in the quasi-critical state compared to the supercritical state, the dissolution rate tends to decrease.

以下、本発明の一実施態様を第1図に従って詳述する。Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG.

第1図において、1は原料である発酵アルコールの供給
ライン、2は溶解溶剤の供給ライン3は向流接触装置(
このものは、充填塔、棚段塔又は多段抽出塔であること
が好ましい。)4は棚段、5は向流接触装置3の下部の
重液(水・高沸点成分)の取出しライン、6は向流接触
装置3の上部の軽液(アルコール分)の取出しライン、
7は減圧弁、8は不純物分離槽、9は重質不純物取出し
ライン、10は軽質精製液取出しライン、11は重質不
純物の向流接触装置3への供給ライン、12は重質不純
物の排出ラインである。
In Fig. 1, 1 is a supply line for fermentation alcohol, which is a raw material, 2 is a supply line for a dissolving solvent, and 3 is a countercurrent contactor (
This is preferably a packed column, plate column or multi-stage extraction column. ) 4 is a shelf, 5 is a heavy liquid (water/high boiling point component) take-out line at the bottom of the counter-current contact device 3, 6 is a light liquid (alcohol component) take-out line at the top of the counter-current contact device 3,
7 is a pressure reducing valve, 8 is an impurity separation tank, 9 is a heavy impurity extraction line, 10 is a light purified liquid extraction line, 11 is a supply line for heavy impurities to the countercurrent contact device 3, and 12 is a heavy impurity discharge line. It's a line.

原料混合物1重量部を上部の供給ライン1より、又溶解
溶剤2〜6重量部を下部の供給ライン2より向流接触装
置3に供給し、該溶解溶剤の超臨界状態又は擬臨界状態
で向流接触させることにより、軽質の溶解溶剤相は上昇
しながら、原料混合物相よりアルコール類を選択的に抽
出し、取出しライン6より軽液として取り出される。
1 part by weight of the raw material mixture is supplied through the upper supply line 1 and 2 to 6 parts by weight of the dissolving solvent is supplied through the lower supply line 2 to the countercurrent contacting device 3, and the dissolving solvent is heated in a supercritical or pseudocritical state. By contacting with the flow, the light dissolved solvent phase rises and selectively extracts alcohols from the raw material mixture phase, and is taken out as a light liquid through the takeout line 6.

溶解溶剤の添加量は、溶解溶剤がアルコール類との親和
力が大きい場合は減することができる。
The amount of the dissolving solvent added can be reduced if the dissolving solvent has a high affinity with alcohols.

向流接触装置3は、充填塔、棚段塔又は多段抽出装置な
どが好ましい。原料混合物と溶解溶剤を多段向流接触す
ることにより、原料混合物中のアルコール濃度は下部は
ど薄くなるが溶解溶剤中のアルコール濃度も下部ではは
ソ零なのでアルコールは殆んど全量溶解溶剤中に抽出さ
れる。従ってアルコール濃度の分布が好ましい状態にな
る。並流接触では濃度分布の関係上、原料混合物の抽出
残液中に溶解溶剤アルコールと平衡するアルコールが残
存するので好ましくない。
The countercurrent contact device 3 is preferably a packed column, a tray column, a multistage extraction device, or the like. By bringing the raw material mixture and the dissolving solvent into multistage countercurrent contact, the alcohol concentration in the raw material mixture becomes thinner at the bottom, but the alcohol concentration in the dissolving solvent is also zero at the bottom, so almost all of the alcohol is contained in the dissolving solvent. Extracted. Therefore, the alcohol concentration distribution becomes favorable. Co-current contact is not preferred because alcohol that is in equilibrium with the dissolving solvent alcohol remains in the extraction residue of the raw material mixture due to the concentration distribution.

一方、原料混合物相はアルコール類を抽出されながら下
部へ重液となシ下降し、取出しライン5より抜き出され
る。
On the other hand, the raw material mixture phase descends to the bottom as a heavy liquid while the alcohols are extracted, and is extracted from the extraction line 5.

取出しライン6よりの軽液は、アルコールの他に少量の
高沸点不純物と水を含んでおシ、これらは製品の規格上
好ましくないものであシ、分離除去する必要がある。
The light liquid from the take-out line 6 contains, in addition to alcohol, a small amount of high-boiling point impurities and water, which are undesirable in terms of product specifications and must be separated and removed.

溶解溶剤の溶解力は、溶解溶剤の密度にほぼ比例してお
シ、圧力を下げるか又は温度を上げて溶解溶剤の密度の
低下させることにより、高沸点の物質がまず溶解溶剤か
ら相分離することを本発明者らは知見した。
The dissolving power of the dissolving solvent is approximately proportional to the density of the dissolving solvent, and by lowering the pressure or increasing the temperature to lower the density of the dissolving solvent, the substance with a high boiling point will first phase separate from the dissolving solvent. The present inventors found this.

しかしながら、温度を上げることは、熱効率の低下をも
たらすので好ましくない。それ故に圧力を下げることに
より溶解溶剤の密度を下げるのが好ましい。しかし、圧
力を下げすぎると、溶解溶剤の溶解度が大巾に減少し、
アルー−ル類も多量相分離するのでその量を把握して圧
力を制御する必要がある。本発明はかかる現象を利用す
ることにより、濃縮アルコールの純度が向上させるもの
である。
However, increasing the temperature is not preferable because it causes a decrease in thermal efficiency. It is therefore preferable to reduce the density of the dissolving solvent by reducing the pressure. However, if the pressure is lowered too much, the solubility of the dissolving solvent will decrease significantly,
Since a large amount of allols also undergo phase separation, it is necessary to grasp the amount and control the pressure. The present invention utilizes this phenomenon to improve the purity of concentrated alcohol.

即ち、前記軽液は減圧弁7により、高沸点不純物を選択
的に相分離するように減圧され、不純物分離槽8に導入
され、軽質精製液と重質不純物液とに分離される。該軽
質精製液は、溶解溶剤の他にアルコールとごく微量の水
及び高沸点不純物の混合物である。又、重質不純物液は
、水及び高沸点不純物とごく少量のアルコールと溶解溶
剤からなる混合物である。
That is, the light liquid is depressurized by the pressure reducing valve 7 to selectively phase-separate high-boiling point impurities, is introduced into the impurity separation tank 8, and is separated into a light purified liquid and a heavy impurity liquid. The light purified liquid is a mixture of alcohol, a very small amount of water, and high-boiling point impurities in addition to the dissolving solvent. The heavy impurity liquid is a mixture of water, high boiling point impurities, a very small amount of alcohol, and a dissolving solvent.

該軽質精製液は、取出しライン10より抜き出され、通
常はさらに減圧して、溶解溶剤と濃縮精製アルコールに
分離され、溶解溶剤は循環使用される。
The light purified liquid is taken out from the take-out line 10 and is usually further reduced in pressure to be separated into a dissolving solvent and concentrated purified alcohol, and the dissolving solvent is recycled and used.

一方、取出しライン9より抜き出される重質不純物中に
は少量のアルコールが溶解しておシ、製品アルコールの
損失を防止するために回収する必要がある。
On the other hand, a small amount of alcohol is dissolved in the heavy impurities extracted from the take-out line 9, and needs to be recovered to prevent loss of product alcohol.

本発明においては、該重質不純物を前記向流接触装置3
に再度導入することにより、アルコールの損失を防止す
るとともに、重質不純物より高沸点重質不純物を分離除
去するものである。
In the present invention, the heavy impurities are removed from the countercurrent contactor 3.
By reintroducing the alcohol into the alcohol, loss of alcohol is prevented, and heavy impurities with a higher boiling point are separated and removed from the heavier impurities.

該重質不純物の向流接触装置5への供給ライン11の設
置位置は、その組成に応じて決定されるが、好ましくは
原料混合物の供給ライン1と溶解溶剤の供給ライン2と
の間である。
The installation position of the supply line 11 for the heavy impurities to the countercurrent contacting device 5 is determined depending on its composition, but is preferably between the supply line 1 for the raw material mixture and the supply line 2 for the dissolving solvent. .

以下、本発明の実施例をあげて本発明の詳細な説明する
Hereinafter, the present invention will be explained in detail by giving examples of the present invention.

実施例1 エチルアルコール10vt%、C4〜C6系フーゼル油
0.1 wt%、水89.9 vt%の原料混合物1重
量部と、溶解溶剤として二酸化炭素を6重量部を、内径
50震、長さ3mの充填塔の上部より1想及び下部よJ
50anの部分に供給し、圧力110atm、温度40
℃の超臨界状態で向流接触させ、塔頂より軽液を塔底よ
り重液を取り出し、該軽液を不純物分離槽で圧力80 
atm 、に減圧し、軽質精製液と重質不純物液に分離
し、該重質不純物液は充填塔の下部から1.5 mの部
に全量戻した。
Example 1 1 part by weight of a raw material mixture of 10 vt% ethyl alcohol, 0.1 wt% C4-C6 fusel oil, and 89.9 vt% water, 6 parts by weight of carbon dioxide as a dissolving solvent, an inner diameter of 50 squares, a long tube. From the top to the bottom of a 3m packed tower
50an, pressure 110atm, temperature 40
Countercurrent contact is carried out in a supercritical state at ℃, and a light liquid is taken out from the top of the column and a heavy liquid is taken out from the bottom of the column.
The pressure was reduced to ATM and separated into a light purified liquid and a heavy impurity liquid, and the heavy impurity liquid was returned in its entirety to a portion 1.5 m from the bottom of the packed column.

そして、全体が定常になるまで運転し、その結果原料エ
チルアルコールの99. Owt%カ回収され、その中
の水及び高沸点不純物の濃度は各々11. Owt%、
80 ppmであった。
Then, the operation was continued until the whole became steady, and as a result, the raw material ethyl alcohol reached 99%. The concentration of water and high boiling point impurities in it was 11% each. Owt%,
It was 80 ppm.

実施例2 エチルアルコール10wt%、C4〜C3系フーゼル油
[L 1 vt%、水89.9 it%の原料混合物1
重量部と、溶解溶剤として二酸化炭素を6重量部を、内
径50m111.長さ3常の充填塔の上部より19n及
び下部よ1)30σの部分に供給し、圧力110atm
、温度の20℃の擬臨界状態で向流接触させ、塔頂より
軽液を塔底より重液を取り出し、該軽液を不純物分離槽
で圧力80 atm 。
Example 2 Raw material mixture 1 of 10 wt% ethyl alcohol, C4-C3 fusel oil [L 1 vt%, and 89.9 it% water
parts by weight, 6 parts by weight of carbon dioxide as a dissolving solvent, and an inner diameter of 50 m111. 19n from the top and 1) 30σ from the bottom of a packed column with a length of 3, and the pressure is 110 atm.
, countercurrent contact was carried out in a quasi-critical state at a temperature of 20° C., a light liquid was taken out from the top of the column and a heavy liquid was taken out from the bottom of the column, and the light liquid was transferred to an impurity separation tank at a pressure of 80 atm.

に減圧し、40℃に加熱し、軽質精製液と重質不純物液
に分離し、該重質不純物液は充填塔の下部から1.5m
の部に全量戻した。
The pressure was reduced to 40℃, and the liquid was separated into a light purified liquid and a heavy impurity liquid.The heavy impurity liquid was separated from the bottom of the packed column by 1.5 m.
The entire amount was returned to the section.

そして、全体が定常になるまで運転し、その結果原料エ
チルアルコールの99.2 wt%カ回収され、その中
の水及び高沸点不純物の濃度は各々5. Owt%、1
00 ppmであった。
Then, the operation was continued until the whole became steady, and as a result, 99.2 wt% of the raw material ethyl alcohol was recovered, and the concentrations of water and high boiling point impurities in it were each 5.5 wt%. Owt%, 1
00 ppm.

比較例1 実施例1において、重質不純物液を充填塔に戻さずに運
転したところ、原料エチルアルコールの90. Owt
%しか回収されなかった。水及び高沸点不純物の濃度は
各々4.9 wt%、95 ppmであった。
Comparative Example 1 In Example 1, when the operation was carried out without returning the heavy impurity liquid to the packed column, 90% of the raw material ethyl alcohol was reduced. Owt
Only % was recovered. The concentrations of water and high boiling point impurities were 4.9 wt% and 95 ppm, respectively.

〔本発明の効果〕[Effects of the present invention]

本発明は、以上詳記したようにアルコール、水、高沸点
不純物の混合物を、臨界付近の溶解溶剤を使用し常温付
近で圧力を2段階に制御して、これらの混合物を分離す
るものであシ、分離速度が早く装置のコンパクト化が可
能となるとともに、熱的負荷が軽減されて省エネルギー
効果を生ずるものである。
As detailed above, the present invention separates a mixture of alcohol, water, and high-boiling point impurities by controlling the pressure in two stages at around room temperature using a near-critical dissolving solvent. Furthermore, the separation speed is fast, the device can be made more compact, and the thermal load is reduced, resulting in an energy-saving effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施するだめの70−シートである
。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫
FIG. 1 is a 70-sheet for practicing the invention. Sub-Agents 1) Meifuku Agent Ryo Hagiwara − Sub-Agent Atsuo Anzai

Claims (1)

【特許請求の範囲】[Claims] アルコール及び高沸点不純物からなる有機液体溶質と水
との原料混合物を多段向流接触抽出装置の上部より供給
し、溶解溶剤を該多段向流接触抽出装置の下部より供給
し、該原料混合物と該溶剤を、該溶剤が超臨界状態又は
擬臨界状態になるような条件下で向流接触させ、該多段
向流接触抽出装置の上部より軽液を、下部より重液を取
り出し、次に、該軽液は実質的に高沸点不純物が相分離
するに必要な圧力まで減圧後、不純物分離槽に導入し重
質不純物液と軽質精製液に分離し、該重質不純物液を前
記多段向流接触抽出装置の原料混合物供給部分と溶剤供
給部分との間に導入することを特徴とするアルコールの
濃縮精製方法。
A raw material mixture of an organic liquid solute consisting of alcohol and high-boiling point impurities and water is supplied from the upper part of the multistage countercurrent catalytic extraction apparatus, a dissolving solvent is supplied from the lower part of the multistage countercurrent catalytic extraction apparatus, and the raw material mixture and the The solvent is brought into countercurrent contact under conditions such that the solvent becomes a supercritical state or a quasi-critical state, a light liquid is taken out from the upper part of the multistage countercurrent contact extraction apparatus, a heavy liquid is taken out from the lower part, and then the After the light liquid is depressurized to the pressure necessary for substantially phase separation of high-boiling point impurities, it is introduced into an impurity separation tank and separated into a heavy impurity liquid and a light purified liquid, and the heavy impurity liquid is subjected to the multistage countercurrent contact. 1. A method for concentrating and purifying alcohol, which is introduced between a raw material mixture supplying section and a solvent supplying section of an extraction device.
JP60165979A 1985-07-29 1985-07-29 Method of concentrating and purifying alcohol Pending JPS6225985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60165979A JPS6225985A (en) 1985-07-29 1985-07-29 Method of concentrating and purifying alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165979A JPS6225985A (en) 1985-07-29 1985-07-29 Method of concentrating and purifying alcohol

Publications (1)

Publication Number Publication Date
JPS6225985A true JPS6225985A (en) 1987-02-03

Family

ID=15822626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165979A Pending JPS6225985A (en) 1985-07-29 1985-07-29 Method of concentrating and purifying alcohol

Country Status (1)

Country Link
JP (1) JPS6225985A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430592A (en) * 1987-07-24 1989-02-01 Tsusho Sangyo Daijin Concentration and purification of alcohol
JPS6467201A (en) * 1987-09-07 1989-03-13 Chlorine Eng Corp Ltd Supercritical extraction and separation of solid sample
JPH0249741A (en) * 1988-08-12 1990-02-20 Tsuushiyousangiyoushiyou Kiso Sangiyoukiyokuchiyou Method for purifying and concentrating aqueous solution of crude ethanol
US5053563A (en) * 1987-07-24 1991-10-01 Minister Of International Trade & Industry Method to concentrate and purify alcohol
JPH04131102A (en) * 1990-09-21 1992-05-01 Tsusho Sangyosho Kiso Sangyokyokucho Method for separating impurity from alcohol
WO1992021638A1 (en) * 1991-06-07 1992-12-10 Japan As Represented By Director-General, Basic Industries Bureau Of Ministry Of International Trade And Industry Process for purifying aqueous crude ethanol solution
US5250271A (en) * 1987-07-24 1993-10-05 Minister Of International Trade & Industry Apparatus to concentrate and purify alcohol

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430592A (en) * 1987-07-24 1989-02-01 Tsusho Sangyo Daijin Concentration and purification of alcohol
JPH0329393B2 (en) * 1987-07-24 1991-04-24
US5053563A (en) * 1987-07-24 1991-10-01 Minister Of International Trade & Industry Method to concentrate and purify alcohol
US5250271A (en) * 1987-07-24 1993-10-05 Minister Of International Trade & Industry Apparatus to concentrate and purify alcohol
JPS6467201A (en) * 1987-09-07 1989-03-13 Chlorine Eng Corp Ltd Supercritical extraction and separation of solid sample
JPH0249741A (en) * 1988-08-12 1990-02-20 Tsuushiyousangiyoushiyou Kiso Sangiyoukiyokuchiyou Method for purifying and concentrating aqueous solution of crude ethanol
JPH0512332B2 (en) * 1988-08-12 1993-02-17 Tsusho Sangyosho Kiso Sangyo Kyokucho
JPH04131102A (en) * 1990-09-21 1992-05-01 Tsusho Sangyosho Kiso Sangyokyokucho Method for separating impurity from alcohol
WO1992021638A1 (en) * 1991-06-07 1992-12-10 Japan As Represented By Director-General, Basic Industries Bureau Of Ministry Of International Trade And Industry Process for purifying aqueous crude ethanol solution
US5284983A (en) * 1991-06-07 1994-02-08 Basic Industries Bureau of Ministry of International Trade and Industry Process for purifying aqueous crude ethanol solution

Similar Documents

Publication Publication Date Title
JPH04193304A (en) Condensing and refining method for alcohol
US5294304A (en) Process for the recovery of absolute ethanol by vapor compression extractive distillation
US3745092A (en) Recovery and purification of ethylene oxide by distillation and absorption
US4035242A (en) Distillative purification of alkane sulfonic acids
JPS6225985A (en) Method of concentrating and purifying alcohol
US2771473A (en) Ethylene oxide recovery
JP3769505B2 (en) Method for separating and purifying an aqueous mixture consisting of the main components acetic acid and formic acid
US4088676A (en) Process for the preparation of organic solutions of percarboxylic acids
JPS60104026A (en) Distillation post-treatment of 6-20 c atom higher alcohol containing water and methanol
US3098017A (en) Process of separating unsymmetrical dimethylhydrazine from aqueous solutions containing same
US2356986A (en) Process for separating hydrocarbons
JPS6229990A (en) Purification of ethanol
JPS6225983A (en) Method of concentrating and purifying alcohol
JPH0147454B2 (en)
JPH02184643A (en) Production of anhydrous alcohol
US5085741A (en) Extractive distillation of low boiling alkene/alkane mixtures
JPH0578535B2 (en)
JPH0327336A (en) Dehydration of alcohol
US2734067A (en) Hydrocarbon oxidation
US4070253A (en) Process for separating solutions containing propylene oxide
JPH035432A (en) Method for dehydrating alcohol with n-butane
JPS6225982A (en) Method of concentrating and purifying alcohol
JPS6225984A (en) Method of concentrating and purifying alcohol
US3281450A (en) Purification of acetonitrile
JPH01311039A (en) Separation of phenol, base and indole from coal tar by extraction