JPS6225983A - Method of concentrating and purifying alcohol - Google Patents

Method of concentrating and purifying alcohol

Info

Publication number
JPS6225983A
JPS6225983A JP60165977A JP16597785A JPS6225983A JP S6225983 A JPS6225983 A JP S6225983A JP 60165977 A JP60165977 A JP 60165977A JP 16597785 A JP16597785 A JP 16597785A JP S6225983 A JPS6225983 A JP S6225983A
Authority
JP
Japan
Prior art keywords
alcohol
impurities
water
dissolving solvent
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60165977A
Other languages
Japanese (ja)
Inventor
Hirotoshi Horizoe
浩俊 堀添
Masahito Kaneko
雅人 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60165977A priority Critical patent/JPS6225983A/en
Publication of JPS6225983A publication Critical patent/JPS6225983A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

PURPOSE:To obtain a highly concentrated alcohol having low content of impurities with reduced energy, by adding a solvent for alcohol to a mixture of water, an alcohol and impurities and blending them in a supercritical state of the solvent. CONSTITUTION:A mixture comprising 10-20% alcohol, a small amount of high-boiling impurities and the rest of water is blended with a solvent (CO2 or 2-4C hydrocarbon) to dissolve only the alcohol, fed to the blender 4 and well blended in the supercritical (pseudo critical) state of the solvent and introduced to the first extracting and separating tank 5. They are separated into a heavy solution consisting of water, the impurities and part of the alcohol and a light solution consisting of the solvent, the alcohol and part of the impurities. The light solution is fed to the impurity separating tank 9, the pressure of the tank is reduced and the solution is separated into the concentrated and purified alcohol and a solution containing the impurities, water and a small of the alchool. The latter is mixed with the heavy solution extracted from the tank 5, they are blended with a solvent, fed to the second extracting and separating tank 17, separated similarly into a heavy solution and a light solution and the light solution is collected as the concentrated and purified alcohol.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発酵アルコール等から、高純度のアルコール
を省エネルギー的に濃縮精製し得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for concentrating and purifying highly pure alcohol from fermented alcohol and the like in an energy-saving manner.

〔従来の技術〕[Conventional technology]

甘しよ、さつまいも、とうもろこし等の炭水化物を原料
とする発酵アルコールは、飲料用及び工業用として重要
な出発原料であるが、発酵法で得られるアルコール水溶
液のアルコール濃度は10〜20 wt%と低いため、
約95〜100wt%まで濃縮する必要がある。
Fermented alcohol made from carbohydrates such as amashiyo, sweet potato, and corn is an important starting material for beverages and industrial use, but the alcohol concentration of the alcohol aqueous solution obtained by the fermentation method is as low as 10 to 20 wt%. For,
It is necessary to concentrate to about 95-100 wt%.

従来、この濃縮法として蒸留法が用いられてきたが、大
部分を占める水も80〜100℃まで昇温せねばならず
、経済的に不利であり、これに替わる省エネルギー型の
濃縮法の開発が望まれている。
Conventionally, distillation has been used as a concentration method, but water, which makes up most of the water, must be heated to 80 to 100°C, which is economically disadvantageous, so there is a need to develop an energy-saving concentration method instead. is desired.

従来、省エネルギー型の濃縮法として超臨界状態又は擬
臨界状態の炭酸ガス、エチレン、エタンを用いてアルコ
ールを水より抽出・分離して濃縮する方法が提案されて
いる。(特開昭56−56201及び同59−I A 
1528号公報)しかしながら、との方法で濃縮された
発酵アルコール中には高沸点不純物(04〜c5系フー
ゼル油)等の副生成物が混入しておセ、これらも分離除
去する必要があるが、この分離除去法として従来は蒸留
法による精留塔が用いられておシ、この際、濃縮アルコ
ールを再昇温し、蒸発及び凝縮を行なわぜねばならず熱
負荷が増大し、全体として省エネルギー的な方法とは云
えないという欠点があった。
BACKGROUND ART Conventionally, as an energy-saving concentration method, a method has been proposed in which alcohol is extracted and separated from water using carbon dioxide, ethylene, or ethane in a supercritical or quasi-critical state and concentrated. (Unexamined Japanese Patent Publications No. 56-56201 and No. 59-I A
(No. 1528) However, by-products such as high-boiling impurities (04-C5 fusel oil) are mixed into the fermented alcohol concentrated by the method, and these also need to be separated and removed. Conventionally, a rectification column using a distillation method has been used for this separation and removal method, but at this time, the concentrated alcohol has to be heated again and evaporated and condensed, increasing the heat load and reducing overall energy savings. The drawback was that it could not be called a standard method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記した超臨界状態又は擬臨界状態の炭酸ガス
、エチレン、エタンなどを用いてアルコールを水より分
離して得た濃縮アルコールから、省エネルギー的に実質
的に水、高沸点不純物を含まない濃縮アルコールを得る
方法を提供しようとするものである。
The present invention uses concentrated alcohol obtained by separating alcohol from water using carbon dioxide gas, ethylene, ethane, etc. in a supercritical or quasi-critical state, which is substantially free of water and high-boiling point impurities in terms of energy saving. It is intended to provide a method for obtaining concentrated alcohol.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明はアルコール、高沸点不純物からなる有
機液体溶質及び水とよりなる混合物に、溶解溶剤を加え
、該溶解溶剤の超臨界状態又は擬臨界状態になる条件で
接触させて混合物を形成させ、該混合物を第1抽出分離
槽に導いて、水を主成分とし大部分の高沸点不純物、一
部のアルコール、溶解溶剤を含有する重液と、溶解溶剤
を主成分とし大部分のアルコール、一部の高沸点不純物
を含有する軽液に分離させ、該軽液を該第1抽出分離槽
より抜出して不純物分離槽に導き、該不純物分離槽を減
圧させることにより実質的に高沸点不純物を含丑ず水分
が除去されたアルコールと実質的に水と高沸点不純物と
少量のアルコールを含有する液とに分離し、前者を濃縮
精製アルコールとして回収し、後者を前記第1抽出分離
槽からの重液と混合し、該混合液に再度前記溶解溶剤を
超臨界状態又は擬臨界状態になる条件で接触させて混合
物を形成させ、該混合物を第2抽出分離槽で実質的に水
と高沸点不純物よりなる重液と実質的に溶解溶剤とアル
コールよりなる軽液に分離し、後者を濃縮精製アルコー
ルとして更に回収することを特徴とするアルコールの濃
縮精製法である。
That is, the present invention adds a dissolving solvent to a mixture of alcohol, an organic liquid solute consisting of high-boiling point impurities, and water, and forms a mixture by contacting the dissolving solvent under conditions that bring the dissolving solvent into a supercritical or quasi-critical state. The mixture is led to a first extraction separation tank, and a heavy liquid containing water as the main component and most of the high-boiling point impurities, some alcohol, and a dissolving solvent, and a heavy liquid that is mainly composed of water and containing most of the alcohol and a dissolving solvent are separated. The light liquid is extracted from the first extraction separation tank and introduced into the impurity separation tank, and the pressure of the impurity separation tank is reduced to substantially contain the high-boiling impurities. The alcohol from which water has been removed is separated into a liquid containing substantially water, high-boiling point impurities, and a small amount of alcohol, the former is recovered as concentrated purified alcohol, and the latter is extracted from the first extraction and separation tank. The dissolving solvent is brought into contact with the mixed liquid again under conditions of a supercritical state or a quasi-critical state to form a mixture, and the mixture is substantially separated from water and high-boiling impurities in a second extraction separation tank. This is a method for concentrating and purifying alcohol, which is characterized by separating into a heavy liquid consisting of a dissolving solvent and a light liquid consisting essentially of a dissolving solvent and alcohol, and further recovering the latter as concentrated purified alcohol.

本発明で使用する溶解溶剤としては、アルコールを良く
溶かし、水及び重質不純物を溶かしKくい溶剤が用いら
れ、特開昭56〜56021号公報にみられる00.や
炭素数2〜4の02H4,4為のような炭化水素及びこ
れらの混合物などの他に、臨界温度がアルコールの沸点
以下である無機又は有機の溶剤又はこれらの混合溶剤が
使用可能である。下表に主な溶剤を示す。
The dissolving solvent used in the present invention is a K solvent that dissolves alcohol well and dissolves water and heavy impurities. In addition to hydrocarbons such as 02H4,4 having 2 to 4 carbon atoms, and mixtures thereof, inorganic or organic solvents having a critical temperature below the boiling point of alcohol, or mixed solvents thereof can be used. The table below shows the main solvents.

溶剤名      臨界温度 Co、         31.1 C,H,9,7 C!、HL13Z4 0、Fi692.3 (1,H896,8 0、H,。       152.0 溶解溶剤としては、臨界温度が常温に近い程、またアル
コールとの親和力の大きいもの程、省エネルギー効果が
大きいので好ましい。一般に溶解溶剤は原料アルコール
1重量部に対して2〜6重量部添加されるが、アルコー
ルとの親和力の大きい溶解溶剤の場合は、その添加量は
上記範囲より小にすることができる。
Solvent name Critical temperature Co, 31.1 C, H, 9,7 C! , HL13Z4 0, Fi692.3 (1, H896,8 0, H,. 152.0 As a dissolving solvent, the closer the critical temperature is to room temperature and the greater the affinity with alcohol, the greater the energy saving effect, so it is preferable Generally, the dissolving solvent is added in an amount of 2 to 6 parts by weight per 1 part by weight of the raw material alcohol, but in the case of a dissolving solvent having a high affinity with alcohol, the amount added can be smaller than the above range.

本発明にいう超臨界状態とは、溶解溶剤の臨界温度以上
かつ臨界圧力以上の温度、圧力条件での状態を意味し、
擬臨界状態とは、溶解溶剤の臨界温度Tc以下で、対臨
界温度Tr−T/To(但し0.90 (Tr(1,0
)の温度Tで、圧力はその温度における溶解溶剤の飽和
蒸気圧以上の状態を意味する。擬臨界状態では超臨界状
態より溶解溶剤の溶解度が増す場合があるが、溶解速度
は減少する傾向にある。
The supercritical state as used in the present invention refers to a state under temperature and pressure conditions that are higher than the critical temperature and critical pressure of the dissolving solvent,
A quasi-critical state is a temperature below the critical temperature Tc of the dissolving solvent, with respect to the critical temperature Tr-T/To (however, 0.90 (Tr(1,0
), the pressure means a state equal to or higher than the saturated vapor pressure of the dissolving solvent at that temperature. Although the solubility of the dissolving solvent may increase in the quasi-critical state compared to the supercritical state, the dissolution rate tends to decrease.

以下、本発明の一実施態様を第1図に従って詳述する。Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG.

第1図において、1は原料である発酵アルコールの供給
ライン、2は溶解溶剤の供給ライン、3は発酵アルコー
ルと溶解溶剤の混合フィン、4は混合器、5は第1抽出
分離器、6は重液取出しライン、7は軽液取出しライン
、8は減圧弁、9は不純物分離槽、10は高沸点不純物
取出しライン、11は低沸点成分(アルコール)取出し
ライン、12は高圧定量ポンプ、13は重液供給ライン
、14は溶解溶剤供給ライン、15は高沸点不純物供給
ライン、16は混合器、17は第2抽出分離器、18は
高沸点不純物取出しライン、19は低沸点成分(アルコ
ール)取出しライン、20は高圧定量ポンプである。
In FIG. 1, 1 is a supply line for fermentation alcohol as a raw material, 2 is a dissolution solvent supply line, 3 is a mixing fin for fermentation alcohol and dissolution solvent, 4 is a mixer, 5 is a first extraction separator, and 6 is a Heavy liquid extraction line, 7 is a light liquid extraction line, 8 is a pressure reducing valve, 9 is an impurity separation tank, 10 is a high boiling point impurity extraction line, 11 is a low boiling point component (alcohol) extraction line, 12 is a high pressure metering pump, 13 is Heavy liquid supply line, 14 is a dissolving solvent supply line, 15 is a high boiling point impurity supply line, 16 is a mixer, 17 is a second extraction separator, 18 is a high boiling point impurity extraction line, 19 is a low boiling point component (alcohol) extraction Line 20 is a high pressure metering pump.

供給ライン1より供給されたアルコール(例えば水:8
0〜90 vt%、アルコール類;10〜20 wt%
、04〜G5系フーゼル油などの高沸点不純物: Q、
 1 vrt%)と供給ライン2より供給された溶解溶
剤とは、図示省略の高圧ポンプで圧送されて混合ライン
3で混合され、図示省略の熱交換器で温度を調整されて
超臨界状態又は擬臨界状態となって混合器4中で更に十
分混合される。混合器4はラインミキサ又はスタチック
ミキサなどが好ましいが、混合ライン3中で十分混合さ
れるならば必ず混合器4は必要ではない。
Alcohol supplied from supply line 1 (e.g. water: 8
0-90 vt%, alcohol; 10-20 wt%
, high boiling point impurities such as 04-G5 fusel oil: Q,
1 vrt%) and the dissolving solvent supplied from the supply line 2 are pumped by a high-pressure pump (not shown) and mixed in the mixing line 3, and the temperature is adjusted by a heat exchanger (not shown) to reach a supercritical or pseudo-critical state. The mixture reaches a critical state and is further thoroughly mixed in the mixer 4. The mixer 4 is preferably a line mixer or a static mixer, but the mixer 4 is not necessarily required if sufficient mixing is achieved in the mixing line 3.

十分混合した液は、第1抽出分離槽5に送られ、溶解溶
剤が超臨界状態又は擬臨界状態になる条件下で十分接触
混合させられ、溶解溶剤を主成分とし濃縮された大部分
のアルコール、一部の高沸点不純物を含有する軽液と、
水を主成分とし大部分の高沸点不純物、一部のアルコー
ル、溶解溶剤を含有する重液とに分離される。
The sufficiently mixed liquid is sent to the first extraction separation tank 5, where it is sufficiently contacted and mixed under conditions where the dissolving solvent becomes supercritical or quasi-critical, and most of the concentrated alcohol containing the dissolving solvent as the main component is removed. , a light liquid containing some high-boiling point impurities,
It is separated into a heavy liquid, which is mainly composed of water and contains most high-boiling point impurities, some alcohol, and a dissolving solvent.

この第1抽出分離槽5は重力沈降槽が好ましいが、混合
と抽出とを同時に行なう充填塔又は棚段塔による向流抽
出分離も有利に使用することができる。
The first extraction separation tank 5 is preferably a gravity settling tank, but countercurrent extraction and separation using a packed column or plate column that performs mixing and extraction at the same time can also be advantageously used.

前記混合器4を含め、その後流は少なくとも溶解溶剤の
超臨界状態又は擬臨界状態にある。
The downstream stream including the mixer 4 is at least in a supercritical or quasi-critical state of the dissolving solvent.

すなわち混合器4では原料と溶解溶剤を十分に混合、接
触させ原料中のアルコールを溶解溶剤に抽出するが、溶
解溶剤の粘度及び表面張力を減少させ、拡散係数を増す
ことにより抽出速度を増大させることが好ましく、これ
は溶解溶剤を擬又は超臨界状態とすることによって達成
されるのである。抽出速度は超臨界状態の方が擬臨界状
態より速いので、抽出速度の点では前者の状態が好まし
い。
That is, in the mixer 4, the raw material and the dissolving solvent are sufficiently mixed and contacted to extract the alcohol in the raw material into the dissolving solvent, but the extraction rate is increased by decreasing the viscosity and surface tension of the dissolving solvent and increasing the diffusion coefficient. Preferably, this is achieved by bringing the dissolving solvent into a quasi- or supercritical state. Since the extraction rate is faster in the supercritical state than in the quasi-critical state, the former state is preferable in terms of extraction rate.

次に、該軽液は7より抜き出され減圧弁8で圧力を下げ
て、不純物分離槽9に導入される。
Next, the light liquid is extracted from 7, the pressure is lowered by a pressure reducing valve 8, and the light liquid is introduced into an impurity separation tank 9.

溶解溶剤の溶解度は、溶解溶剤の密度にほぼ比例してお
り、圧力を下げるか又は温度を上げることにより溶解溶
剤の密度が低下し溶解度が低下し、一方、高沸点の物質
程溶解度の低下割合は大きいので僅かな溶解溶剤の密度
低下により高沸点成分が選択的に相分離するという知見
を本発明者らは得ている。
The solubility of a dissolving solvent is approximately proportional to the density of the dissolving solvent, and by lowering the pressure or increasing the temperature, the density of the dissolving solvent decreases and the solubility decreases.On the other hand, the rate of decrease in solubility of substances with high boiling points decreases. The present inventors have obtained the knowledge that the high boiling point component selectively undergoes phase separation due to a slight decrease in the density of the dissolving solvent because of the large .

それ故、不純物分離槽?では、高沸点不純物(C’4〜
C6系フーゼル油)が先に相分離し、アルコールと分離
される。そのため、不純物分離槽9の上部11からは、
高沸点不純物が分離された濃縮アルコールが回収される
Therefore, an impurity separation tank? Then, high boiling point impurities (C'4~
C6 type fusel oil) undergoes phase separation first and is separated from alcohol. Therefore, from the upper part 11 of the impurity separation tank 9,
Concentrated alcohol from which high-boiling impurities have been separated is recovered.

不純物分離槽9の圧力は、飽和圧力以上とすべきである
。それ以下に減圧すると、溶解溶剤の気化熱が必要とな
シ経済的でない。
The pressure of the impurity separation tank 9 should be equal to or higher than the saturation pressure. If the pressure is reduced below that level, heat of vaporization of the dissolving solvent is required, which is not economical.

不純物分離槽9で相分離して高沸点不純物取出しライン
10から取出された高沸点不純物混合物は、一部の水と
アルコールを含んでおシ、アルコールは損失を防止する
ために回収する必要がある。そこでこの高沸点不純物混
合物は、前記第1抽出分離器5の重液取出しライン6か
ら取出される重液及び溶解溶剤供給ライン14から送供
される新たな溶解溶剤と混合器16で混合後、第2抽出
分離器17へ導入される。
The high-boiling impurity mixture phase-separated in the impurity separation tank 9 and taken out from the high-boiling impurity extraction line 10 contains some water and alcohol, and the alcohol needs to be recovered to prevent loss. . Therefore, this high-boiling point impurity mixture is mixed in the mixer 16 with the heavy liquid taken out from the heavy liquid take-out line 6 of the first extraction separator 5 and a new dissolving solvent sent from the dissolving solvent supply line 14. It is introduced into the second extraction separator 17.

第2抽出分離槽17の操作条件は、第1抽出分離槽5と
同等でも良いが、好ましくはアルコール類に対して水と
高沸点不純物が選択的に相分離する溶解溶剤の超臨界状
態で操作するのがよい。かかる操作により、第2抽出分
離槽17より実質的に水、高沸点不純物が含まれないア
ルコールが低沸点成分取出しライン19より回収され、
損失を防止できることが見出された。
The operating conditions of the second extraction separation tank 17 may be the same as those of the first extraction separation tank 5, but it is preferably operated in a supercritical state of a dissolving solvent in which water and high-boiling impurities selectively phase separate from alcohols. It is better to do so. Through this operation, alcohol substantially free of water and high-boiling point impurities is recovered from the second extraction separation tank 17 through the low-boiling point component extraction line 19,
It has been found that losses can be prevented.

上記操作において、重液供給ライン13、溶解溶剤供給
ライン14及び高沸点不純物供給ライン15の交点にお
ける液は、超(擬)臨界状態になるようにすべきである
。そのため第1抽出分離器5からの重液取出しライン6
及び不純物分離槽9からの高沸点不純物取出しライン1
0にはそれぞれ高圧定量ポンプ12及び20が設けられ
ている。
In the above operation, the liquid at the intersection of the heavy liquid supply line 13, the dissolving solvent supply line 14, and the high boiling point impurity supply line 15 should be brought into a super(pseudo)critical state. Therefore, the heavy liquid extraction line 6 from the first extraction separator 5
and high boiling point impurity extraction line 1 from impurity separation tank 9
0 are provided with high pressure metering pumps 12 and 20, respectively.

実施例1゜ エタノール10 wt%、04〜へ系フーゼル油α1v
t%、H,089,9wt%の混合物1重量部に、溶解
溶剤としてCO,を6重量部加え、圧力110atm 
、温度40℃の超臨界状態で40分間接触させ、重力沈
降槽で軽液と重液に分離した。
Example 1゜Ethanol 10 wt%, 04~he system fusel oil α1v
6 parts by weight of CO as a dissolving solvent was added to 1 part by weight of a mixture of 9 wt % and 9 wt % of H, and the pressure was 110 atm.
The liquid was brought into contact for 40 minutes in a supercritical state at a temperature of 40°C, and separated into a light liquid and a heavy liquid in a gravity settling tank.

次に、軽液を重力沈降槽上部より抜き出し、不純物分離
槽に導入し、温度は40℃のままで圧力を110 at
mから80 atmに減圧し、C番〜へ系フーゼル油と
水及びエタノールを含む不純物混合物が相分離槽下部よ
り取り出された。相分離槽内残存物を分析したところ、
CO,以外の組成はエタノール80%、水20%、”L
〜(1フーゼル油検出限界以下であシ、エタノールが濃
縮された。
Next, the light liquid was extracted from the upper part of the gravity settling tank and introduced into the impurity separation tank, and the pressure was increased to 110 at while keeping the temperature at 40°C.
The pressure was reduced from m to 80 atm, and an impurity mixture containing fusel oil, water, and ethanol was taken out from the lower part of the phase separation tank. Analysis of the residue in the phase separation tank revealed that
The composition other than CO is 80% ethanol, 20% water, "L"
~(1 below the fusel oil detection limit) Ethanol was concentrated.

次に、前記不純物混合物と重液を混合し、該混合物1重
量部に、溶解溶剤としてCO,を6重量部加え、圧力9
0 atm 、温度40℃で接触させ重力沈降槽で軽液
と重液に分離した。軽液を分析したところ、CO,以外
の組成はエタノール70%、水30%、04〜c5系フ
ーゼル油検出限界以下でアシ、製品として回収できるこ
とが見出された。
Next, the impurity mixture and the heavy liquid were mixed, 6 parts by weight of CO, as a dissolving solvent was added to 1 part by weight of the mixture, and the pressure was 9 parts by weight.
They were brought into contact at 0 atm and a temperature of 40°C and separated into a light liquid and a heavy liquid in a gravity settling tank. When the light liquid was analyzed, it was found that the composition other than CO was 70% ethanol, 30% water, and that it could be recovered as a product under the detection limit of 04-C5 fusel oil.

実施例Z エタノール10wt%、C4〜C2系フーゼル油Q、 
1 vt%、%089.9 wt%の混合物1重量部に
1溶解溶剤として00.を6重量部加え、圧力110a
tm 1温度20℃の擬臨界状態で40分間接触させ、
重力沈降槽で軽液と重液に分離した。
Example Z 10 wt% ethanol, C4-C2 fusel oil Q,
1 vt%, %00.00 as 1 part by weight of a mixture of 89.9 wt% as a dissolving solvent. Add 6 parts by weight of
tm 1 in a quasi-critical state at a temperature of 20°C for 40 minutes,
It was separated into light liquid and heavy liquid in a gravity settling tank.

次に、軽液を重力沈降槽上部より抜き出し、不純物分離
槽に導入し、温度は40℃に加熱し圧力を110 at
mから80 atmに減圧し、04〜ち系7−ゼル油と
水及びエタノールを含む不純物混合物が相分離槽下部よ
り取シ出された。相分離槽内残存物を分析したところ、
CO,以外の組成はエタノール80%、水20%、04
〜C6系フーゼル油検出限界以下であシ、エタノールが
濃縮された。
Next, the light liquid is extracted from the upper part of the gravity settling tank and introduced into the impurity separation tank, where it is heated to a temperature of 40°C and a pressure of 110 at.
The pressure was reduced from m to 80 atm, and an impurity mixture containing 7-gel oil, water, and ethanol was taken out from the bottom of the phase separation tank. Analysis of the residue in the phase separation tank revealed that
Composition other than CO: 80% ethanol, 20% water, 04
~ C6 fusel oil detection limit or below, ethanol was concentrated.

次に1前記不純物理合物と重液を混合し、該混合物1重
量部に、溶解溶剤としてCO,を6重量部加え、圧力9
0 atm 、温度40℃で接触させ重力沈降槽で軽液
と重液に分離した。軽液を分析したところ、CO!以外
の組成はエタノール68%、水32%、C,〜へ系フー
ゼル油検出限界以下であシ、製品として回収できること
が見出された。
Next, mix the impure physical compound and heavy liquid 1, add 6 parts by weight of CO as a dissolving solvent to 1 part by weight of the mixture, and press 9
They were brought into contact at 0 atm and a temperature of 40°C and separated into a light liquid and a heavy liquid in a gravity settling tank. When the light liquid was analyzed, CO! It was found that the remaining composition was 68% ethanol, 32% water, and below the detection limit for C, ~, -based fusel oil, and could be recovered as a product.

〔本発明の効果〕[Effects of the present invention]

本発明は、以上詳記したようにアルコール、水、高沸点
不純物の混合物を、臨界付近の溶解溶剤を使用し常温付
近で圧力を2段階に制御して、これらの混合物を分離す
るものであシ、分離速度が早く装置のコンパクト化が可
能となるとともに1熱的負荷が軽減されて省エネルギー
効果を生ずるものである。
As detailed above, the present invention separates a mixture of alcohol, water, and high-boiling point impurities by controlling the pressure in two stages at around room temperature using a near-critical dissolving solvent. Second, the separation speed is fast, the device can be made more compact, and the thermal load is reduced, resulting in an energy-saving effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施するためのフローシートである
。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫
FIG. 1 is a flow sheet for implementing the present invention. Sub-Agents 1) Meifuku Agent Ryo Hagiwara − Sub-Agent Atsuo Anzai

Claims (1)

【特許請求の範囲】[Claims] アルコール、高沸点不純物からなる有機液体溶質及び水
とよりなる混合物に、溶解溶剤を加え、該溶解溶剤の超
臨界状態又は擬臨界状態になる条件で接触させて混合物
を形成させ、該混合物を第1抽出分離槽に導いて、水を
主成分とし大部分の高沸点不純物、一部のアルコール、
溶解溶剤を含有する重液と、溶解溶剤を主成分とし大部
分のアルコール、一部の高沸点不純物を含有する軽液に
分離させ、該軽液を該第1抽出分離槽より抜出して不純
物分離槽に導き、該不純物分離槽を減圧させることによ
り実質的に高沸点不純物を含まず水分が除去されたアル
コールと実質的に水と高沸点不純物と少量のアルコール
を含有する液とに分離し、前者を濃縮精製アルコールと
して回収し、後者を前記第1抽出分離槽からの重液と混
合し、該混合液に再度前記溶解溶剤を超臨界状態又は擬
臨界状態になる条件で接触させて混合物を形成させ、該
混合物を第2抽出分離槽で実質的に水と高沸点不純物よ
りなる重液と実質的に溶解溶剤とアルコールよりなる軽
液に分離し、後者を濃縮精製アルコールとして更に回収
することを特徴とするアルコールの濃縮精製法。
A dissolving solvent is added to a mixture consisting of alcohol, an organic liquid solute consisting of a high-boiling point impurity, and water, and the dissolving solvent is brought into contact with the mixture in a supercritical or quasi-critical state to form a mixture. 1. The main component is water, most of the high boiling point impurities, some alcohol,
Separate into a heavy liquid containing the dissolving solvent and a light liquid containing the dissolving solvent as the main component, most of the alcohol, and some high-boiling point impurities, and extract the light liquid from the first extraction separation tank to separate impurities. The alcohol is introduced into a tank, and the impurity separation tank is depressurized to separate alcohol from which water is removed and which does not substantially contain high-boiling impurities, and a liquid containing substantially water, high-boiling impurities, and a small amount of alcohol; The former is recovered as concentrated purified alcohol, the latter is mixed with the heavy liquid from the first extraction and separation tank, and the dissolving solvent is brought into contact with the mixed liquid again under conditions to reach a supercritical state or a quasi-critical state to form a mixture. and separating the mixture into a heavy liquid consisting essentially of water and high-boiling impurities and a light liquid consisting essentially of a dissolving solvent and alcohol in a second extraction separation tank, and further recovering the latter as concentrated purified alcohol. A method for concentrating and purifying alcohol, which is characterized by:
JP60165977A 1985-07-29 1985-07-29 Method of concentrating and purifying alcohol Pending JPS6225983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60165977A JPS6225983A (en) 1985-07-29 1985-07-29 Method of concentrating and purifying alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165977A JPS6225983A (en) 1985-07-29 1985-07-29 Method of concentrating and purifying alcohol

Publications (1)

Publication Number Publication Date
JPS6225983A true JPS6225983A (en) 1987-02-03

Family

ID=15822591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165977A Pending JPS6225983A (en) 1985-07-29 1985-07-29 Method of concentrating and purifying alcohol

Country Status (1)

Country Link
JP (1) JPS6225983A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249741A (en) * 1988-08-12 1990-02-20 Tsuushiyousangiyoushiyou Kiso Sangiyoukiyokuchiyou Method for purifying and concentrating aqueous solution of crude ethanol
US5053563A (en) * 1987-07-24 1991-10-01 Minister Of International Trade & Industry Method to concentrate and purify alcohol
WO1992021638A1 (en) * 1991-06-07 1992-12-10 Japan As Represented By Director-General, Basic Industries Bureau Of Ministry Of International Trade And Industry Process for purifying aqueous crude ethanol solution
US5250271A (en) * 1987-07-24 1993-10-05 Minister Of International Trade & Industry Apparatus to concentrate and purify alcohol
EP0728721A2 (en) * 1995-02-24 1996-08-28 Mitsui Toatsu Chemicals, Inc. Process for producing isopropyl alcohol
SG50572A1 (en) * 1995-02-24 2003-07-18 Mitsui Chemicals Inc Process for producing isopropyl alcohol

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053563A (en) * 1987-07-24 1991-10-01 Minister Of International Trade & Industry Method to concentrate and purify alcohol
US5250271A (en) * 1987-07-24 1993-10-05 Minister Of International Trade & Industry Apparatus to concentrate and purify alcohol
JPH0249741A (en) * 1988-08-12 1990-02-20 Tsuushiyousangiyoushiyou Kiso Sangiyoukiyokuchiyou Method for purifying and concentrating aqueous solution of crude ethanol
JPH0512332B2 (en) * 1988-08-12 1993-02-17 Tsusho Sangyosho Kiso Sangyo Kyokucho
WO1992021638A1 (en) * 1991-06-07 1992-12-10 Japan As Represented By Director-General, Basic Industries Bureau Of Ministry Of International Trade And Industry Process for purifying aqueous crude ethanol solution
US5284983A (en) * 1991-06-07 1994-02-08 Basic Industries Bureau of Ministry of International Trade and Industry Process for purifying aqueous crude ethanol solution
EP0728721A2 (en) * 1995-02-24 1996-08-28 Mitsui Toatsu Chemicals, Inc. Process for producing isopropyl alcohol
EP0728721A3 (en) * 1995-02-24 1997-01-22 Mitsui Toatsu Chemicals Process for producing isopropyl alcohol
US5763693A (en) * 1995-02-24 1998-06-09 Mitsui Chemicals, Inc. Process for producing isopropyl alcohol
SG50572A1 (en) * 1995-02-24 2003-07-18 Mitsui Chemicals Inc Process for producing isopropyl alcohol

Similar Documents

Publication Publication Date Title
US5294304A (en) Process for the recovery of absolute ethanol by vapor compression extractive distillation
JPH04193304A (en) Condensing and refining method for alcohol
US8460517B2 (en) Methods and apparatuses for steam addition to a reboiler coupled to an extractive distillation column for improved extractive distillation
US4956052A (en) Process for separation using supercritical fluid
EP0459627A1 (en) Method for removal of dimethyl ether and methanol from C4 hydrocarbon streams
FR2509732A1 (en) PROCESS FOR RECOVERING, WITH A QUASI-CRITICAL OR SUPER-CRITICAL FLUID CONTAINING PARTICULARLY CARBON DIOXIDE, ETHYLENE OXIDE FROM AQUEOUS SOLUTIONS
JPS6225983A (en) Method of concentrating and purifying alcohol
JPS60104026A (en) Distillation post-treatment of 6-20 c atom higher alcohol containing water and methanol
MXPA02000788A (en) A method for the separation of and purification of an aqueous mixture consisting of the main components acetic acid and formic acid.
JPS6225984A (en) Method of concentrating and purifying alcohol
JPS60149582A (en) Purification of tocopherol
JPS6225985A (en) Method of concentrating and purifying alcohol
Yanagiuchi et al. Separation and purification of indole from coal tar by supercritical fluid extraction
JPS6225982A (en) Method of concentrating and purifying alcohol
JPS6229990A (en) Purification of ethanol
JPH02184643A (en) Production of anhydrous alcohol
US2911452A (en) Process for separating butylenes from butanes
JPH0580458B2 (en)
EP0453569B1 (en) Manufacture of absolute alcohol
JPH035432A (en) Method for dehydrating alcohol with n-butane
JPH0578535B2 (en)
JPH0327336A (en) Dehydration of alcohol
JPS62240630A (en) Extraction of paraffin
JPH02184388A (en) Method and equipment for concentrating and purifying alcohol
JPH035431A (en) Method for dehydrating alcohol with propylene