JPH0327336A - Dehydration of alcohol - Google Patents

Dehydration of alcohol

Info

Publication number
JPH0327336A
JPH0327336A JP1160696A JP16069689A JPH0327336A JP H0327336 A JPH0327336 A JP H0327336A JP 1160696 A JP1160696 A JP 1160696A JP 16069689 A JP16069689 A JP 16069689A JP H0327336 A JPH0327336 A JP H0327336A
Authority
JP
Japan
Prior art keywords
solvent
alcohol
column
liquid phase
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1160696A
Other languages
Japanese (ja)
Other versions
JPH0536418B2 (en
Inventor
Yoshikazu Kano
加納 良和
Hirotoshi Horizoe
浩俊 堀添
Tetsuya Tanimoto
谷本 徹哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUUSHIYOUSANGIYOUSHIYOU KISO SANGIYOUKIYOKUCHIYOU
Original Assignee
TSUUSHIYOUSANGIYOUSHIYOU KISO SANGIYOUKIYOKUCHIYOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUUSHIYOUSANGIYOUSHIYOU KISO SANGIYOUKIYOKUCHIYOU filed Critical TSUUSHIYOUSANGIYOUSHIYOU KISO SANGIYOUKIYOKUCHIYOU
Priority to JP1160696A priority Critical patent/JPH0327336A/en
Publication of JPH0327336A publication Critical patent/JPH0327336A/en
Publication of JPH0536418B2 publication Critical patent/JPH0536418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To easily dehydrate an aqueous solution of an alcohol while remarkably saving the energy consumption by subjecting the solution to primary, secondary and tertiary concentration steps using propylene, propane, n-butane or i-butane as a solvent under different temperature and pressure conditions. CONSTITUTION:A 10-20wt.% aqueous solution of an alcohol is introduced through a line 2 into a counter-current extraction column 1 and a solvent such as propane is introduced into the column 1 through a line 25. The space in the column is maintained in super-critical state or a pseudo-critical state and both components are made to contact counter currently with each other. The solvent phase containing concentrated alcohol is extracted through a line 4. The solvent phase is passed through a cooler 5 and separated by a gravity precipitation tank 6 into a heavy liquid phase rich in water and a light liquid phase containing concentrated alcohol. After reducing the pressure of the latter phase below the upper critical pressure of the solvent, the light liquid phase is introduced into a solvent extraction column 13. A liquid mixture of anhydrous alcohol and solvent is extracted from the column bottom and a mixed vapor of water and solvent is discharged from the column top. The vapor is passed through a compressor 17 and the solvent is refluxed. Anhydrous alcohol having a purity of >=99.2% is produced by distilling the column bottom mixed liquid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルコールの精製濃縮方法に関し、合戊アルコ
ール、使用済アルコール水溶ηk及び発酵アルコール等
から高純度のアルコールを省エネルギー的に濃縮精製す
るのに適した方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for purifying and concentrating alcohol, and is a method for concentrating and purifying high-purity alcohol from synthetic alcohol, used alcohol aqueous solution ηk, fermented alcohol, etc. in an energy-saving manner. Regarding methods suitable for

〔従来の技術〕[Conventional technology]

甘しょ、さつまいも、とうもろこし等の炭水化物を原料
とする発酵アルコールは、飲利用及び工業用として重要
な出発原料であるが、発酵法で得られるアルコール水溶
液のアルコール濃度は10〜20wt%と低いため、約
95〜100wt%まで濃縮する必要がある。
Fermented alcohol made from carbohydrates such as cane, sweet potato, and corn is an important starting material for drinking and industrial use, but the alcohol concentration of the alcohol aqueous solution obtained by the fermentation method is as low as 10 to 20 wt%. It is necessary to concentrate to about 95-100 wt%.

従来、この濃縮法として蒸留法が用いられてきたが、大
部分を占める水も80〜100℃まで昇温せねばならず
、経済的に不利であり、これに替わる省エネルギー型の
濃縮法の開発が望まれている。
Conventionally, distillation has been used as a concentration method, but water, which makes up most of the water, must be heated to 80 to 100°C, which is economically disadvantageous, so there is a need to develop an energy-saving concentration method instead. is desired.

一方、省エネルギー型の濃縮法として超臨界状態又は擬
臨界状態の炭酸ガスを用いてアルコールを水より抽出・
分離して濃縮する方法が提案されている。(特開昭56
−56201及び同59−141528号公報) しかしながら、炭酸ガスを溶剤として用いた場合アルコ
ールの選択的抽出には限界があり、最大濃縮度は約91
wt%が限界であり、これ以上に濃縮することは不可能
であることが最近報告されている。又、炭酸ガス中への
アルコールの溶解度は十分に大きくないことより、大量
の炭酸ガス(10%アルコール水溶液1重量部に対して
15重量部以上)を必要とするという問題点があり、そ
の改善が望まれている。
On the other hand, as an energy-saving concentration method, alcohol can be extracted from water using carbon dioxide gas in a supercritical or quasi-critical state.
A method of separating and concentrating has been proposed. (Unexamined Japanese Patent Publication No. 56
-56201 and No. 59-141528) However, when carbon dioxide gas is used as a solvent, there is a limit to the selective extraction of alcohol, and the maximum concentration is approximately 91%.
It has recently been reported that wt% is the limit and it is impossible to concentrate beyond this limit. Furthermore, since the solubility of alcohol in carbon dioxide gas is not sufficiently high, there is a problem in that a large amount of carbon dioxide gas (15 parts by weight or more per 1 part by weight of a 10% alcohol aqueous solution) is required. is desired.

このため、現在、アルコールIl1度を向上させかつア
ルコール溶解度を大きくできる方法が望まれている。
For this reason, there is currently a need for a method that can improve the alcohol I1 degree and increase the alcohol solubility.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、アルコール濃縮度を91wt%以上に向上で
き、かつアルコール溶解度が大きくでき少量の溶剤量で
アルコールを濃縮回収できる経済的なアルコール濃縮方
法を提供しようとするものである。
The present invention aims to provide an economical method for concentrating alcohol that can improve alcohol concentration to 91 wt% or more, increase alcohol solubility, and concentrate and recover alcohol with a small amount of solvent.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は向流抽出格の上部よりアルコール及
び水を主戒分とする原判を下部よりプロパン、プロピレ
ン、n−ブタン及びi−ブタンよりなる群のうちの一つ
の溶剤を供給し、向流抽出塔内を該溶剤の超臨界状態又
は擬臨界状態に維持するようにして両者を向流で接触さ
せ、向流抽出塔上部より′a$1アルコールを含んだ溶
剤相を抜き出す一次脱水工程、該溶剤相を冷却し、水分
に富んだ重液相と′a縮アルコールを含んだ軽液相に重
力沈降分離し、該重液相は前記向流抽出塔上部へ還流す
る二次脱水工程、該軽液相の圧力を該溶剤の上部臨界圧
力以下に減圧後、溶剤抽出蒸留塔に導入し、塔底より実
質的に水分を含まないアルコールと溶剤の塔底混合液体
を、塔頂より実質的にアルコールを含まない水分と溶剤
の混合蒸気を各々抜き出す三次脱水工程、及び該塔底混
合液体を蒸留操作により溶剤とアルコールに分離する脱
溶剤工程から紅ることを特徴とするアルコールの脱水方
法である。
That is, in the present invention, a solvent containing alcohol and water as main components is supplied from the upper part of the countercurrent extractor, and one solvent from the group consisting of propane, propylene, n-butane, and i-butane is supplied from the lower part, Primary dehydration in which the solvent is kept in a supercritical or quasi-critical state in the countercurrent extraction column so that they are brought into contact with each other in countercurrent flow, and the solvent phase containing alcohol is extracted from the upper part of the countercurrent extraction column. Step, the solvent phase is cooled and separated by gravity sedimentation into a water-rich heavy liquid phase and a light liquid phase containing condensed alcohol, and the heavy liquid phase is refluxed to the upper part of the countercurrent extraction column for secondary dehydration. After reducing the pressure of the light liquid phase to below the upper critical pressure of the solvent, the light liquid phase is introduced into a solvent extraction distillation column, and the bottom mixed liquid of alcohol and solvent, which does not contain substantially water, is transferred from the bottom of the column to the top of the column. The alcohol is characterized by a tertiary dehydration step in which a mixed vapor of water and solvent that does not substantially contain alcohol is extracted, and a desolvation step in which the mixed liquid at the bottom of the column is separated into solvent and alcohol by a distillation operation. This is a dehydration method.

本発明は全てのアルコール水溶液のs i!精sに適用
しつるものであるが、その一例として発酵アルコールに
ついて云えばアルコール濃度は約10wt%前後で残り
は水である。又、合或アルコールではアルコール濃度は
約20wt%前後で残りは水である。
The present invention is suitable for all alcohol aqueous solutions. As an example of fermented alcohol, the alcohol concentration is approximately 10 wt%, with the remainder being water. Further, in the case of combined alcohol, the alcohol concentration is around 20 wt%, with the remainder being water.

一方、本発明で云う溶剤とは下記のものを云う。On the other hand, the solvent referred to in the present invention refers to the following.

プロピレン   Cslla     92    4
5,6プロパン    C,11。    !)6,8
   41.9n−ブタン  n−Cnll+。  l
52.2   37.5i  1タンi−C*ILo 
  135.1   :l6, 0又、本発明で云う溶
剤の超臨界状態とは溶剤の臨界温度Tc及び臨界圧カP
c以上の温度及び圧力に維持した状態であり、擬臨界状
態とはその臨界温度Tc以下であるが、80℃以上の温
度であり、圧力はその温度における溶剤の飽和蒸気圧以
上に保持した状態をいう。
Propylene Cslla 92 4
5,6 Propane C, 11. ! )6,8
41.9n-Butane n-Cnll+. l
52.2 37.5i 1tani-C*ILo
135.1: l6, 0 Also, the supercritical state of the solvent referred to in the present invention means that the critical temperature Tc and critical pressure P of the solvent are
A quasi-critical state is a state where the temperature and pressure are maintained at a temperature and pressure of 80°C or higher, and the quasi-critical state is a state where the temperature is below the critical temperature Tc but 80°C or higher, and the pressure is maintained at a level higher than the saturated vapor pressure of the solvent at that temperature. means.

以下、本発明の一実施例を第1図に従って詳述する。Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG.

第1図において、lは向流抽出塔(充填塔、棚役塔又は
多投抽出堪などが好ましい。)、2は原料であるアルコ
ールを含む水溶液の原利供給ライン、3は抽出残液〈水
が主戒分)の取出しライン、4は溶剤相(溶剤と1次濃
縮γルコール混合相)取出しライン、5は冷却器、6は
重力沈降槽、7は重液相(水が主或分で少量のアルコー
ル、溶剤を含む)取出しライン、8は軽液相(溶剤と2
次濃縮アルコール混合物)取出しライン、9は重力沈降
槽6内重液の液位調整弁、10は重力沈降槽6の圧力調
整弁、11は重液還流ライン、12は溶剤紬出塔原利仇
給ライン、13は溶剤抽出塔、l4は塔底混合液体(無
水アルコールと溶剤からなる)取出しライン、15は塔
底液位1!I 整弁、l6は塔頂蒸気(溶剤と水からな
る〉取出しライン、l7は圧縮機、18はりボイラー(
熱交換器)   19は水分離槽、20は水抜出しライ
ン、2lは溶剤抜出しライン、22.23は溶剤還流ラ
イン、24は溶剤加熱器、25は溶剤供給ラインである
In Fig. 1, 1 is a countercurrent extraction column (preferably a packed column, tray column, or multi-throw extraction tank), 2 is a raw material supply line for an aqueous solution containing alcohol as a raw material, and 3 is an extraction residual liquid. 4 is a solvent phase (solvent and primary concentrated γ alcohol mixed phase) extraction line, 5 is a cooler, 6 is a gravity settling tank, 7 is a heavy liquid phase (water is a main component) 8 is the light liquid phase (containing a small amount of alcohol and solvent), and 8 is the light liquid phase (containing a small amount of alcohol and solvent).
9 is a liquid level adjustment valve for the heavy liquid in the gravity settling tank 6, 10 is a pressure adjustment valve for the gravity settling tank 6, 11 is a heavy liquid reflux line, 12 is a solvent supply line line, 13 is a solvent extraction column, 14 is a line for taking out the mixed liquid at the bottom of the column (consisting of anhydrous alcohol and solvent), and 15 is a column bottom liquid level of 1! I valve control, l6 is the top steam (consisting of solvent and water) extraction line, l7 is the compressor, 18 beam boiler (
Heat exchanger) 19 is a water separation tank, 20 is a water extraction line, 2l is a solvent extraction line, 22.23 is a solvent reflux line, 24 is a solvent heater, and 25 is a solvent supply line.

原料のアルコール水溶液1重量部を原利仇給ライン2よ
り、又溶剤3〜6重量部を溶剤供給ライン25より向流
抽出塔1に供給し、該溶剤を超臨界状態又は擬臨界状態
でアルコール水溶液と向流接触させることにより、密度
の低い溶剤相は上昇しながらアルコール水溶液よりアル
コールを選択的に抽出し、溶剤相取出しライン4より軽
液として取り出される。
1 part by weight of an aqueous alcohol solution as a raw material is supplied to the countercurrent extraction column 1 from the raw material supply line 2 and 3 to 6 parts by weight of the solvent is supplied from the solvent supply line 25 to the countercurrent extraction column 1, and the solvent is converted into alcohol in a supercritical or pseudocritical state. By bringing it into countercurrent contact with the aqueous solution, the low-density solvent phase rises and selectively extracts alcohol from the alcohol aqueous solution, and is taken out as a light liquid through the solvent phase take-out line 4.

この際、温度の増加とともに該溶剤へのアルコールの溶
解度は増加するが、逆にアルコールの選択性は減少する
ので、本発明方法ではこの点を考慮し、使用する溶剤の
種類に応じて該向流抽出塔lの好ましい摸作条件の範囲
を設定すべきである。
At this time, as the temperature increases, the solubility of alcohol in the solvent increases, but conversely the selectivity of alcohol decreases, so the method of the present invention takes this point into consideration and adjusts the solubility according to the type of solvent used. A range of preferred operating conditions for the stream extraction column 1 should be established.

該向流抽出塔1では、アルコールはほぼ完全に抽出され
、抽出アルコール濃度は50〜90wt%程度に1次濃
縮すればよく、そのためには、温度は80℃以上とし、
圧力は使用溶剤の飽和蒸気圧以上又は臨界圧力以上にす
べきである。
In the countercurrent extraction column 1, alcohol is almost completely extracted, and the extracted alcohol concentration only needs to be primarily concentrated to about 50 to 90 wt%.
The pressure should be above the saturated vapor pressure or above the critical pressure of the solvent used.

次に、溶剤鞘取出しライン4から取出された溶剤相を冷
却器5で冷却することにより、重力分離槽6で重液相取
出しライン7からの重液相と軽液相取出しライン8から
の軽液相に相分離し、水が主成分で僅かなアルコールと
溶剤を含有する重液相と、溶剤が主成分で2次濃縮され
たアルコールを含有してい゛る軽液相に相分離する。冷
却温度は低ければ低い程、軽液相中のアルコール濃度は
高くなるが、アルコール濃度の最大値は約95wt%で
ありこれ以上は濃縮できむかった。
Next, by cooling the solvent phase taken out from the solvent sheath take-out line 4 in the cooler 5, the heavy liquid phase from the heavy liquid phase take-out line 7 and the light liquid phase from the light liquid phase take-out line 8 are separated in the gravity separation tank 6. The liquid phase separates into a heavy liquid phase containing water as the main component and a small amount of alcohol and solvent, and a light liquid phase containing solvent as the main component and secondary concentrated alcohol. The lower the cooling temperature, the higher the alcohol concentration in the light liquid phase, but the maximum alcohol concentration was about 95 wt%, and it was difficult to concentrate beyond this.

該重力沈降槽6の好ましい圧力は、前記向流抽出塔1と
同一で、好ましい温度は1次脱水工程より低くしなけれ
ばならぬが、その温度は溶剤の種類により異むり、軽液
相中のアルコール濃度が約95wt%になるように設定
すべきであるが、最終的には全体の熱エネルギーバラン
スから最適化するのが奸ましい。また、前記重液相は少
量のアルコールと溶剤を回収するために液位調整弁9、
重液還流ラインl1を介し核向流抽出塔lの上部付近へ
還流するのが奸ましい。
The preferred pressure of the gravity settling tank 6 is the same as that of the countercurrent extraction column 1, and the preferred temperature must be lower than that of the primary dehydration step, but the temperature varies depending on the type of solvent. The alcohol concentration should be set to about 95 wt%, but ultimately it is advisable to optimize it from the overall thermal energy balance. The heavy liquid phase also includes a liquid level adjustment valve 9 to recover a small amount of alcohol and solvent;
It is preferable to reflux the heavy liquid to the vicinity of the upper part of the nuclear countercurrent extraction column 1 via the heavy liquid reflux line 11.

次に、前記軽液相は圧力m整弁10で溶剤の臨界圧力以
下に減圧され、溶剤抽出蒸留塔l3に{』(給される。
Next, the light liquid phase is reduced in pressure to below the critical pressure of the solvent by a pressure regulating valve 10, and is fed to a solvent extractive distillation column 13.

溶剤抽出蒸留塔13上部の溶剤還流ライン22より後記
の工程から送られてくる溶剤をアルコールの抽出材とし
て溶剤抽出蒸留塔13に供給し抽出蒸留を行うことによ
り、″塔底混合液体取出しライン14より水分を実質的
に含まない飢水アルコールと溶剤の混合液体を塔頂蒸気
取出しラインl6よりアルコールを実質的に含まない水
分と溶剤の混合ガスを取出す。
By supplying the solvent sent from the process described below from the solvent reflux line 22 at the upper part of the solvent extractive distillation column 13 to the solvent extractive distilling column 13 as an alcohol extraction material and performing extractive distillation, the "column bottom mixed liquid take-off line 14 A mixed liquid of alcohol and solvent that does not substantially contain water is taken out from the top steam extraction line 16 as a mixed gas of water and solvent that does not substantially contain alcohol.

該塔底混合液体取出しライン14からの混合液体は、沸
点が大幅に異八る2戒分系(アルコールと溶剤)であり
通常の蒸留により容易に無水アルコールと溶剤に分離で
き、実質的に水分及び溶剤を含まない無水アルコールが
得られる。
The mixed liquid from the bottom mixed liquid extraction line 14 is a two-component system (alcohol and solvent) with greatly different boiling points, and can be easily separated into anhydrous alcohol and solvent by ordinary distillation, and is substantially water-free. and solvent-free absolute alcohol are obtained.

溶剤抽出塔l3においては、溶剤を、溶剤の蒸気と液が
共存する状態に保持し、溶剤の蒸気と液が共存する条件
下でアルコール水溶液と接触させると、アルコールは親
和力の差異により選択的に溶剤に抽出され、更にアルコ
ールに対して溶剤が多量に液相中に存在する条件下では
、水分は液相に殆んど溶解せず、溶剤蒸気相中の水分濃
度が水の飽和濃度以下にむるような条件を設定すると、
水分を溶剤蒸気相へ選択的に移行させることができる。
In the solvent extraction column 13, the solvent is maintained in a state where the solvent vapor and liquid coexist, and when it is brought into contact with an alcohol aqueous solution under the conditions where the solvent vapor and liquid coexist, the alcohol is selectively extracted due to the difference in affinity. Under conditions where water is extracted with a solvent and a large amount of solvent is present in the liquid phase relative to the alcohol, water is hardly dissolved in the liquid phase and the water concentration in the solvent vapor phase falls below the saturation concentration of water. If you set conditions such that
Moisture can be selectively transferred to the solvent vapor phase.

かくして溶剤を媒体にアルコールと水の分離ができ、無
水アルコールが得られる。
In this way, alcohol and water can be separated using a solvent, and anhydrous alcohol can be obtained.

抽出蒸留塔13内で溶剤の蒸気は液が共存する条件とす
るためには、温度は溶剤の臨界温度Tc以下で、圧力は
この温度における液相組或に対応した平衡蒸気圧(最大
値は溶剤の臨界圧力Pc )にすべきである。
In order to make the solvent vapor coexist with the liquid in the extractive distillation column 13, the temperature must be below the critical temperature Tc of the solvent, and the pressure must be equal to the liquid phase composition at this temperature or the corresponding equilibrium vapor pressure (the maximum value is The critical pressure of the solvent should be Pc).

なお、溶剤還流ライン22からの溶剤の量は溶剤抽出塔
原料供給ラインl2からの原料中のアルコール濃度、製
品アルコール濃度により変えるべきであり、溶剤還流ラ
イン22からの溶剤の量は抽出蒸留塔13の段数により
一般の蒸留と同じように化学工学的手法により経済的?
,C量に決定されるべきである。
Note that the amount of solvent from the solvent reflux line 22 should be changed depending on the alcohol concentration in the raw material from the solvent extraction column raw material supply line 12 and the product alcohol concentration, Is it economical due to the chemical engineering method like general distillation due to the number of stages?
, C amount should be determined.

抽出蒸留塔13の塔頂蒸気取出しライン16からの塔頂
蒸気(溶剤と水からなり、実質的にアルコールを含まな
い)は、圧縮機17で再圧縮された後、その断熱圧縮熱
を、該抽出蒸留塔13のリボイラー18の熱源として利
用後、水分fi槽19で水抜出しライン20、溶剤抜出
しライン21により水と溶剤に分離後、溶剤還流ライン
22及び23により溶剤を循環使用する。
The overhead vapor (consisting of solvent and water and substantially free of alcohol) from the overhead vapor take-off line 16 of the extractive distillation column 13 is recompressed in the compressor 17, and then its heat of adiabatic compression is transferred to the After being used as a heat source for the reboiler 18 of the extractive distillation column 13, water and solvent are separated in the water fi tank 19 through a water withdrawal line 20 and a solvent withdrawal line 21, and then the solvent is circulated and used through solvent reflux lines 22 and 23.

抽出蒸留塔13の塔頂と塔底の温度差は4〜10℃と小
さく圧11機l7の少ない圧縮比によりリボイラー18
で熱交換可能で既存の蒸留法に較べて大幅にエネルギー
の節約ができる。
The temperature difference between the top and bottom of the extractive distillation column 13 is 4 to 10°C, and the reboiler 18
This allows for heat exchange, resulting in significant energy savings compared to existing distillation methods.

なお、溶剤還流ライン23の溶剤は冷却器5で熱を与え
られ、加熱器24で温度を調整後溶剤供給ライン25よ
り向流抽出塔1の下部から供給される。
The solvent in the solvent reflux line 23 is given heat by the cooler 5, and after its temperature is adjusted by the heater 24, it is supplied from the lower part of the countercurrent extraction column 1 through the solvent supply line 25.

以下、本発明の実施例をあげて本発明を詳細に説明する
Hereinafter, the present invention will be explained in detail by giving examples of the present invention.

(実施例l) 第2図に示すように、アルコールlOwt%、水90w
t%からなる原利を原利供給ライン2より1 kg /
 hの流量で向流抽出塔〈内径50+nm、高さ4m)
1の上部より、又、プロパン溶剤を5 kg / hの
流量で下部の溶剤イ』(給ライン25より供給し、向流
抽出操作を温度130℃、圧力1 0 0 kg/cd
Gで行った。
(Example 1) As shown in Figure 2, alcohol 10wt%, water 90w
1 kg/1 kg of raw material consisting of t% from raw material supply line 2
Countercurrent extraction column with a flow rate of h (inner diameter 50+nm, height 4m)
Propane solvent was supplied from the upper part of No. 1 at a flow rate of 5 kg/h to the lower solvent No. 1 (supply line 25), and the countercurrent extraction operation was carried out at a temperature of 130°C and a pressure of 100 kg/cd.
I went with G.

次に、向流抽出塔1の塔頂の溶剤相取出しライン4から
取出された溶剤相は熱交換器5で60℃に冷却され、重
力沈降槽6で軽液と重液に分離し、重液は向流抽出塔上
部へ重液還流ラインl1より全量還流させた。軽液は圧
力調整弁IOにより圧力1 0 0 kg/cofGか
ら圧力19kg / a+f Gに減圧後、抽出蒸留塔
13の中部へ導入され、その塔頂の溶剤ライン22より
プロパン溶剤を2.5kg/hで供給し、プロパンによ
る抽出蒸留を行った。
Next, the solvent phase taken out from the solvent phase take-off line 4 at the top of the countercurrent extraction tower 1 is cooled to 60°C in a heat exchanger 5, separated into a light liquid and a heavy liquid in a gravity settling tank 6, and then separated into a heavy liquid and a heavy liquid. The entire amount of the liquid was refluxed to the upper part of the countercurrent extraction tower through the heavy liquid reflux line 11. After reducing the pressure of the light liquid from 100 kg/cofG to 19 kg/a+fG by the pressure regulating valve IO, it is introduced into the middle of the extractive distillation column 13, and 2.5 kg/cof of propane solvent is introduced from the solvent line 22 at the top of the column. Extractive distillation with propane was carried out.

この結果、第2図に示すような物質収支となり、原料1
0wt%アルコールは、1次濃縮で80wt%、2次濃
縮で95wt%、最終の3次濃縮で9 9. 9 wt
%にまで濃縮され、無水アルコールとプロパン混合物が
塔底混合液体取出しラインl4より得られた。
As a result, the material balance is as shown in Figure 2, and the raw material 1
0wt% alcohol is 80wt% in the first concentration, 95wt% in the second concentration, and 9% in the final tertiary concentration.9. 9wt
%, and a mixture of absolute alcohol and propane was obtained from the bottom mixed liquid take-off line 14.

無水アルコールとブロバンは共沸点がなく、又沸点差が
大きく通常の蒸留操作により完全に分離できた。
Anhydrous alcohol and broban have no azeotropic point and have a large difference in boiling point, so they can be completely separated by normal distillation.

一方、アルコール損失は全工程を通じてみられなかった
On the other hand, no alcohol loss was observed throughout the entire process.

又、抽出蒸留塔13の塔頂及び塔底温度は各々57℃及
び61℃と小さく、塔頂ガスの再圧縮熱を利用したヒー
トボンプシステムにとって非常に有利であり、圧縮機の
わすかむ圧縮比によりリボイラーの熱源を全量補入るこ
とが、プロセスシミュレーションによりWt KBされ
、全工程の所要エネルギーは約8 0 0 kcal/
kg ・エタノールとなり、既存蒸留法の約173  
〜1/5の省エネルギーが達せられることがわかった。
In addition, the top and bottom temperatures of the extractive distillation column 13 are as low as 57°C and 61°C, respectively, which is very advantageous for a heat pump system that utilizes the heat of recompression of the top gas, and the low compression ratio of the compressor. According to the process simulation, the total amount of heat source for the reboiler is supplemented by Wt KB, and the energy required for the entire process is approximately 800 kcal/
kg ・Ethanol, which is approximately 173 kg compared to the existing distillation method.
It was found that an energy saving of ~1/5 can be achieved.

(実施例2) 実施例1において、溶剤としてプロパンの他にプロピレ
ン、n−ブタン及びi−ブタンを用い、向流抽出塔、重
力沈降槽、抽出蒸留塔の温度、圧力を変えた試験を行な
い、好ましい温度及び圧力の範囲を把題した。
(Example 2) In Example 1, a test was conducted using propylene, n-butane, and i-butane in addition to propane as the solvent, and changing the temperature and pressure of the countercurrent extraction column, gravity settling tank, and extractive distillation column. , the preferred temperature and pressure ranges have been summarized.

(比較例) 実施例lにおいて、溶剤としてC01、エタン、n−へ
キサン、ベンゼンを用いた試験を行なったが、表2に示
すように無水アルコールは得られむかった。
(Comparative Example) In Example 1, a test was conducted using C01, ethane, n-hexane, and benzene as solvents, but as shown in Table 2, it was difficult to obtain anhydrous alcohol.

〔発明の効果〕〔Effect of the invention〕

本発明は以上詳記したようにアルコール演度10〜20
wt%の水溶液から水分を分離して無水アルコールを製
造するに際し、特定の溶剤(プロピレン、プロパン、n
−ブタン、i−ブタン)を用い、その溶剤としての特定
の特性を温度、圧力を変化させ巧みに利用すにことによ
り1次、2次、及び3次濃縮を行ない、容易に専売法及
びJIS規格を満Iこすアルコール濃度(99.2wt
%以上の無水アルコールが得られ、かつ、既存の蒸留法
に較べて、溶剤の圧縮熱をリボイラー熱源に利用するヒ
ートボンブシステムにより大幅な省エネルギーができる
という効果を奏する。
As detailed above, the present invention has an alcohol content of 10 to 20.
When producing anhydrous alcohol by separating water from a wt% aqueous solution, certain solvents (propylene, propane, n
-butane, i-butane), and by skillfully utilizing its specific properties as a solvent by changing temperature and pressure, it is possible to perform primary, secondary, and tertiary concentration, easily complying with the proprietary method and JIS. Alcohol concentration that meets the standard (99.2wt)
% or more of anhydrous alcohol can be obtained, and compared to existing distillation methods, the heat bomb system uses the compression heat of the solvent as a reboiler heat source, resulting in significant energy savings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するためのプロセスフロー、第2
図は実施例1の結果を示すプロセスフロー及び物質収支
を示す図である。
Figure 1 is a process flow for implementing the present invention;
The figure is a diagram showing the process flow and material balance showing the results of Example 1.

Claims (1)

【特許請求の範囲】[Claims] (1)向流抽出塔の上部よりアルコール及び水を主成分
とする原料を下部よりプロパン、プロピレン、n−ブタ
ン及びi−ブタンよりなる群のうちの一つの溶剤を供給
し、向流抽出塔内を該溶剤の超臨界状態又は擬臨界状態
に維持するようにして両者を向流で接触させ、向流抽出
塔上部より濃縮アルコールを含んだ溶剤相を抜き出す一
次脱水工程、該溶剤相を冷却し、水分に富んだ重液相と
濃縮アルコールを含んだ軽液相に重力沈降分離し、該重
液相は前記向流抽出塔上部へ還流する二次脱水工程、該
軽液相の圧力を該溶剤の上部臨界圧力以下に減圧後、溶
剤抽出蒸留塔に導入し、塔底より実質的に水分を含まな
いアルコールと溶剤の塔底混合液体を、塔頂より実質的
にアルコールを含まない水分と溶剤の混合蒸気を各々抜
き出す三次脱水工程、及び該塔底混合液体を蒸留操作に
より溶剤とアルコールに分離する脱溶剤工程からなるこ
とを特徴とするアルコールの脱水方法。
(1) A raw material mainly consisting of alcohol and water is supplied from the upper part of the counter-current extraction tower, and one solvent from the group consisting of propane, propylene, n-butane, and i-butane is supplied from the lower part of the counter-current extraction tower. A primary dehydration step in which the solvent phase is brought into contact with each other in a countercurrent state while maintaining the inside of the solvent in a supercritical state or a quasi-critical state, and a solvent phase containing concentrated alcohol is extracted from the upper part of the countercurrent extraction column, and the solvent phase is cooled. Then, a heavy liquid phase rich in moisture and a light liquid phase containing concentrated alcohol are separated by gravity sedimentation, and the heavy liquid phase is refluxed to the upper part of the countercurrent extraction column in a secondary dehydration step, in which the pressure of the light liquid phase is reduced. After reducing the pressure to below the upper critical pressure of the solvent, it is introduced into a solvent extraction distillation column, and the bottom mixed liquid of alcohol and solvent, which does not contain substantially water, is transferred from the bottom of the column, and water, which does not contain substantially alcohol, is transferred from the top of the column. 1. A method for dehydrating alcohol, comprising a tertiary dehydration step in which a mixed vapor of and a solvent is extracted, and a desolvation step in which the mixed liquid at the bottom of the column is separated into a solvent and alcohol by a distillation operation.
JP1160696A 1989-06-26 1989-06-26 Dehydration of alcohol Granted JPH0327336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160696A JPH0327336A (en) 1989-06-26 1989-06-26 Dehydration of alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160696A JPH0327336A (en) 1989-06-26 1989-06-26 Dehydration of alcohol

Publications (2)

Publication Number Publication Date
JPH0327336A true JPH0327336A (en) 1991-02-05
JPH0536418B2 JPH0536418B2 (en) 1993-05-31

Family

ID=15720494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160696A Granted JPH0327336A (en) 1989-06-26 1989-06-26 Dehydration of alcohol

Country Status (1)

Country Link
JP (1) JPH0327336A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0728721A2 (en) * 1995-02-24 1996-08-28 Mitsui Toatsu Chemicals, Inc. Process for producing isopropyl alcohol
SG50572A1 (en) * 1995-02-24 2003-07-18 Mitsui Chemicals Inc Process for producing isopropyl alcohol
JP2008299224A (en) * 2007-06-01 2008-12-11 Kyoritsu Denki Kk Vibration method for evaluating camera shake correcting function
CN102040471A (en) * 2010-11-16 2011-05-04 广东中科天元新能源科技有限公司 Distillation dehydration device and process for co-producing ethanol fuels and custom grade edible alcohols
WO2016080531A1 (en) * 2014-11-20 2016-05-26 国立大学法人名古屋大学 Method for concentrating and dehydrating butanol

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0728721A2 (en) * 1995-02-24 1996-08-28 Mitsui Toatsu Chemicals, Inc. Process for producing isopropyl alcohol
EP0728721A3 (en) * 1995-02-24 1997-01-22 Mitsui Toatsu Chemicals Process for producing isopropyl alcohol
US5763693A (en) * 1995-02-24 1998-06-09 Mitsui Chemicals, Inc. Process for producing isopropyl alcohol
SG50572A1 (en) * 1995-02-24 2003-07-18 Mitsui Chemicals Inc Process for producing isopropyl alcohol
JP2008299224A (en) * 2007-06-01 2008-12-11 Kyoritsu Denki Kk Vibration method for evaluating camera shake correcting function
CN102040471A (en) * 2010-11-16 2011-05-04 广东中科天元新能源科技有限公司 Distillation dehydration device and process for co-producing ethanol fuels and custom grade edible alcohols
WO2016080531A1 (en) * 2014-11-20 2016-05-26 国立大学法人名古屋大学 Method for concentrating and dehydrating butanol

Also Published As

Publication number Publication date
JPH0536418B2 (en) 1993-05-31

Similar Documents

Publication Publication Date Title
JPH04193304A (en) Condensing and refining method for alcohol
US5294304A (en) Process for the recovery of absolute ethanol by vapor compression extractive distillation
US3745092A (en) Recovery and purification of ethylene oxide by distillation and absorption
US4654123A (en) Dehydration of ethanol by extractive distillation
JPH01203496A (en) Method for continuously extracting organic mixture having high boiling point or no boiling point or coal or petroleum product and for continuous production of plant extract
US4529413A (en) Recovering dessicant-antifreeze from admixture with water and hydrogen sulfide
JPH0327336A (en) Dehydration of alcohol
US3173778A (en) Separation of gaseous mixtures including argon
US2526508A (en) Recovery of fatty acids from dilute aqueous solutions
US2565568A (en) Formaldehyde purification
CA2022637A1 (en) Method of removal of acid components from a gas
JPH02184643A (en) Production of anhydrous alcohol
JPS6225985A (en) Method of concentrating and purifying alcohol
JPS6229990A (en) Purification of ethanol
JPS6229988A (en) Purification of ethanol from aqueous solution thereof
JPH035432A (en) Method for dehydrating alcohol with n-butane
JPH03157340A (en) Production of anhydrous alcohol
JPS6225983A (en) Method of concentrating and purifying alcohol
JPH035431A (en) Method for dehydrating alcohol with propylene
US4070253A (en) Process for separating solutions containing propylene oxide
JPH035433A (en) Method for dehydrating alcohol with i-butane
JPH0329393B2 (en)
JPH04193303A (en) Refining method for alcohol
JPS59186975A (en) Method for separating trioxane
US2999053A (en) Recovery of trimethylamine by extractive distillation

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term