JPH05343183A - Organic thin film el element - Google Patents

Organic thin film el element

Info

Publication number
JPH05343183A
JPH05343183A JP4150369A JP15036992A JPH05343183A JP H05343183 A JPH05343183 A JP H05343183A JP 4150369 A JP4150369 A JP 4150369A JP 15036992 A JP15036992 A JP 15036992A JP H05343183 A JPH05343183 A JP H05343183A
Authority
JP
Japan
Prior art keywords
titanium oxide
film
light emitting
layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4150369A
Other languages
Japanese (ja)
Inventor
Takahiro Nakayama
隆博 中山
Shintaro Hattori
紳太郎 服部
Atsushi Tsunoda
角田  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4150369A priority Critical patent/JPH05343183A/en
Publication of JPH05343183A publication Critical patent/JPH05343183A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To uniform the film thickness of an organic film layer, control and optimize the energy distribution of the hole to be injected, and improve luminance and efficiency by using a titanium oxide thin film as a part or the whole of the hole transport layer of a light emitting element. CONSTITUTION:A titanium oxide film 103 is formed by sputtering 20nm thick on a transparent conductive film (ITO) 102 having a sheet resistance 10OMEGA formed on a glass base 101. A hole injecting layer 104 of diamine derivative (TPB) is formed thereon 50nm thick, a light emitting layer 105 of aluminium chelate (Alg3) is formed by vacuum evaporation, and a Ag:Mg metal electrode 106 is formed. By changing the oxygen composite quantity of the titanium oxide, the energy gap and conductivity can be changed. The quantity and energy distribution of the holes injected from the titanium oxide to the organic film are controlled and optimized to improve light emitting characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自己発光型デバイスに
関する。
FIELD OF THE INVENTION This invention relates to self-luminous devices.

【0002】[0002]

【従来の技術】従来の発光素子では、例えば、特開昭57
−51781 号公報のように、発光層を導電性の薄膜の上
や、導電性の薄膜の上に成長させた別の有機膜の上に成
長させていたために、発光層は導電膜の凹凸の影響を受
け、膜厚,特性ともにパネル面内で不均一であった。こ
の不均一性は、発光むらや非発光の欠陥をパネル面内に
生じさせる原因となっていた。また、10nm以下の薄
膜を発光層に用いたときに特性が低下する原因となって
いた。
2. Description of the Related Art A conventional light emitting device is disclosed in, for example, Japanese Patent Laid-Open No.
Since the light emitting layer is grown on the conductive thin film or on another organic film grown on the conductive thin film as in Japanese Patent Publication No. 5-1781, the light emitting layer has unevenness of the conductive film. Due to the influence, the film thickness and characteristics were non-uniform in the panel plane. This non-uniformity has caused defects such as uneven light emission and non-emission of light within the panel surface. Further, when a thin film having a thickness of 10 nm or less was used for the light emitting layer, it was a cause of deterioration in characteristics.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、第一
に、平坦かつ均一な有機物質層を作成することにより、
面内で均一な発光をするパネルを作成することである。
第二に、素子を流れるホールのエネルギ分布を制御,最
適化することにある。第三に、半透明反射鏡を素子の一
部に導入することによって、素子内部に光の共振のモー
ドを誘起し、発光スペクトル幅を小さくすることにあ
る。
The object of the present invention is, firstly, to produce a flat and uniform organic material layer,
The purpose is to create a panel that emits light uniformly over the surface.
The second is to control and optimize the energy distribution of holes flowing through the element. Thirdly, by introducing a semi-transparent reflecting mirror into a part of the element, a mode of light resonance is induced inside the element to reduce the emission spectrum width.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明はホール輸送層の一部又は全体として、酸
化チタン(TiOx,x≦2)薄膜を用いる。
In order to achieve the above object, the present invention uses a titanium oxide (TiOx, x≤2) thin film as a part or the whole of the hole transport layer.

【0005】[0005]

【作用】本発明によれば、平坦,均一な有機物質層の形
成が可能となり、欠陥,発光むらの小さいパネルが作成
できる。また、膜厚の均一化の効果として、より薄い発
光物質層を作成して用いることができるようになる。
According to the present invention, a flat and uniform organic material layer can be formed, and a panel with small defects and uneven light emission can be produced. Further, as a result of making the film thickness uniform, it becomes possible to form and use a thinner luminescent material layer.

【0006】また、本発明によれば、有機薄膜に注入さ
れるホールのエネルギ分布を制御,最適化することがで
きるようになる。
Further, according to the present invention, the energy distribution of holes injected into the organic thin film can be controlled and optimized.

【0007】また、本発明によれば、素子内部に光の共
振モードを誘起し、発光効率を改善した素子を設計する
ことが可能になる。
Further, according to the present invention, it becomes possible to design an element in which a light resonance mode is induced inside the element and the luminous efficiency is improved.

【0008】[0008]

【実施例】図1に、本発明による1実施例を断面図で示
す。硝子基板101上に形成したシート抵抗10Ωの透
明伝導膜(ITO)102の上に、厚さ20nmで酸化
チタン膜103をスパッタリング法で形成している。そ
の上に、ジアミン誘導体(TPB)のホール注入層10
4を厚さ50nmで成膜し、さらに、アルミキレート
(Alq3)の発光層105を真空蒸着法により形成
し、Ag:Mg金属電極106を形成している。
1 is a sectional view showing an embodiment of the present invention. A titanium oxide film 103 having a thickness of 20 nm is formed by a sputtering method on a transparent conductive film (ITO) 102 having a sheet resistance of 10Ω formed on a glass substrate 101. On top of that, a hole injection layer 10 of a diamine derivative (TPB) is formed.
4 is deposited to a thickness of 50 nm, and a light emitting layer 105 of aluminum chelate (Alq3) is further formed by a vacuum deposition method to form an Ag: Mg metal electrode 106.

【0009】図2に従来構造の有機EL素子を示す。こ
の構造の場合には、発光層の下地膜となるホール注入層
104の表面には、数十nmオーダの凹凸ができてい
た。これは、ホール注入層の下地膜として、多結晶性の
透明導電薄膜を用いている効果と、有機物のホール注入
層の膜成長が不均一に生じた効果とによるものである。
この凹凸のため、その上に厚さ10nmで均一な発光層
を作成することは困難であり、発光むらや非発光欠陥を
生じていた。
FIG. 2 shows an organic EL device having a conventional structure. In the case of this structure, the surface of the hole injection layer 104, which is the base film of the light emitting layer, had irregularities on the order of several tens of nm. This is due to the effect of using a polycrystalline transparent conductive thin film as a base film of the hole injection layer and the effect of uneven film growth of the organic hole injection layer.
Due to this unevenness, it was difficult to form a uniform light emitting layer with a thickness of 10 nm on it, and uneven light emission and non-light emitting defects were generated.

【0010】図3に、図1と図2の構造の素子での、発
光層の膜厚と最大輝度の関係を示す。201は図1の素
子、202は図2の構造の素子である。本発明の構造の
素子が最大輝度が高く、特に発光層膜厚が小さくなって
いくと差が顕著であることがわかる。これは、酸化チタ
ン層により、発光層が平坦化された効果である。
FIG. 3 shows the relationship between the thickness of the light emitting layer and the maximum brightness in the device having the structure shown in FIGS. 201 is an element of FIG. 1 and 202 is an element of the structure of FIG. It can be seen that the element having the structure of the present invention has a high maximum luminance, and the difference is remarkable especially as the thickness of the light emitting layer becomes smaller. This is an effect that the light emitting layer is flattened by the titanium oxide layer.

【0011】また、酸化チタンは、その酸素組成量を変
えることにより、そのエネルギギャップと導電率を変え
ることができる。このことをもちいて、酸化チタンから
有機膜に注入するホールの量とエネルギ分布を制御して
有機膜の特性とデバイスの構造に最適化し、発光特性を
向上させることができる。
The energy gap and conductivity of titanium oxide can be changed by changing the amount of oxygen composition. By using this, the amount of holes injected from titanium oxide into the organic film and the energy distribution can be controlled to optimize the properties of the organic film and the structure of the device to improve the light emission properties.

【0012】さらに、図4に、本発明の実施例を示す。
図4は、図1の素子の、発光層と金属電極との間に、電
子注入層(TAD)107を挿入した素子である。この
素子では、有機膜(ホール注入層,発光層及び電子注入
層)の厚さ方向の光学的距離(屈折率と膜厚の積の値)の
和、及び酸化チタン膜の厚さ方向の光学的距離の二つ
を、素子の発光波長と同程度の値としている。図5は、
発光スペクトルを、図4の酸化チタン膜を用いた素子
と、用いない素子とで比較したものである。301が図
4の素子の発光スペクトルであり、302は図4の素子
構成から、酸化チタン膜103を除いた構成の素子の発
光スペクトルである。酸化チタン膜を用いた素子では、
発光スペクトルの半値幅が小さくなったことがわかる。
これは、酸化チタン膜が半透明反射鏡として機能し、図
6のように、素子の内部に光の共振モードを誘起したこ
とを示している。図7に、有機膜の厚さ方向の光学的距
離と、素子の発光強度の関係を示す。光学的距離がEL
発光波長のピークに一致する時に強度は最も大きく、1
0%以上ずれると急激に強度は低下する。
Further, FIG. 4 shows an embodiment of the present invention.
FIG. 4 shows the element of FIG. 1 in which an electron injection layer (TAD) 107 is inserted between the light emitting layer and the metal electrode. In this device, the sum of the optical distances in the thickness direction of the organic film (hole injection layer, light emitting layer, and electron injection layer) (values of the product of the refractive index and the film thickness) and the optical distance in the thickness direction of the titanium oxide film. Two of the target distances are set to the same value as the emission wavelength of the device. Figure 5
The emission spectra are compared between the element using the titanium oxide film of FIG. 4 and the element not using the same. Reference numeral 301 is the emission spectrum of the element of FIG. 4, and 302 is the emission spectrum of the element of the configuration of FIG. 4 from which the titanium oxide film 103 is removed. In the element using the titanium oxide film,
It can be seen that the full width at half maximum of the emission spectrum has become smaller.
This indicates that the titanium oxide film functions as a semitransparent reflecting mirror and induces a resonance mode of light inside the element as shown in FIG. FIG. 7 shows the relationship between the optical distance in the thickness direction of the organic film and the emission intensity of the device. Optical distance is EL
The intensity is the highest when it coincides with the peak of the emission wavelength, 1
If it deviates by 0% or more, the strength sharply decreases.

【0013】図1,図4の構成から、ホール注入層10
4または電子注入層107を省略した構成も実現可能で
ある。
From the structure shown in FIGS. 1 and 4, the hole injection layer 10 is formed.
4 or the electron injection layer 107 may be omitted.

【0014】[0014]

【発明の効果】酸化チタン層を用いることにより、均一
な膜厚の有機膜層を形成することができ、有機薄膜に注
入されるホールのエネルギ分布を制御,最適化すること
ができる。均一化の効果として、輝度の面内分布の均一
化,破壊の原因となるピンホール欠陥の低減が実現でき
る。また、ホール注入の最適化により、輝度を向上させ
ることができる。また、ホール注入層,発光層と電子注
入層の光学的距離の和、及び酸化チタンの光学的距離を
それぞれ素子の発光波長と同程度またはその整数倍とす
ることによって、酸化チタン膜を半透明反射膜として利
用でき、素子の内部に光の光振モードを誘起し、発光ス
ペクトルの半値幅を小さくすることができる。
By using the titanium oxide layer, an organic film layer having a uniform thickness can be formed, and the energy distribution of holes injected into the organic thin film can be controlled and optimized. As the effect of uniformization, it is possible to realize uniform in-plane distribution of brightness and reduction of pinhole defects that cause destruction. In addition, the brightness can be improved by optimizing the hole injection. Also, the titanium oxide film is semitransparent by setting the hole injection layer, the sum of the optical distances of the light emitting layer and the electron injection layer, and the optical distance of titanium oxide to the same or an integer multiple of the emission wavelength of the device. It can be used as a reflection film, can induce a light oscillation mode of light inside the element, and can reduce the full width at half maximum of the emission spectrum.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例で、有機EL素子の断面
図。
FIG. 1 is a cross-sectional view of an organic EL element in an example according to the present invention.

【図2】従来構造の有機EL素子の断面図。FIG. 2 is a sectional view of an organic EL element having a conventional structure.

【図3】発光層膜厚と発光輝度の関係を、図1と図2の
構造の素子とで比較した説明図。
FIG. 3 is an explanatory diagram comparing the relationship between the thickness of the light emitting layer and the light emission luminance between the device having the structure of FIGS. 1 and 2.

【図4】本発明による実施例で、有機EL素子の断面
図。
FIG. 4 is a cross-sectional view of an organic EL element in an example according to the present invention.

【図5】素子内部における光の振幅の分布の説明図。FIG. 5 is an explanatory diagram of a light amplitude distribution inside the element.

【図6】発光スペクトルを、図4の酸化チタン膜を用い
た素子と、用いない素子とで比較した特性図。
6 is a characteristic diagram comparing emission spectra of an element using the titanium oxide film of FIG. 4 and an element not using the same.

【図7】有機膜の厚さ方向の光学的距離と、素子の発光
強度の関係の特性図。
FIG. 7 is a characteristic diagram showing the relationship between the optical distance in the thickness direction of the organic film and the emission intensity of the device.

【符号の説明】[Explanation of symbols]

101…硝子基板、102…ITO透明電極、103…
酸化チタン層、104…ホール輸送層、105…発光
層、106…Ag:Mg電極。
101 ... Glass substrate, 102 ... ITO transparent electrode, 103 ...
Titanium oxide layer, 104 ... Hole transport layer, 105 ... Light emitting layer, 106 ... Ag: Mg electrode.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】エレクトロルミネセント現象を生じる有機
物質を用いる発光素子において、そのホール輸送層の一
部又は全体として酸化チタン薄膜を用いることを特徴と
する有機薄膜EL素子。
1. An organic thin film EL element, characterized in that a titanium oxide thin film is used as a part or the whole of its hole transport layer in a light emitting element using an organic substance which causes an electroluminescent phenomenon.
【請求項2】請求項1において、透明伝導膜に接して酸
化チタン膜を形成した素子。
2. The device according to claim 1, wherein a titanium oxide film is formed in contact with the transparent conductive film.
【請求項3】素子の内部に光の共振モードを誘起するた
め発光層と電子注入層の光学的距離の和、及びホール輸
送層として用いる酸化チタンの光学的距離を素子の発光
波長の90〜110%の範囲、またはその整数倍とする
ことを特徴とする有機薄膜EL素子。
3. The sum of the optical distances of a light emitting layer and an electron injecting layer for inducing a resonance mode of light inside the device, and the optical distance of titanium oxide used as a hole transport layer are set to 90 to the emission wavelength of the device. An organic thin-film EL device characterized by having a range of 110% or an integral multiple thereof.
JP4150369A 1992-06-10 1992-06-10 Organic thin film el element Pending JPH05343183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4150369A JPH05343183A (en) 1992-06-10 1992-06-10 Organic thin film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4150369A JPH05343183A (en) 1992-06-10 1992-06-10 Organic thin film el element

Publications (1)

Publication Number Publication Date
JPH05343183A true JPH05343183A (en) 1993-12-24

Family

ID=15495491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4150369A Pending JPH05343183A (en) 1992-06-10 1992-06-10 Organic thin film el element

Country Status (1)

Country Link
JP (1) JPH05343183A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950034864A (en) * 1994-02-17 1995-12-28 리차드 제이. 보토스 Light emitting diode device and manufacturing method thereof
WO1999002017A1 (en) * 1997-06-30 1999-01-14 Aventis Research & Technologies Gmbh & Co Kg Thin film electrode for planar organic light-emitting devices and method for its production
WO2000010366A1 (en) * 1998-08-13 2000-02-24 Tdk Corporation Organic el device
WO2000056124A1 (en) * 1999-03-17 2000-09-21 Tdk Corporation Organic el device
WO2000056123A1 (en) * 1999-03-17 2000-09-21 Tdk Corporation Organic el device
WO2000060906A1 (en) * 1999-04-05 2000-10-12 Tdk Corporation Organic el device
WO2000076277A1 (en) * 1999-06-07 2000-12-14 Tdk Corporation Organic el display
WO2001039554A1 (en) * 1999-11-22 2001-05-31 Sony Corporation Display device
US6806641B2 (en) * 2000-03-15 2004-10-19 Sony Corporation Light-emitting device and its use
WO2005002010A1 (en) * 2003-06-27 2005-01-06 Semiconductor Energy Laboratory Co., Ltd. Organic laser device
KR100512626B1 (en) * 2002-10-18 2005-09-02 엘지.필립스 엘시디 주식회사 Organic Electro luminescence Device and fabrication method of thereof
JP2006093685A (en) * 2004-08-25 2006-04-06 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device using it
US7385655B2 (en) 2002-09-02 2008-06-10 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit device with optical sensors and optical shutters at specific locations
US7449252B2 (en) 2004-08-20 2008-11-11 Seiko Epson Corporation Organic electroluminescent device, manufacturing method thereof, and electronic apparatus
US7459726B2 (en) 2003-02-12 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a light emitting element and a light receiving element
US7769253B2 (en) 2002-09-02 2010-08-03 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit device
US7812520B2 (en) 2003-07-01 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Full color display based on organic light-emitting device
US8283679B2 (en) 2003-06-30 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having light-emitting element and light-receiving element for transmitting among circuits formed over the plurality of substrates
US8530922B2 (en) 2009-12-04 2013-09-10 Panasonic Corporation Organic EL device and method for manufacturing same
US8994007B2 (en) 2003-10-03 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950034864A (en) * 1994-02-17 1995-12-28 리차드 제이. 보토스 Light emitting diode device and manufacturing method thereof
WO1999002017A1 (en) * 1997-06-30 1999-01-14 Aventis Research & Technologies Gmbh & Co Kg Thin film electrode for planar organic light-emitting devices and method for its production
KR100732350B1 (en) * 1997-06-30 2007-06-27 메르크 파텐트 게엠베하 An electroluminescent device and the display elements or opto-electronic couplers
US6445126B1 (en) 1998-08-13 2002-09-03 Tdk Corporation Organic electroluminescent device
WO2000010366A1 (en) * 1998-08-13 2000-02-24 Tdk Corporation Organic el device
WO2000056124A1 (en) * 1999-03-17 2000-09-21 Tdk Corporation Organic el device
WO2000056123A1 (en) * 1999-03-17 2000-09-21 Tdk Corporation Organic el device
US6288487B1 (en) 1999-03-17 2001-09-11 Tdk Corporation Organic electroluminescent device with a high-resistance inorganic electron injecting and transporting layer
WO2000060906A1 (en) * 1999-04-05 2000-10-12 Tdk Corporation Organic el device
US6252246B1 (en) 1999-04-05 2001-06-26 Tdk Corporation Organic electroluminescent device
WO2000076277A1 (en) * 1999-06-07 2000-12-14 Tdk Corporation Organic el display
US6369507B1 (en) 1999-06-07 2002-04-09 Tdk Corporation Organic EL display apparatus with a switching device
EP1154676A4 (en) * 1999-11-22 2008-08-20 Sony Corp Display device
WO2001039554A1 (en) * 1999-11-22 2001-05-31 Sony Corporation Display device
EP1154676A1 (en) * 1999-11-22 2001-11-14 Sony Corporation Display device
US7218049B2 (en) 1999-11-22 2007-05-15 Sony Corporation Display device
US7102282B1 (en) 1999-11-22 2006-09-05 Sony Corporation Display device with a cavity structure for resonating light
US6806641B2 (en) * 2000-03-15 2004-10-19 Sony Corporation Light-emitting device and its use
US7769253B2 (en) 2002-09-02 2010-08-03 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit device
US7385655B2 (en) 2002-09-02 2008-06-10 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit device with optical sensors and optical shutters at specific locations
KR100512626B1 (en) * 2002-10-18 2005-09-02 엘지.필립스 엘시디 주식회사 Organic Electro luminescence Device and fabrication method of thereof
US7459726B2 (en) 2003-02-12 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a light emitting element and a light receiving element
WO2005002010A1 (en) * 2003-06-27 2005-01-06 Semiconductor Energy Laboratory Co., Ltd. Organic laser device
US8283679B2 (en) 2003-06-30 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having light-emitting element and light-receiving element for transmitting among circuits formed over the plurality of substrates
US7812520B2 (en) 2003-07-01 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Full color display based on organic light-emitting device
US8994007B2 (en) 2003-10-03 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US9461271B2 (en) 2003-10-03 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US7449252B2 (en) 2004-08-20 2008-11-11 Seiko Epson Corporation Organic electroluminescent device, manufacturing method thereof, and electronic apparatus
JP2006093685A (en) * 2004-08-25 2006-04-06 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device using it
US8530922B2 (en) 2009-12-04 2013-09-10 Panasonic Corporation Organic EL device and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH05343183A (en) Organic thin film el element
US5283132A (en) Organic electroluminescent device for white luminescence
US7741771B2 (en) Light-emitting element and display device and lighting device using same
CN1961613B (en) Organic light emitting element
KR101434361B1 (en) White organic light emitting device and color display apparatus employing the same
KR20040074956A (en) Tuned microcavity color oled display
KR20040070102A (en) Color oled display with improved emission
JPH0963771A (en) Organic thin film luminescent element
EP0987774A2 (en) An electrode having enhanced hole injection
US20080238308A1 (en) Method and Apparatus for Light Emission Utilizing an OLED with a Microcavity
KR100490535B1 (en) Organic electroluminescence device
US5672938A (en) Light emission device comprising light emitting organic material and electron injection enhancement structure
KR20110068638A (en) Blue light emitting element and organic light emitting display adopting the element
JPH053079A (en) Organic el element
JPH11214163A (en) Organic electromulinescence element and manufacture of the same
JPH1140365A (en) Organic el element and its manufacture
JP3546697B2 (en) Organic EL device
KR20080074994A (en) Light-emitting component
KR100591795B1 (en) Stacked organic light emitting device
KR101007653B1 (en) Organic Light Emitting Diode Device
JPH053081A (en) Flat luminous device
JPH07188649A (en) Organic luminescent thin-film element
JPH0693256A (en) Organic thin-film luminescent element
KR100542996B1 (en) Transparent organic electro luminescence display
JP3253368B2 (en) EL device