JPH053081A - Flat luminous device - Google Patents

Flat luminous device

Info

Publication number
JPH053081A
JPH053081A JP17867891A JP17867891A JPH053081A JP H053081 A JPH053081 A JP H053081A JP 17867891 A JP17867891 A JP 17867891A JP 17867891 A JP17867891 A JP 17867891A JP H053081 A JPH053081 A JP H053081A
Authority
JP
Japan
Prior art keywords
layer
brightness
film thickness
thickness
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17867891A
Other languages
Japanese (ja)
Other versions
JP2843924B2 (en
Inventor
Masamichi Manabe
昌道 真鍋
Kimio Amamiya
公男 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Video Corp
Pioneer Corp
Original Assignee
Pioneer Video Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Video Corp, Pioneer Electronic Corp filed Critical Pioneer Video Corp
Priority to JP17867891A priority Critical patent/JP2843924B2/en
Publication of JPH053081A publication Critical patent/JPH053081A/en
Application granted granted Critical
Publication of JP2843924B2 publication Critical patent/JP2843924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To reduce the visual angle dependent property of the brightness by using a material in which the half width of the luminous intensity component in the thickness direction is small is used as a luminous layer, and setting the membrane thickness of the luminous layer or a transparent layer within a specific scope. CONSTITUTION:Between a pair of metallic cathode 1 and transparent anode 2, an EL layer 3 and a hole transport layer 4 are laminated as membranes, to form a membranous two-layer structure. As the cathode 1, a metal of a small work function such as aluminum, magnesium, or indium, with the thickness 1000 to 5000Angstrom level is used. As the anode 2, a conductive material of a large work function such as an indium-tin oxide, with the thickness 1000 to 3000Angstrom level is used. The EL layer 3 is formed of an organic phosphor compound, and as the layer 4, a triphenyl diamine derivative is used. As a result, the brightness in the oblique side is made larger sufficiently than the brightness in the front side, and the dependent property of the brightness to the visual angle can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、視角による明るさの低
下を低減した面発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting device in which a decrease in brightness due to a viewing angle is reduced.

【0002】[0002]

【従来の技術】面発光装置として、例えば、LEDや白
熱電球照明による照光表示器等が知られている。
2. Description of the Related Art As a surface emitting device, for example, an LED or an illuminating display using an incandescent lamp is known.

【0003】[0003]

【発明が解決しようとする課題】これらの面発光装置
は、有限な面積を持ち、ほぼ完全拡散面による光の放射
パターンになることから、正面または斜め方向でも輝度
はほぼ一定となる。そこで、視角θにおける明るさT
は、
Since these surface emitting devices have a finite area and have a radiation pattern of light by a substantially perfect diffusing surface, the brightness is substantially constant even in the front or diagonal direction. Therefore, the brightness T at the viewing angle θ
Is

【数1】 で表される。[Equation 1] It is represented by.

【0004】ここで、Sは面発光装置の面積、Lは輝度
である。従って、明るさTは、視角θに依存することと
なり、斜め方向から見ると表示器としては視認性が低下
し、また、照明としては暗くなる。
Here, S is the area of the surface emitting device, and L is the brightness. Therefore, the brightness T depends on the viewing angle θ, and when viewed from an oblique direction, the visibility as a display decreases and the illumination becomes dark.

【0005】本発明は、このような事情に対処してなさ
れたもので、明るさの視角による依存性を抑制した面発
光装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and an object thereof is to provide a surface emitting device in which the dependence of the brightness on the viewing angle is suppressed.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、発光層上に直接または透明層を介して積
層された反射層を備え、前記発光層はその厚さ方向に所
定の発光強度分布を有する面発光装置であって、前記発
光強度分布のピークを与える領域と反射層との間の膜厚
を、膜厚輝度減衰特性の一つの極小値を生じる膜厚を含
みかつその振幅が収束輝度値以下の輝度を生じる範囲内
でかつ収束輝度値を生じる膜厚値以上で前記一つの極小
値を生じる膜厚値以下の範囲内の一つの値としたことを
特徴とする。
In order to achieve the above-mentioned object, the present invention comprises a reflective layer laminated on the light emitting layer directly or via a transparent layer, and the light emitting layer has a predetermined thickness direction. And a film thickness between a reflection layer and a region that gives a peak of the emission intensity distribution, including a film thickness that produces one minimum value of the film thickness luminance attenuation characteristic. It is characterized in that the amplitude is set to a value within a range in which brightness is equal to or less than the convergent brightness value and is equal to or more than a film thickness value in which the convergent brightness value is generated and is equal to or less than a film thickness value in which the one minimum value is generated. ..

【0007】[0007]

【作用】本発明の面発光装置では、発光層としてその厚
さ方向における発光強度分布の半値幅がきわめて小さい
ものを用い、反射層、または透明層を介して反射層を積
層した構成とし、発光層、または発光層及び透明層の膜
厚に応じて視角により輝度が光の干渉効果により変化す
ることに着目して、発光層または透明層の膜厚を特定の
範囲に設定し、それによって正面方向の輝度よりも斜め
方向の輝度を十分に大きくし明るさの視角による依存性
を低減することができる。
In the surface emitting device of the present invention, a light emitting layer having a very small full width at half maximum of the emission intensity distribution in the thickness direction is used, and a reflective layer or a structure in which a reflective layer is laminated via a transparent layer is used. The thickness of the light-emitting layer or the transparent layer is set to a specific range by focusing on the fact that the brightness changes due to the light interference effect depending on the viewing angle depending on the thickness of the light-emitting layer or the light-emitting layer and the transparent layer. It is possible to make the luminance in the oblique direction sufficiently larger than the luminance in the direction and reduce the dependence of the brightness on the viewing angle.

【0008】[0008]

【実施例】以下に、面発光装置として有機EL素子を用
いた本発明による実施例を図面を参照にしつつ説明す
る。
Embodiments of the present invention using an organic EL element as a surface emitting device will be described below with reference to the drawings.

【0009】有機EL素子として、図1に示すように、
金属陰極1と透明陽極2との間に、それぞれ有機化合物
からなり互いに積層された発光体薄膜からなるEL層3
及び正孔輸送層4が配された2層構造のものや、図2に
示すように、金属陰極1と透明陽極2との間に互いに積
層された有機化合物からなる電子輸送層5、EL層3及
び正孔輸送層4が配された3層構造のものが知られてい
る。ここで、正孔輸送層4は陽極から正孔を注入させ易
くする機能と電子をブロックする機能とを有し、電子輸
送層5は陰極から電子を注入させ易くする機能と正孔を
プロックする機能とを有している。
As an organic EL element, as shown in FIG.
Between the metal cathode 1 and the transparent anode 2, an EL layer 3 made of light emitting thin films made of organic compounds and laminated on each other.
And a two-layer structure in which the hole transport layer 4 is arranged, as shown in FIG. 2, an electron transport layer 5 and an EL layer made of an organic compound laminated between the metal cathode 1 and the transparent anode 2 as shown in FIG. A three-layer structure in which 3 and the hole transport layer 4 are arranged is known. Here, the hole transport layer 4 has a function of facilitating the injection of holes from the anode and a function of blocking electrons, and the electron transport layer 5 has a function of facilitating the injection of electrons from the cathode and the function of blocking holes. It has the function and.

【0010】これら有機EL素子において、透明陽極2
の外側にはガラス基板6が配されており、金属陰極1か
ら注入された電子と透明陽極2からEL層3へ注入され
た正孔との再結合によって励起子が生じ、EL層におけ
る正孔輸送層との境界面近傍にて励起子が放射失活する
過程で光を放ち、この光が透明陽極2及びガラス基板6
を介して外部に放出される(特開昭59−194393
号公報及び特開昭63−295695公報参照)。
In these organic EL devices, the transparent anode 2
A glass substrate 6 is disposed on the outer side of, and excitons are generated by recombination of electrons injected from the metal cathode 1 and holes injected from the transparent anode 2 to the EL layer 3, and holes in the EL layer are generated. Excitons emit light in the process of radiation deactivation in the vicinity of the interface with the transport layer, and this light emits light, which is transparent anode 2 and glass substrate 6
Is released to the outside via a light source (Japanese Patent Laid-Open No. 59-194393).
(See Japanese Patent Laid-Open No. 63-295695).

【0011】本実施例の有機EL素子は、図1に示すも
のと同様な、一対の金属陰極1と透明陽極2との間にE
L層3及び正孔輸送層4を薄膜として積層、成膜した2
層構造のものである。例えば陰極1には、アルミニウ
ム、マグネシウム、インジウム、銀又は各々の合金等の
仕事関数が小さな金属からなり厚さが1000〜500
0オングストローム程度のものが用い得る。また、例え
ば陽極2には、インジウムすず酸化物(以下、ITOと
いう)等の仕事関数の大きな導電性材料からなり厚さが
1000〜3000オングストローム程度で、又は金で
厚さが800〜1500オングストローム程度のものが
用い得る。
The organic EL device of this embodiment has an electrode E between the pair of metal cathode 1 and transparent anode 2 similar to that shown in FIG.
The L layer 3 and the hole transport layer 4 were laminated as a thin film to form a film 2
It has a layered structure. For example, the cathode 1 is made of a metal having a small work function, such as aluminum, magnesium, indium, silver, or an alloy of each, and has a thickness of 1000 to 500.
Those having a thickness of about 0 angstrom can be used. Further, for example, the anode 2 is made of a conductive material having a large work function such as indium tin oxide (hereinafter referred to as ITO) and has a thickness of about 1000 to 3000 angstroms, or gold with a thickness of about 800 to 1500 angstroms. Can be used.

【0012】本発明による有機EL素子のEL層3を形
成する有機蛍光化合物の具体的な例としては、アルミキ
ノリノール錯体すなわちAlオキシンキレート(以下、
Alq3 という)、テトラフェニルブタジエン誘導体等
が用いられ得る。正孔輸送層4にはトリフェニルジアミ
ン誘導体であるN,N´−ジフェニル−N,N´−ビス
(3メチルフェニル)−1,1´−ビフェニル−4,4
´−ジアミン(以下、TPDという)が好ましく用いら
れ、更にCTM(Carrier Transport
ing Materials)として知られている化合
物を単独、もしくは混合物として用い得る。
As a specific example of the organic fluorescent compound forming the EL layer 3 of the organic EL device according to the present invention, an aluminum quinolinol complex, that is, an Al oxine chelate (hereinafter, referred to as
Alq3), tetraphenyl butadiene derivative and the like can be used. The hole transport layer 4 includes N, N′-diphenyl-N, N′-bis (3methylphenyl) -1,1′-biphenyl-4,4, which is a triphenyldiamine derivative.
'-Diamine (hereinafter referred to as TPD) is preferably used, and further CTM (Carrier Transport) is used.
Compounds known as ing Materials) may be used alone or as a mixture.

【0013】発明者は、2層構造の有機EL素子のEL
層膜厚、発光スペクトル及び輝度並びにの視角度の研究
の結果、輝度にはEL層膜厚による依存性及び視角度依
存性があることを知見した。すなわち、図3に示すよう
に有機EL素子のガラス基板6側表面を目視者が見る角
度によって発光スペクトル及び輝度が変化する。目視者
にとってEL層内の発光源Pの1点から発した光には、
図中の直接基板6へ向かう経路A及び背面の金属電極1
で反射し基板6へ向かう経路Bの2つの光が含まれる。
この2つの経路の光は以下の数式2に示す光路差L、さ
らに数式3に示す位相差ηyを保持しているので、互い
に干渉する(両数式中、nはEL層3の屈折率を、yは
発光源Pから金属電極1までの距離を、θはEL層内に
おける表示表面の法線からそれる視角を、λは波長をそ
れぞれ示す。以下、同じ)。
The inventor has found that the EL of an organic EL device having a two-layer structure
As a result of research on the layer thickness, the emission spectrum and the luminance, and the viewing angle, it was found that the luminance depends on the EL layer thickness and the viewing angle. That is, as shown in FIG. 3, the emission spectrum and the brightness change depending on the angle at which the viewer views the surface of the organic EL element on the glass substrate 6 side. For a viewer, the light emitted from one point of the light emission source P in the EL layer is
The path A directly to the substrate 6 in the figure and the metal electrode 1 on the back surface
Two lights of the path B reflected by and traveling toward the substrate 6 are included.
The light of these two paths holds the optical path difference L shown in the following expression 2 and the phase difference ηy shown in the following expression 3 and therefore interferes with each other (wherein, n is the refractive index of the EL layer 3, y is the distance from the light emitting source P to the metal electrode 1, θ is the viewing angle deviating from the normal to the display surface in the EL layer, and λ is the wavelength.

【0014】[0014]

【数2】 [Equation 2]

【0015】[0015]

【数3】 よって、干渉効果としてその強度I(y、λ)は数式4
の如く表せる。
[Equation 3] Therefore, as the interference effect, the intensity I (y, λ) is
Can be expressed as

【0016】[0016]

【数4】 [Equation 4]

【0017】EL層中での発光強度f(y)の分布は、
図4に示すように正孔輸送層4の境界面においては強く
金属電極1に向かうほど減少し、膜厚に関する指数関数
分布として数式5の如く表せ、EL層全体としては数式
6の如く正規化できる(両数式中、dは発光源から金属
電極までの距離を、εは発光強度分布パラメータを、k
は定数をそれぞれ示す。以下、同じ)。
The distribution of the emission intensity f (y) in the EL layer is
As shown in FIG. 4, the boundary surface of the hole transport layer 4 strongly decreases toward the metal electrode 1 and can be expressed as an exponential function distribution with respect to the film thickness as in Expression 5, and the EL layer as a whole is normalized as in Expression 6. (In both equations, d is the distance from the light emitting source to the metal electrode, ε is the emission intensity distribution parameter, k
Indicates constants, respectively. same as below).

【0018】[0018]

【数5】 [Equation 5]

【0019】[0019]

【数6】 [Equation 6]

【0020】発光源自体の発光スペクトルの強度分布F
(λ)は発光体特有の波長λの関数として表せる。よっ
て、目視者によって実際に観察されるEL素子の発光強
度T(λ,θ,d)は数式7のように表せる。
The intensity distribution F of the emission spectrum of the emission source itself
(Λ) can be expressed as a function of the wavelength λ peculiar to the light emitter. Therefore, the light emission intensity T (λ, θ, d) of the EL element that is actually observed by the viewer can be expressed by Equation 7.

【0021】[0021]

【数7】 [Equation 7]

【0022】ここで、EL素子の発光強度T(λ,θ,
d)を確認するために、膜厚(y=d)6000オング
ストロームとしたAlq3 からなるEL層を含む有機E
L素子を作成し、視角θを0゜から75゜まで種々変化
させてその発光強度の試験を行った。図5は、発光波長
に対する発光強度分布を示す。かかる発光強度分布と上
記数式7の発光強度T(λ,θ,d)とが略一致するこ
とが確認された。図から明らかなように、目視者にとっ
ては視角0゜から75゜までEL素子表示面を見る方向
によって色彩が順次異なるように見える。
Here, the emission intensity T (λ, θ,
In order to confirm d), an organic E including an EL layer made of Alq 3 having a film thickness (y = d) of 6000 angstroms.
An L element was prepared, and the emission intensity was tested by changing the viewing angle θ from 0 ° to 75 °. FIG. 5 shows the emission intensity distribution with respect to the emission wavelength. It was confirmed that the emission intensity distribution and the emission intensity T (λ, θ, d) of the above formula 7 substantially match. As is apparent from the figure, to the viewer, the colors seem to be sequentially different from the viewing angle of 0 ° to 75 ° depending on the viewing direction of the EL element display surface.

【0023】さらに、実用に沿うように、波長λに対し
て特定値で感応する目視者または光検出器の視感度特性
E(λ)を考慮する。例えば視感度特性E(λ)を正規
分布とすると、かかる感度特性内におけるEL素子の輝
度特性L(d)は、数式8のようにdの関数として表せ
る(Kは定数を示す。)
Further, in consideration of the practical use, the visual sensitivity characteristic E (λ) of the viewer or the photodetector sensitive to the wavelength λ with a specific value is considered. For example, when the luminosity characteristic E (λ) is a normal distribution, the luminance characteristic L (d) of the EL element within the sensitivity characteristic can be expressed as a function of d as in Expression 8 (K indicates a constant).

【0024】[0024]

【数8】 [Equation 8]

【0025】図6は、Alq3 からなるEL層(θ=
0,n=1.7)についてその膜厚を略0オングストロ
ームから8000オングストロームにわたって変化させ
計算した場合の膜厚に対する輝度/電流特性の膜厚輝度
減衰(特性)曲線を示し、この減衰曲線が有機EL素子
における輝度の膜厚依存性を示している。
FIG. 6 shows an EL layer made of Alq 3 (θ =
0, n = 1.7), the film thickness-brightness decay (characteristic) curve of the brightness / current characteristic with respect to the film thickness is shown when the film thickness is calculated by changing the film thickness from approximately 0 angstrom to 8000 angstrom. The film thickness dependence of the brightness in the EL element is shown.

【0026】かかる有機EL素子の輝度の膜厚依存性を
確認するための有機EL素子を作成し試験を行うと、図
7に示すような減衰特性の結果が得られる。試験した複
数の有機EL素子は膜厚500オングストロームのTP
Dの正孔輸送層と膜厚1150オングストロームから7
725オングストロームのAlq3 のEL層との2層構
造を有するものである。図示するように、かかる有機E
L素子は、図6と同様に、最小膜厚かつ最大輝度を示し
これを1次極大値として順次次数が増加(膜厚増加)す
るにつれて周期的に輝度の極大値及び極小値が現れ、こ
の極大値が減少し、極小値が増大する膜厚輝度減衰曲線
の特性すなわち、輝度の膜厚依存性を示している。
When an organic EL element for confirming the film thickness dependence of the brightness of the organic EL element is prepared and tested, the result of the attenuation characteristic as shown in FIG. 7 is obtained. The plurality of organic EL elements tested were TP with a film thickness of 500 Å.
D hole transport layer and film thickness from 1150 Å to 7
It has a two-layer structure with an EL layer of Alq 3 of 725 Å. As shown, such organic E
Similar to FIG. 6, the L element shows the minimum film thickness and the maximum brightness, and the maximum value and the minimum value of the brightness periodically appear as the order increases (film thickness increases) with this as the primary maximum value. This shows the characteristic of the film thickness luminance decay curve in which the maximum value decreases and the minimum value increases, that is, the film thickness dependence of the luminance.

【0027】なお、図6において各極大値又は極小値の
周期Tはλm/2nで表される。ここではλmはF
(λ)において最大強度を与える波長(ピーク波長)、
nは金属陰極から発光強度分布のピークを与える位置
(正孔輸送層とEL層の界面)までの間の平均屈折率で
ある。
In FIG. 6, the period T of each maximum value or minimum value is represented by λm / 2n. Where λm is F
The wavelength that gives the maximum intensity at (λ) (peak wavelength),
n is the average refractive index from the metal cathode to the position where the peak of the emission intensity distribution is given (the interface between the hole transport layer and the EL layer).

【0028】また、図7の膜厚輝度減衰曲線は、横軸を
500オングストロームの膜厚のTPD正孔輸送層を含
む有機EL層全体の膜厚としているために、特性曲線全
体が図6のものに比して図の右方に変移している。図8
は、上記したTPD正孔輸送層及びAlq3 EL層の2
層構造の有機EL素子の各々について、視角度に対する
輝度/電流の相対値を測定した結果を示す。
Further, in the film thickness luminance decay curve of FIG. 7, the horizontal axis represents the film thickness of the entire organic EL layer including the TPD hole transport layer having a film thickness of 500 angstroms. It shifts to the right in the figure compared to the ones. Figure 8
Is 2 of the above-mentioned TPD hole transport layer and Alq 3 EL layer.
The results of measuring the relative values of luminance / current with respect to the viewing angle are shown for each of the organic EL devices having a layered structure.

【0029】図から明らかなように、1次、2次及び3
次極大値に対応する膜厚1150オングストロームから
2500オングストローム及び4565オングストロー
ムを有する有機EL素子は、視角の増加に従って輝度が
小さくなる方向に変化する傾向にあり、また、1次、2
次及び3次極小値に対応する膜厚2050オングストロ
ーム、3550オングストローム及び5275オングス
トロームを有する有機EL素子は、視角が増加するにつ
れて輝度が増加する傾向があることがわかる。
As is apparent from the figure, the primary, secondary and tertiary
Organic EL elements having a film thickness of 1150 angstroms to 2500 angstroms and 4565 angstroms corresponding to the next maximum value tend to decrease in brightness as the viewing angle increases.
It can be seen that the organic EL elements having the film thicknesses of 2050 angstroms, 3550 angstroms and 5275 angstroms corresponding to the second and third minimum values tend to increase in luminance as the viewing angle increases.

【0030】かかる有機EL素子の内、好適な実施例
は、図6から明らかなようにAlq3のEL層の厚さ
を、例えば2400オングストローム〜2700オング
ストロームとした有機EL素子である。
Among such organic EL devices, the preferred embodiment is an organic EL device in which the thickness of the Alq 3 EL layer is, for example, 2400 angstroms to 2700 angstroms, as is apparent from FIG.

【0031】すなわち、このEL層の膜厚範囲は、図6
に示すEL層材質に応じた膜厚(正孔輸送層とEL層の
界面、すなわち発光強度分布のピークを与える領域と、
金属陰極すなわち反射層までの距離)に対する輝度/電
流特性の膜厚輝度減衰曲線の収束輝度値に対応する膜厚
値l1 1、l2 1、l3 1から輝度の極小値に対応する膜厚値
1 2、l2 2、l3 2までの範囲l(l1 1〜l1 2、l2 1〜l
2 2、l3 1〜l3 2)である。尚、l1 1、l2 1、l3 1は上述
の周期Tを用いるとそれぞれ、l1 2−0.25T、l2 2
−0.25T、l3 2−0.25Tと表される。
That is, the thickness range of this EL layer is as shown in FIG.
Film thickness according to the EL layer material shown in (the interface between the hole transport layer and the EL layer, that is, a region giving a peak of the emission intensity distribution,
Film corresponding to the minimum value of the brightness from the film thickness values l 1 1 , l 2 1 , l 3 1 corresponding to the converged brightness value of the film thickness brightness decay curve of the brightness / current characteristics with respect to the distance to the metal cathode, that is, the reflection layer) thickness values l 1 2, l 2 2, l 3 up to 2 range l (l 1 1 ~l 1 2 , l 2 1 ~l
A 2 2, l 3 1 ~l 3 2). It should be noted that l 1 1 , l 2 1 , and l 3 1 are respectively l 1 2 -0.25T and l 2 2 when the above-mentioned period T is used.
-0.25T, expressed as l 3 2 -0.25T.

【0032】そして上記の範囲にEL層膜厚を選定すれ
ば、視角が大きくなることは膜厚が小さくなることに等
しい効果を与えられるので、視角が大きくなるにつれ
て、輝度が増加することとなり、有限な大きさをもつ表
示器においては明るさの視角による依存が少ない有機E
L素子が得られることとなる。
When the EL layer film thickness is selected within the above range, the effect of increasing the viewing angle is equal to that of decreasing the film thickness. Therefore, the brightness increases as the viewing angle increases. In a display with a finite size, there is little dependence of brightness on the viewing angle.
An L element will be obtained.

【0033】本発明は、上記実施例のAlq3 のEL層
に限らず、EL層の材質に応じた図6に示す膜厚に対す
る輝度/電流特性の膜厚輝度減衰曲線から極小値振幅に
対応するEL層膜厚値を得ることができる。
The present invention is not limited to the Alq 3 EL layer of the above-described embodiment, but corresponds to the minimum value amplitude from the film thickness brightness decay curve of the brightness / current characteristic with respect to the film thickness shown in FIG. 6 depending on the material of the EL layer. It is possible to obtain the EL layer film thickness value.

【0034】また、本発明は、上記実施例の2層構造に
限らず、図2に示す3層構造の場合も同様に電子輸送層
(透明層)及びEL層(発光層)の膜厚に対する輝度/
電流特性の膜厚輝度減衰曲線が得られ、その極小値振幅
に対応する膜厚値を得ることができる。
Further, the present invention is not limited to the two-layer structure of the above-mentioned embodiment, but also in the case of the three-layer structure shown in FIG. 2, similarly with respect to the film thickness of the electron transport layer (transparent layer) and the EL layer (light emitting layer). Luminance/
A film thickness luminance decay curve of current characteristics is obtained, and a film thickness value corresponding to the minimum value amplitude can be obtained.

【0035】さらに本発明は、上記実施例の有機EL素
子に限らず、発光層の厚さ方向の発光強度分布の半値幅
(強度分布曲線がピーク値の半分になるときの発光領域
の厚さ方向の幅)が例えば、500オングストローム以
下の発光層であれば良く、その発光層及び反射層を積層
したもの、または発光層、透明層、反射層を積層した、
面発光装置の場合においても、図6と同様な減衰特性が
得られ、その極小値振幅に対応する発光層又は、発光層
及び透明層の膜厚値を得ることができる。
Further, the present invention is not limited to the organic EL devices of the above-mentioned embodiments, but the half value width of the emission intensity distribution in the thickness direction of the emission layer (the thickness of the emission region when the intensity distribution curve becomes half of the peak value). The width in the direction) may be, for example, a light emitting layer having a thickness of 500 angstroms or less, and the light emitting layer and the reflective layer are laminated, or the light emitting layer, the transparent layer, and the reflective layer are laminated.
Also in the case of the surface emitting device, the same attenuation characteristic as in FIG. 6 is obtained, and the film thickness value of the light emitting layer or the light emitting layer and the transparent layer corresponding to the minimum value amplitude can be obtained.

【0036】[0036]

【発明の効果】以上説明したように、本発明による面発
光装置は、発光層又は発光層及び透明層の膜厚(発光強
度分布のピークを与える領域から反射層までの距離)を
膜厚輝度減衰特性の一つの極小値を生じる膜厚を含みか
つその振幅がその収束輝度値以下の輝度を生じる範囲内
でかつ収束輝度値を生じる膜厚値以上で前記一つの極小
値を生じる膜厚値以下の一つの値としたことにより、明
るさの視角依存性を低減することができる。
As described above, in the surface emitting device according to the present invention, the film thickness of the light emitting layer or the light emitting layer and the transparent layer (the distance from the region giving the peak of the emission intensity distribution to the reflective layer) is the film thickness luminance. A film thickness value that includes one of the minimum values of the attenuation characteristics, and the amplitude is within a range in which the brightness produces a brightness equal to or less than the convergent brightness value, and the film thickness value that produces the one minimum value is equal to or more than the film thickness value that generates the convergent brightness value. By adopting one of the following values, the viewing angle dependency of brightness can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】2層構造の有機EL素子を示す構造図である。FIG. 1 is a structural diagram showing an organic EL device having a two-layer structure.

【図2】3層構造の有機EL素子を示す構造図である。FIG. 2 is a structural diagram showing an organic EL device having a three-layer structure.

【図3】2層構造の有機EL素子における光の干渉を説
明する部分拡大断面図である。
FIG. 3 is a partial enlarged cross-sectional view illustrating light interference in an organic EL element having a two-layer structure.

【図4】2層構造の有機EL素子におけるEL層の膜厚
発光度分布を説明するグラフである。
FIG. 4 is a graph illustrating a film thickness luminous intensity distribution of an EL layer in an organic EL device having a two-layer structure.

【図5】2層構造の有機EL素子におけるEL層の波長
発光度分布を説明するグラフである。
FIG. 5 is a graph illustrating a wavelength luminous intensity distribution of an EL layer in an organic EL device having a two-layer structure.

【図6】2層構造の有機EL素子におけるEL層の単体
層の膜厚輝度減衰曲線を説明するグラフである。
FIG. 6 is a graph illustrating a film thickness luminance decay curve of a single layer of an EL layer in a two-layer organic EL element.

【図7】EL層及び正孔輸送層の2層構造の有機EL素
子における実測した膜厚輝度減衰曲線を示すグラフであ
る。
FIG. 7 is a graph showing an actually measured film thickness luminance decay curve in an organic EL device having a two-layer structure of an EL layer and a hole transport layer.

【図8】EL層及び正孔輸送層の2層構造の有機EL素
子における実測した視角度輝度特性曲線を示すグラフで
ある。
FIG. 8 is a graph showing a measured visual angle luminance characteristic curve in an organic EL device having a two-layer structure of an EL layer and a hole transport layer.

【符号の説明】[Explanation of symbols]

1 金属陰極 2 透明陽極 3 EL層 4 正孔輸送層 5 電子輸送層 6 ガラス基板 1 Metal Cathode 2 Transparent Anode 3 EL Layer 4 Hole Transport Layer 5 Electron Transport Layer 6 Glass Substrate

Claims (1)

【特許請求の範囲】 【請求項1】 発光層上に直接または透明層を介して積
層された反射層を備え、前記発光層はその厚さ方向に所
定の発光強度分布を有する面発光装置であって、前記発
光強度分布のピークを与える領域と反射層との間の膜厚
を、膜厚輝度減衰特性の一つの極小値を生じる膜厚を含
みかつその振幅が収束輝度値以下の輝度を生じる範囲内
でかつ収束輝度値を生じる膜厚値以上で前記一つの極小
値を生じる膜厚値以下の範囲内の一つの値としたことを
特徴とする面発光装置。
Claim: What is claimed is: 1. A surface emitting device comprising a reflective layer laminated directly on a light emitting layer or via a transparent layer, wherein the light emitting layer has a predetermined light emission intensity distribution in its thickness direction. Then, the film thickness between the region that gives the peak of the emission intensity distribution and the reflective layer includes the film thickness that produces one minimum value of the film thickness brightness attenuation characteristic, and the amplitude of the brightness is equal to or less than the convergent brightness value. A surface emitting device, wherein the surface emitting device has a value within the range of occurrence and at least equal to or less than the film thickness value at which the converged luminance value is generated and at or below the film thickness value at which the one minimum value is generated.
JP17867891A 1991-06-24 1991-06-24 Surface emitting device Expired - Fee Related JP2843924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17867891A JP2843924B2 (en) 1991-06-24 1991-06-24 Surface emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17867891A JP2843924B2 (en) 1991-06-24 1991-06-24 Surface emitting device

Publications (2)

Publication Number Publication Date
JPH053081A true JPH053081A (en) 1993-01-08
JP2843924B2 JP2843924B2 (en) 1999-01-06

Family

ID=16052646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17867891A Expired - Fee Related JP2843924B2 (en) 1991-06-24 1991-06-24 Surface emitting device

Country Status (1)

Country Link
JP (1) JP2843924B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288185A (en) * 1994-04-20 1995-10-31 Dainippon Printing Co Ltd Organic thin film electroluminescent (el) element
WO2000060905A1 (en) * 1999-04-05 2000-10-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and its manufacturing method
WO2004032574A1 (en) * 2002-10-01 2004-04-15 Pioneer Corporation Image display device and manufacturing method
US7030555B2 (en) 2003-04-04 2006-04-18 Nitto Denko Corporation Organic electroluminescence device, planar light source and display device using the same
US7109651B2 (en) 2002-11-26 2006-09-19 Nitto Denko Corporation Organic electroluminescence cell, planar light source and display device
US7722965B2 (en) 2003-12-26 2010-05-25 Nitto Denko Corporation Electroluminescence device, planar light source and display using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001692B2 (en) 1999-02-18 2007-10-31 パイオニア株式会社 Organic electroluminescence device and manufacturing method thereof
JP4411288B2 (en) 2005-03-23 2010-02-10 キヤノン株式会社 Display device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288185A (en) * 1994-04-20 1995-10-31 Dainippon Printing Co Ltd Organic thin film electroluminescent (el) element
WO2000060905A1 (en) * 1999-04-05 2000-10-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and its manufacturing method
US6469438B2 (en) 1999-04-05 2002-10-22 Idemitsu Kosan Co., Ltd. Organic electroluminescence device with prescribed optical path length
US6844210B2 (en) 1999-04-05 2005-01-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and method of manufacturing same
CN100355105C (en) * 1999-04-05 2007-12-12 出光兴产株式会社 Organic electroluminescent device and method for manufacturing the same
JP4493216B2 (en) * 1999-04-05 2010-06-30 出光興産株式会社 Organic electroluminescence device and method for producing the same
WO2004032574A1 (en) * 2002-10-01 2004-04-15 Pioneer Corporation Image display device and manufacturing method
US7206112B2 (en) 2002-10-01 2007-04-17 Pioneer Corporation Image display device and manufacuring method
US7109651B2 (en) 2002-11-26 2006-09-19 Nitto Denko Corporation Organic electroluminescence cell, planar light source and display device
US7030555B2 (en) 2003-04-04 2006-04-18 Nitto Denko Corporation Organic electroluminescence device, planar light source and display device using the same
US7722965B2 (en) 2003-12-26 2010-05-25 Nitto Denko Corporation Electroluminescence device, planar light source and display using the same

Also Published As

Publication number Publication date
JP2843924B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JP3297619B2 (en) Organic EL color display
JP3065705B2 (en) Organic electroluminescence device
US8593056B2 (en) Electroluminescent device
JP5073842B2 (en) EL device
US6505901B1 (en) Organic electroluminescence device and process for fabricating the same
US7224114B2 (en) Display device and display unit using the same
US6429451B1 (en) Reduction of ambient-light-reflection in organic light-emitting devices
KR101434361B1 (en) White organic light emitting device and color display apparatus employing the same
JP5452853B2 (en) Organic electroluminescence device
KR101528242B1 (en) White organic light emitting device and color display apparatus employing the same
US20050110400A1 (en) Image display device
KR100735786B1 (en) Organic electroluminescence element
JP2843925B2 (en) Organic EL device
JP4732991B2 (en) EL device
KR20100138773A (en) Organic electroluminescence device, display unit including the same, and method of manufacturing an organic electroluminescence device
JP2001338770A (en) Luminescent display device and its manufacturing method
JP2843924B2 (en) Surface emitting device
JP3065704B2 (en) Organic electroluminescence device
JP3374035B2 (en) Organic electroluminescence device
JP2005156871A (en) Exposure light source
JP2007257909A (en) Organic el element
JP4176517B2 (en) Thin film light emitting display element, manufacturing method thereof, and display device
JP2005235668A (en) Organic light emitting element and multicolor display device using the organic light emitting element
US20060163991A1 (en) Organic light emitting device
JP2007273902A (en) Organic led element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071030

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees