JP2843924B2 - Surface emitting device - Google Patents
Surface emitting deviceInfo
- Publication number
- JP2843924B2 JP2843924B2 JP17867891A JP17867891A JP2843924B2 JP 2843924 B2 JP2843924 B2 JP 2843924B2 JP 17867891 A JP17867891 A JP 17867891A JP 17867891 A JP17867891 A JP 17867891A JP 2843924 B2 JP2843924 B2 JP 2843924B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- luminance
- film thickness
- value
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electroluminescent Light Sources (AREA)
- Led Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、視角による明るさの低
下を低減した面発光装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface light emitting device in which a decrease in brightness due to a viewing angle is reduced.
【0002】[0002]
【従来の技術】面発光装置として、例えば、LEDや白
熱電球照明による照光表示器等が知られている。2. Description of the Related Art As a surface light emitting device, for example, an illuminated display using LEDs or incandescent light bulbs is known.
【0003】[0003]
【発明が解決しようとする課題】これらの面発光装置
は、有限な面積を持ち、ほぼ完全拡散面による光の放射
パターンになることから、正面または斜め方向でも輝度
はほぼ一定となる。そこで、視角θにおける明るさT
は、Since these surface light emitting devices have a finite area and have a light emission pattern based on a substantially perfect diffusion surface, the luminance is substantially constant even in the front or oblique direction. Therefore, the brightness T at the viewing angle θ
Is
【数1】 で表される。(Equation 1) It is represented by
【0004】ここで、Sは面発光装置の面積、Lは輝度
である。従って、明るさTは、視角θに依存することと
なり、斜め方向から見ると表示器としては視認性が低下
し、また、照明としては暗くなる。Here, S is the area of the surface light emitting device, and L is the luminance. Therefore, the brightness T depends on the viewing angle θ, and when viewed from an oblique direction, the visibility of the display decreases, and the brightness of the display decreases.
【0005】本発明は、このような事情に対処してなさ
れたもので、明るさの視角による依存性を抑制した面発
光装置を提供することを目的とする。The present invention has been made in view of such circumstances, and has as its object to provide a surface emitting device in which the dependence of brightness on the viewing angle is suppressed.
【0006】[0006]
【課題を解決するための手段】本発明は、上記目的を達
成するために、発光層上に直接または透明層を介して積
層された反射層を備え、前記発光層はその厚さ方向に所
定の発光強度分布を有する面発光装置であって、前記発
光強度分布のピークを与える領域と反射層との間の膜厚
を、膜厚輝度減衰特性の一つの極小値を生じる膜厚を含
みかつその振幅が収束輝度値以下の輝度を生じる範囲内
でかつ収束輝度値を生じる膜厚値以上で前記一つの極小
値を生じる膜厚値以下の範囲内の一つの値としたことを
特徴とする。In order to achieve the above object, the present invention comprises a reflective layer laminated directly or via a transparent layer on a light emitting layer, wherein the light emitting layer has a predetermined thickness in the thickness direction. A surface light emitting device having a light emission intensity distribution of, the film thickness between the region giving the peak of the light emission intensity distribution and the reflective layer, including a film thickness that produces one minimum value of the film thickness luminance attenuation characteristics, and The amplitude is set to one value within a range in which the luminance is equal to or less than the convergent luminance value and is equal to or greater than the film thickness value in which the convergent luminance value is generated and equal to or less than the film thickness value in which the one minimum value is generated. .
【0007】[0007]
【作用】本発明の面発光装置では、発光層としてその厚
さ方向における発光強度分布の半値幅がきわめて小さい
ものを用い、反射層、または透明層を介して反射層を積
層した構成とし、発光層、または発光層及び透明層の膜
厚に応じて視角により輝度が光の干渉効果により変化す
ることに着目して、発光層または透明層の膜厚を特定の
範囲に設定し、それによって正面方向の輝度よりも斜め
方向の輝度を十分に大きくし明るさの視角による依存性
を低減することができる。According to the surface light emitting device of the present invention, a light emitting layer having an extremely small half width of the light emission intensity distribution in the thickness direction is used, and a reflective layer or a reflective layer is laminated via a transparent layer. Paying attention to the fact that the luminance changes due to the light interference effect depending on the viewing angle according to the thickness of the layer or the light emitting layer and the transparent layer, the thickness of the light emitting layer or the transparent layer is set to a specific range, thereby The luminance in the oblique direction can be made sufficiently larger than the luminance in the direction, and the dependence of the brightness on the viewing angle can be reduced.
【0008】[0008]
【実施例】以下に、面発光装置として有機EL素子を用
いた本発明による実施例を図面を参照にしつつ説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention using an organic EL element as a surface emitting device will be described below with reference to the drawings.
【0009】有機EL素子として、図1に示すように、
金属陰極1と透明陽極2との間に、それぞれ有機化合物
からなり互いに積層された発光体薄膜からなるEL層3
及び正孔輸送層4が配された2層構造のものや、図2に
示すように、金属陰極1と透明陽極2との間に互いに積
層された有機化合物からなる電子輸送層5、EL層3及
び正孔輸送層4が配された3層構造のものが知られてい
る。ここで、正孔輸送層4は陽極から正孔を注入させ易
くする機能と電子をブロックする機能とを有し、電子輸
送層5は陰極から電子を注入させ易くする機能と正孔を
プロックする機能とを有している。As an organic EL device, as shown in FIG.
An EL layer 3 composed of a luminous thin film made of an organic compound and laminated on each other between a metal cathode 1 and a transparent anode 2
And an electron transport layer 5 made of an organic compound laminated between a metal cathode 1 and a transparent anode 2, and an EL layer, as shown in FIG. 2. One having a three-layer structure in which a hole transport layer 3 and a hole transport layer 4 are arranged is known. Here, the hole transport layer 4 has a function of facilitating injection of holes from the anode and a function of blocking electrons, and the electron transport layer 5 functions of facilitating injection of electrons from the cathode and blocks holes. Function.
【0010】これら有機EL素子において、透明陽極2
の外側にはガラス基板6が配されており、金属陰極1か
ら注入された電子と透明陽極2からEL層3へ注入され
た正孔との再結合によって励起子が生じ、EL層におけ
る正孔輸送層との境界面近傍にて励起子が放射失活する
過程で光を放ち、この光が透明陽極2及びガラス基板6
を介して外部に放出される(特開昭59−194393
号公報及び特開昭63−295695公報参照)。In these organic EL devices, the transparent anode 2
A glass substrate 6 is arranged outside the substrate, and excitons are generated by recombination of electrons injected from the metal cathode 1 and holes injected from the transparent anode 2 into the EL layer 3 to generate holes in the EL layer. The exciton emits light in the process of radiation deactivation near the interface with the transport layer, and this light is transmitted to the transparent anode 2 and the glass substrate 6.
(See JP-A-59-194393).
And JP-A-63-295695).
【0011】本実施例の有機EL素子は、図1に示すも
のと同様な、一対の金属陰極1と透明陽極2との間にE
L層3及び正孔輸送層4を薄膜として積層、成膜した2
層構造のものである。例えば陰極1には、アルミニウ
ム、マグネシウム、インジウム、銀又は各々の合金等の
仕事関数が小さな金属からなり厚さが1000〜500
0オングストローム程度のものが用い得る。また、例え
ば陽極2には、インジウムすず酸化物(以下、ITOと
いう)等の仕事関数の大きな導電性材料からなり厚さが
1000〜3000オングストローム程度で、又は金で
厚さが800〜1500オングストローム程度のものが
用い得る。The organic EL device of this embodiment has a structure similar to that shown in FIG.
L layer 3 and hole transport layer 4 were laminated and formed as a thin film 2
It has a layer structure. For example, the cathode 1 is made of a metal having a small work function, such as aluminum, magnesium, indium, silver or an alloy thereof, and has a thickness of 1000 to 500.
Those having a thickness of about 0 Å can be used. Further, for example, the anode 2 is made of a conductive material having a large work function such as indium tin oxide (hereinafter, referred to as ITO) and has a thickness of about 1000 to 3000 angstroms or a thickness of about 800 to 1500 angstroms of gold. Can be used.
【0012】本発明による有機EL素子のEL層3を形
成する有機蛍光化合物の具体的な例としては、アルミキ
ノリノール錯体すなわちAlオキシンキレート(以下、
Alq3 という)、テトラフェニルブタジエン誘導体等
が用いられ得る。正孔輸送層4にはトリフェニルジアミ
ン誘導体であるN,N´−ジフェニル−N,N´−ビス
(3メチルフェニル)−1,1´−ビフェニル−4,4
´−ジアミン(以下、TPDという)が好ましく用いら
れ、更にCTM(Carrier Transport
ing Materials)として知られている化合
物を単独、もしくは混合物として用い得る。As a specific example of the organic fluorescent compound forming the EL layer 3 of the organic EL device according to the present invention, an aluminum quinolinol complex, that is, an Al oxine chelate (hereinafter, referred to as Al oxine chelate)
Alq3), tetraphenylbutadiene derivatives and the like. The hole transport layer 4 has a triphenyldiamine derivative N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4
'-Diamine (hereinafter referred to as TPD) is preferably used, and CTM (Carrier Transport) is further used.
Compounds known as ing Materials) can be used alone or as a mixture.
【0013】発明者は、2層構造の有機EL素子のEL
層膜厚、発光スペクトル及び輝度並びにの視角度の研究
の結果、輝度にはEL層膜厚による依存性及び視角度依
存性があることを知見した。すなわち、図3に示すよう
に有機EL素子のガラス基板6側表面を目視者が見る角
度によって発光スペクトル及び輝度が変化する。目視者
にとってEL層内の発光源Pの1点から発した光には、
図中の直接基板6へ向かう経路A及び背面の金属電極1
で反射し基板6へ向かう経路Bの2つの光が含まれる。
この2つの経路の光は以下の数式2に示す光路差L、さ
らに数式3に示す位相差ηyを保持しているので、互い
に干渉する(両数式中、nはEL層3の屈折率を、yは
発光源Pから金属電極1までの距離を、θはEL層内に
おける表示表面の法線からそれる視角を、λは波長をそ
れぞれ示す。以下、同じ)。The inventor of the present invention has proposed an organic EL device having a two-layer structure.
As a result of studying the layer thickness, the emission spectrum, the luminance, and the viewing angle, it was found that the luminance has a dependency on the EL layer thickness and a viewing angle dependence. That is, as shown in FIG. 3, the emission spectrum and the luminance change depending on the angle at which the viewer views the surface of the organic EL element on the glass substrate 6 side. For a viewer, light emitted from one point of the light emitting source P in the EL layer includes:
The path A directly to the substrate 6 in FIG.
And the two lights on the path B toward the substrate 6 after being reflected by the light source.
Since the lights of these two paths hold the optical path difference L shown in the following equation 2 and the phase difference ηy shown in the following equation 3, they interfere with each other (in both equations, n represents the refractive index of the EL layer 3; y indicates the distance from the light emitting source P to the metal electrode 1, θ indicates the viewing angle deviating from the normal of the display surface in the EL layer, and λ indicates the wavelength.
【0014】[0014]
【数2】 (Equation 2)
【0015】[0015]
【数3】 よって、干渉効果としてその強度I(y、λ)は数式4
の如く表せる。(Equation 3) Therefore, the intensity I (y, λ) as an interference effect is given by the following equation (4).
Can be expressed as
【0016】[0016]
【数4】 (Equation 4)
【0017】EL層中での発光強度f(y)の分布は、
図4に示すように正孔輸送層4の境界面においては強く
金属電極1に向かうほど減少し、膜厚に関する指数関数
分布として数式5の如く表せ、EL層全体としては数式
6の如く正規化できる(両数式中、dは発光源から金属
電極までの距離を、εは発光強度分布パラメータを、k
は定数をそれぞれ示す。以下、同じ)。The distribution of the emission intensity f (y) in the EL layer is as follows:
As shown in FIG. 4, at the boundary surface of the hole transport layer 4, the intensity decreases strongly toward the metal electrode 1, and can be expressed as an exponential function distribution relating to the film thickness as shown in Equation 5, and the entire EL layer is normalized as shown in Equation 6. (In both formulas, d is the distance from the light source to the metal electrode, ε is the emission intensity distribution parameter, k
Indicates a constant. same as below).
【0018】[0018]
【数5】 (Equation 5)
【0019】[0019]
【数6】 (Equation 6)
【0020】発光源自体の発光スペクトルの強度分布F
(λ)は発光体特有の波長λの関数として表せる。よっ
て、目視者によって実際に観察されるEL素子の発光強
度T(λ,θ,d)は数式7のように表せる。The intensity distribution F of the emission spectrum of the emission source itself
(Λ) can be expressed as a function of the wavelength λ specific to the illuminant. Therefore, the emission intensity T (λ, θ, d) of the EL element actually observed by the viewer can be expressed as in Expression 7.
【0021】[0021]
【数7】 (Equation 7)
【0022】ここで、EL素子の発光強度T(λ,θ,
d)を確認するために、膜厚(y=d)6000オング
ストロームとしたAlq3 からなるEL層を含む有機E
L素子を作成し、視角θを0゜から75゜まで種々変化
させてその発光強度の試験を行った。図5は、発光波長
に対する発光強度分布を示す。かかる発光強度分布と上
記数式7の発光強度T(λ,θ,d)とが略一致するこ
とが確認された。図から明らかなように、目視者にとっ
ては視角0゜から75゜までEL素子表示面を見る方向
によって色彩が順次異なるように見える。Here, the emission intensity T (λ, θ,
In order to confirm d), organic E including an EL layer made of Alq 3 having a thickness (y = d) of 6000 Å was used.
An L element was prepared, and the light emission intensity was tested by changing the viewing angle θ from 0 ° to 75 °. FIG. 5 shows the emission intensity distribution with respect to the emission wavelength. It was confirmed that the emission intensity distribution substantially coincides with the emission intensity T (λ, θ, d) in Equation (7). As is apparent from the drawing, the viewer sees the colors sequentially different from the viewing angle of 0 ° to 75 ° depending on the viewing direction of the EL element display surface.
【0023】さらに、実用に沿うように、波長λに対し
て特定値で感応する目視者または光検出器の視感度特性
E(λ)を考慮する。例えば視感度特性E(λ)を正規
分布とすると、かかる感度特性内におけるEL素子の輝
度特性L(d)は、数式8のようにdの関数として表せ
る(Kは定数を示す。)Further, a luminous sensitivity characteristic E (λ) of a viewer or a photodetector which responds to the wavelength λ with a specific value is considered so as to be suitable for practical use. For example, assuming that the visibility characteristic E (λ) is a normal distribution, the luminance characteristic L (d) of the EL element within the sensitivity characteristic can be expressed as a function of d as in Expression 8 (K is a constant).
【0024】[0024]
【数8】 (Equation 8)
【0025】図6は、Alq3 からなるEL層(θ=
0,n=1.7)についてその膜厚を略0オングストロ
ームから8000オングストロームにわたって変化させ
計算した場合の膜厚に対する輝度/電流特性の膜厚輝度
減衰(特性)曲線を示し、この減衰曲線が有機EL素子
における輝度の膜厚依存性を示している。FIG. 6 shows an EL layer made of Alq 3 (θ =
(0, n = 1.7), the thickness / luminance decay (characteristic) curve of the luminance / current characteristic with respect to the film thickness when the film thickness is changed from approximately 0 Å to 8000 Å is shown. 9 shows the dependency of luminance on the film thickness in the EL element.
【0026】かかる有機EL素子の輝度の膜厚依存性を
確認するための有機EL素子を作成し試験を行うと、図
7に示すような減衰特性の結果が得られる。試験した複
数の有機EL素子は膜厚500オングストロームのTP
Dの正孔輸送層と膜厚1150オングストロームから7
725オングストロームのAlq3 のEL層との2層構
造を有するものである。図示するように、かかる有機E
L素子は、図6と同様に、最小膜厚かつ最大輝度を示し
これを1次極大値として順次次数が増加(膜厚増加)す
るにつれて周期的に輝度の極大値及び極小値が現れ、こ
の極大値が減少し、極小値が増大する膜厚輝度減衰曲線
の特性すなわち、輝度の膜厚依存性を示している。When an organic EL device for confirming the dependence of the luminance of the organic EL device on the film thickness is prepared and tested, the results of the attenuation characteristics shown in FIG. 7 are obtained. The organic EL devices tested were TP having a thickness of 500 Å.
D from the hole transport layer of 1150 Å to 7
It has a two-layer structure with a 725 Å Alq 3 EL layer. As shown, the organic E
The L element exhibits a minimum film thickness and a maximum luminance as shown in FIG. 6, and the maximum value and the minimum value of the luminance appear periodically as the order sequentially increases (thickness increase) using this as the primary maximum value. It shows the characteristic of the film thickness luminance decay curve in which the maximum value decreases and the minimum value increases, that is, the film thickness dependence of luminance.
【0027】なお、図6において各極大値又は極小値の
周期Tはλm/2nで表される。ここではλmはF
(λ)において最大強度を与える波長(ピーク波長)、
nは金属陰極から発光強度分布のピークを与える位置
(正孔輸送層とEL層の界面)までの間の平均屈折率で
ある。In FIG. 6, the period T of each local maximum value or local minimum value is represented by λm / 2n. Where λm is F
Wavelength (peak wavelength) giving the maximum intensity at (λ),
n is the average refractive index from the metal cathode to the position where the emission intensity distribution peaks (the interface between the hole transport layer and the EL layer).
【0028】また、図7の膜厚輝度減衰曲線は、横軸を
500オングストロームの膜厚のTPD正孔輸送層を含
む有機EL層全体の膜厚としているために、特性曲線全
体が図6のものに比して図の右方に変移している。図8
は、上記したTPD正孔輸送層及びAlq3 EL層の2
層構造の有機EL素子の各々について、視角度に対する
輝度/電流の相対値を測定した結果を示す。In the film thickness luminance decay curve of FIG. 7, the horizontal axis represents the film thickness of the entire organic EL layer including the TPD hole transport layer having a film thickness of 500 angstroms. It is shifted to the right of the figure compared to the one. FIG.
Is the TPD hole transport layer and the Alq 3 EL layer described above.
The result of measuring the relative value of the luminance / current with respect to the viewing angle for each of the organic EL elements having the layer structure is shown.
【0029】図から明らかなように、1次、2次及び3
次極大値に対応する膜厚1150オングストロームから
2500オングストローム及び4565オングストロー
ムを有する有機EL素子は、視角の増加に従って輝度が
小さくなる方向に変化する傾向にあり、また、1次、2
次及び3次極小値に対応する膜厚2050オングストロ
ーム、3550オングストローム及び5275オングス
トロームを有する有機EL素子は、視角が増加するにつ
れて輝度が増加する傾向があることがわかる。As is apparent from the figure, the first, second and third order
The organic EL device having a film thickness of 1150 angstroms to 2500 angstroms and 4565 angstroms corresponding to the next maximum value tends to decrease in luminance as the viewing angle increases.
It can be seen that the luminance of the organic EL element having the film thickness of 2050 Å, 3550 Å, and 5275 Å corresponding to the next and third minimum values tends to increase as the viewing angle increases.
【0030】かかる有機EL素子の内、好適な実施例
は、図6から明らかなようにAlq3のEL層の厚さ
を、例えば2400オングストローム〜2700オング
ストロームとした有機EL素子である。Among these organic EL elements, a preferred embodiment is an organic EL element in which the thickness of the Alq 3 EL layer is, for example, 2400 Å to 2700 Å, as is apparent from FIG.
【0031】すなわち、このEL層の膜厚範囲は、図6
に示すEL層材質に応じた膜厚(正孔輸送層とEL層の
界面、すなわち発光強度分布のピークを与える領域と、
金属陰極すなわち反射層までの距離)に対する輝度/電
流特性の膜厚輝度減衰曲線の収束輝度値に対応する膜厚
値l1 1、l2 1、l3 1から輝度の極小値に対応する膜厚値
l1 2、l2 2、l3 2までの範囲l(l1 1〜l1 2、l2 1〜l
2 2、l3 1〜l3 2)である。尚、l1 1、l2 1、l3 1は上述
の周期Tを用いるとそれぞれ、l1 2−0.25T、l2 2
−0.25T、l3 2−0.25Tと表される。That is, the thickness range of the EL layer is as shown in FIG.
(The interface between the hole transport layer and the EL layer, that is, the region giving the peak of the emission intensity distribution,
Thickness values l 1 1 corresponding to converge the luminance value of the film thickness luminance decay curve of the luminance / current characteristics with respect to distance) to the metal cathode i.e. reflective layer, l 2 1, l 3 film corresponding to 1 to the minimum value of luminance thickness values l 1 2, l 2 2, l 3 up to 2 range l (l 1 1 ~l 1 2 , l 2 1 ~l
A 2 2, l 3 1 ~l 3 2). Incidentally, l 1 1, l 2 1 , l 3 1 each With period T described above, l 1 2 -0.25T, l 2 2
-0.25T, expressed as l 3 2 -0.25T.
【0032】そして上記の範囲にEL層膜厚を選定すれ
ば、視角が大きくなることは膜厚が小さくなることに等
しい効果を与えられるので、視角が大きくなるにつれ
て、輝度が増加することとなり、有限な大きさをもつ表
示器においては明るさの視角による依存が少ない有機E
L素子が得られることとなる。If the EL layer thickness is selected within the above range, increasing the viewing angle has the same effect as decreasing the film thickness. Therefore, the brightness increases as the viewing angle increases. In the case of a display having a finite size, the organic E is less dependent on the viewing angle of brightness
An L element is obtained.
【0033】本発明は、上記実施例のAlq3 のEL層
に限らず、EL層の材質に応じた図6に示す膜厚に対す
る輝度/電流特性の膜厚輝度減衰曲線から極小値振幅に
対応するEL層膜厚値を得ることができる。The present invention is not limited to the Alq 3 EL layer of the above-described embodiment, but corresponds to the minimum value amplitude from the luminance / current decay curve of the luminance / current characteristic with respect to the film thickness shown in FIG. 6 according to the material of the EL layer. EL layer thickness value can be obtained.
【0034】また、本発明は、上記実施例の2層構造に
限らず、図2に示す3層構造の場合も同様に電子輸送層
(透明層)及びEL層(発光層)の膜厚に対する輝度/
電流特性の膜厚輝度減衰曲線が得られ、その極小値振幅
に対応する膜厚値を得ることができる。The present invention is not limited to the two-layer structure of the above-described embodiment, but also has a three-layer structure shown in FIG. 2 with respect to the thickness of the electron transport layer (transparent layer) and the EL layer (light-emitting layer). Luminance/
A film thickness luminance decay curve of the current characteristic is obtained, and a film thickness value corresponding to the minimum value amplitude can be obtained.
【0035】さらに本発明は、上記実施例の有機EL素
子に限らず、発光層の厚さ方向の発光強度分布の半値幅
(強度分布曲線がピーク値の半分になるときの発光領域
の厚さ方向の幅)が例えば、500オングストローム以
下の発光層であれば良く、その発光層及び反射層を積層
したもの、または発光層、透明層、反射層を積層した、
面発光装置の場合においても、図6と同様な減衰特性が
得られ、その極小値振幅に対応する発光層又は、発光層
及び透明層の膜厚値を得ることができる。Further, the present invention is not limited to the organic EL device of the above embodiment, but the half width of the emission intensity distribution in the thickness direction of the emission layer (the thickness of the emission region when the intensity distribution curve becomes half the peak value). For example, a light emitting layer having a width of 500 Å or less may be used, and the light emitting layer and the reflective layer may be laminated, or the light emitting layer, the transparent layer, and the reflective layer may be laminated.
Also in the case of the surface light emitting device, the same attenuation characteristics as in FIG. 6 can be obtained, and the film thickness of the light emitting layer or the light emitting layer and the transparent layer corresponding to the minimum amplitude can be obtained.
【0036】[0036]
【発明の効果】以上説明したように、本発明による面発
光装置は、発光層又は発光層及び透明層の膜厚(発光強
度分布のピークを与える領域から反射層までの距離)を
膜厚輝度減衰特性の一つの極小値を生じる膜厚を含みか
つその振幅がその収束輝度値以下の輝度を生じる範囲内
でかつ収束輝度値を生じる膜厚値以上で前記一つの極小
値を生じる膜厚値以下の一つの値としたことにより、明
るさの視角依存性を低減することができる。As described above, in the surface emitting device according to the present invention, the thickness of the light emitting layer or the light emitting layer and the transparent layer (the distance from the region giving the peak of the light emission intensity distribution to the reflection layer) is determined by the film thickness luminance. A film thickness that includes a film thickness that produces one minimum value of the attenuation characteristic and whose amplitude is within a range that produces a luminance that is less than or equal to the convergence luminance value and that is greater than or equal to a film thickness value that produces a convergence luminance value. With one of the following values, the viewing angle dependency of brightness can be reduced.
【図1】2層構造の有機EL素子を示す構造図である。FIG. 1 is a structural diagram showing an organic EL element having a two-layer structure.
【図2】3層構造の有機EL素子を示す構造図である。FIG. 2 is a structural diagram showing an organic EL element having a three-layer structure.
【図3】2層構造の有機EL素子における光の干渉を説
明する部分拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view illustrating light interference in an organic EL element having a two-layer structure.
【図4】2層構造の有機EL素子におけるEL層の膜厚
発光度分布を説明するグラフである。FIG. 4 is a graph illustrating the luminous intensity distribution of the thickness of an EL layer in an organic EL device having a two-layer structure.
【図5】2層構造の有機EL素子におけるEL層の波長
発光度分布を説明するグラフである。FIG. 5 is a graph illustrating a wavelength luminous intensity distribution of an EL layer in an organic EL device having a two-layer structure.
【図6】2層構造の有機EL素子におけるEL層の単体
層の膜厚輝度減衰曲線を説明するグラフである。FIG. 6 is a graph illustrating a film thickness luminance decay curve of a single EL layer in an organic EL device having a two-layer structure.
【図7】EL層及び正孔輸送層の2層構造の有機EL素
子における実測した膜厚輝度減衰曲線を示すグラフであ
る。FIG. 7 is a graph showing a measured thickness-luminance decay curve of an organic EL device having a two-layer structure of an EL layer and a hole transport layer.
【図8】EL層及び正孔輸送層の2層構造の有機EL素
子における実測した視角度輝度特性曲線を示すグラフで
ある。FIG. 8 is a graph showing a viewing angle luminance characteristic curve measured in an organic EL device having a two-layer structure of an EL layer and a hole transport layer.
1 金属陰極 2 透明陽極 3 EL層 4 正孔輸送層 5 電子輸送層 6 ガラス基板 DESCRIPTION OF SYMBOLS 1 Metal cathode 2 Transparent anode 3 EL layer 4 Hole transport layer 5 Electron transport layer 6 Glass substrate
Claims (1)
層された反射層を備え、前記発光層はその厚さ方向に所
定の発光強度分布を有する面発光装置であって、前記発
光強度分布のピークを与える領域と反射層との間の膜厚
を、膜厚輝度減衰特性の一つの極小値を生じる膜厚を含
みかつその振幅が収束輝度値以下の輝度を生じる範囲内
でかつ収束輝度値を生じる膜厚値以上で前記一つの極小
値を生じる膜厚値以下の範囲内の一つの値としたことを
特徴とする面発光装置。1. A surface light-emitting device comprising a reflective layer laminated directly or via a transparent layer on a light-emitting layer, wherein the light-emitting layer has a predetermined light-emission intensity distribution in a thickness direction of the light-emitting layer. The film thickness between the region giving the distribution peak and the reflective layer is converged within a range that includes the film thickness that produces one minimum value of the film thickness luminance attenuation characteristic and whose amplitude produces a luminance that is not more than the convergent luminance value. A surface light emitting device characterized in that it is one value within a range not less than a film thickness value that produces a luminance value and not more than a film thickness value that produces the one minimum value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17867891A JP2843924B2 (en) | 1991-06-24 | 1991-06-24 | Surface emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17867891A JP2843924B2 (en) | 1991-06-24 | 1991-06-24 | Surface emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH053081A JPH053081A (en) | 1993-01-08 |
JP2843924B2 true JP2843924B2 (en) | 1999-01-06 |
Family
ID=16052646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17867891A Expired - Fee Related JP2843924B2 (en) | 1991-06-24 | 1991-06-24 | Surface emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2843924B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6505901B1 (en) | 1999-02-18 | 2003-01-14 | Pioneer Corporation | Organic electroluminescence device and process for fabricating the same |
US7741760B2 (en) | 2005-03-23 | 2010-06-22 | Canon Kabushiki Kaisha | Display apparatus |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3585524B2 (en) * | 1994-04-20 | 2004-11-04 | 大日本印刷株式会社 | Manufacturing method of organic thin film EL element |
TW463528B (en) * | 1999-04-05 | 2001-11-11 | Idemitsu Kosan Co | Organic electroluminescence element and their preparation |
JP4349784B2 (en) | 2002-10-01 | 2009-10-21 | パイオニア株式会社 | Image display device and manufacturing method |
JP4350996B2 (en) | 2002-11-26 | 2009-10-28 | 日東電工株式会社 | Organic electroluminescence device, surface light source and display device |
US7030555B2 (en) | 2003-04-04 | 2006-04-18 | Nitto Denko Corporation | Organic electroluminescence device, planar light source and display device using the same |
EP1548856A3 (en) | 2003-12-26 | 2012-08-08 | Nitto Denko Corporation | Electroluminescence device, planar light source and display using the same |
-
1991
- 1991-06-24 JP JP17867891A patent/JP2843924B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6505901B1 (en) | 1999-02-18 | 2003-01-14 | Pioneer Corporation | Organic electroluminescence device and process for fabricating the same |
US7741760B2 (en) | 2005-03-23 | 2010-06-22 | Canon Kabushiki Kaisha | Display apparatus |
US8253324B2 (en) | 2005-03-23 | 2012-08-28 | Canon Kabushiki Kaisha | Display apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH053081A (en) | 1993-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3065705B2 (en) | Organic electroluminescence device | |
US6429451B1 (en) | Reduction of ambient-light-reflection in organic light-emitting devices | |
JP3297619B2 (en) | Organic EL color display | |
US6545409B2 (en) | Organic light-emitting diode with high contrast ratio | |
KR101217659B1 (en) | Electroluminescence element | |
US8593056B2 (en) | Electroluminescent device | |
JP5452853B2 (en) | Organic electroluminescence device | |
JP2843925B2 (en) | Organic EL device | |
KR100735786B1 (en) | Organic electroluminescence element | |
JP2003272855A (en) | Organic el element and organic el panel | |
JP2843924B2 (en) | Surface emitting device | |
US7045954B2 (en) | Organic light-emitting device with reduction of ambient-light-reflection by disposing a multilayer structure over a semi-transparent cathode | |
JP3065704B2 (en) | Organic electroluminescence device | |
JP4247016B2 (en) | Organic EL display device | |
WO2009125518A1 (en) | Light emitting element and display panel | |
JP3300065B2 (en) | Organic electroluminescence device | |
JP2003092002A (en) | Flat light emitting body | |
JPH10223372A (en) | Organic electroluminescent element and flat panel display using it | |
JP2004079421A (en) | Organic el element | |
JP2007257909A (en) | Organic el element | |
KR100542996B1 (en) | Transparent organic electro luminescence display | |
JP4176517B2 (en) | Thin film light emitting display element, manufacturing method thereof, and display device | |
KR100544120B1 (en) | Electroluminescence device | |
KR100786291B1 (en) | Top-emitting OLED | |
JP2005235668A (en) | Organic light emitting element and multicolor display device using the organic light emitting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980922 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071030 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081030 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091030 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |