JPH0693256A - Organic thin-film luminescent element - Google Patents
Organic thin-film luminescent elementInfo
- Publication number
- JPH0693256A JPH0693256A JP4242434A JP24243492A JPH0693256A JP H0693256 A JPH0693256 A JP H0693256A JP 4242434 A JP4242434 A JP 4242434A JP 24243492 A JP24243492 A JP 24243492A JP H0693256 A JPH0693256 A JP H0693256A
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- thin film
- layer
- organic thin
- emitting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は有機薄膜発光素子の正
極に係り、特に正極の表面平滑性が良好で、発光安定
性、発光効率に優れる有機薄膜発光素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode of an organic thin film light emitting device, and more particularly to an organic thin film light emitting device which has good positive electrode surface smoothness and excellent light emission stability and light emission efficiency.
【0002】[0002]
【従来の技術】従来のブラウン管に代わるフラットディ
スプレイの需要の急増に伴い、各種表示素子の開発及び
実用化が精力的に進められている。エレクトロルミネッ
センス素子(以下EL素子とする)もこうしたニ−ズに
即するものであり、特に全固体の自発発光素子として、
他のディスプレイにはない高解像度及び高視認性により
注目を集めている。現在、実用化されているものは、発
光層にZnS/Mn系を用いた無機材料からなるEL素
子である。しかるに、この種の無機EL素子は発光に必
要な駆動電圧が100V以上と高いため駆動方法が複雑
となり製造コストが高いといった問題点がある。また、
青色発光の効率が低いため、フルカラ−化が困難であ
る。これに対して、有機材料を用いた薄膜発光素子は、
発光に必要な駆動電圧が大幅に低減でき、かつ各種発光
材料の適用によりフルカラ−化の可能性を充分に持つこ
とから、近年研究が活発化している。2. Description of the Related Art With the rapid increase in demand for flat displays replacing conventional cathode ray tubes, various display elements have been vigorously developed and put into practical use. An electroluminescence element (hereinafter referred to as an EL element) is also adapted to such a need, and in particular, as an all solid state spontaneous light emitting element,
It attracts attention due to its high resolution and high visibility that other displays do not have. At present, what has been put into practical use is an EL element made of an inorganic material using a ZnS / Mn system in the light emitting layer. However, this type of inorganic EL element has a problem that the driving method is complicated and the manufacturing cost is high because the driving voltage required for light emission is as high as 100 V or more. Also,
Since the efficiency of blue light emission is low, full colorization is difficult. On the other hand, a thin film light emitting device using an organic material is
Since the driving voltage required for light emission can be significantly reduced and the potential for full color conversion can be sufficiently obtained by applying various light emitting materials, research has been actively conducted in recent years.
【0003】特に、電極/正孔注入層/発光層/電極か
らなる積層型において、発光剤にトリス(8−ヒドロキ
シキノリン)アルミニウムを、正孔注入剤に1,1’−
ビス(4−N,N−ジトリアミノフェニル)シクロヘキ
サンを用いることにより、10V以下の印加電圧で10
00cd/cm2 以上の輝度が得られたという報告がな
されて以来開発に拍車がかけられた(Appl.Phys.Lett.
51,913,(1987))。In particular, in the laminated type composed of electrode / hole injection layer / light emitting layer / electrode, tris (8-hydroxyquinoline) aluminum is used as the light emitting agent and 1,1′-is used as the hole injection agent.
By using bis (4-N, N-ditriaminophenyl) cyclohexane, an applied voltage of 10 V or less
The development was spurred since it was reported that a brightness of more than 00 cd / cm 2 was obtained (Appl.Phys.Lett.
51 , 913, (1987)).
【0004】図5は従来の有機薄膜発光素子の一例を示
す断面図である。絶縁性基板1の上に正極2、正孔注入
層4、発光層5、負極7が順次積層される。正孔注入
層、発光層は有機物質を用いて成膜される。FIG. 5 is a sectional view showing an example of a conventional organic thin film light emitting device. The positive electrode 2, the hole injection layer 4, the light emitting layer 5, and the negative electrode 7 are sequentially stacked on the insulating substrate 1. The hole injection layer and the light emitting layer are formed using an organic material.
【0005】[0005]
【発明が解決しようとする課題】しかしながら従来の有
機薄膜発光素子においては絶縁性透明基板上の正極の表
面平滑性が悪いために正極上に形成される有機層に膜質
の低下や界面の乱れが発生し有機薄膜発光素子の発光安
定性や発光効率が阻害されるという問題があった。However, in the conventional organic thin film light emitting device, since the surface smoothness of the positive electrode on the insulating transparent substrate is poor, deterioration of the film quality and disorder of the interface are caused in the organic layer formed on the positive electrode. However, there is a problem in that the light emission stability and the light emission efficiency of the organic thin film light emitting device are deteriorated.
【0006】この発明は上述の点に鑑みてなされ、その
目的は正極の表面平滑性を向上させることにより発光安
定性と発光効率に優れる有機薄膜発光素子を提供するこ
とにある。The present invention has been made in view of the above points, and an object thereof is to provide an organic thin film light emitting device which is excellent in light emission stability and light emission efficiency by improving the surface smoothness of a positive electrode.
【0007】[0007]
【課題を解決するための手段】上述の目的はこの発明に
よれば透明積層体と、発光層と、負極とを有し、透明積
層体は絶縁性透明基板上に正極と金属薄膜層とが順次積
層されてなり、透明積層体の金属薄膜層と負極の間には
発光層が挟持されてなり、発光層は有機物質の膜である
とすることにより達成される。According to the present invention, the above-mentioned object has a transparent laminate, a light emitting layer, and a negative electrode, and the transparent laminate has a positive electrode and a metal thin film layer on an insulating transparent substrate. The light emitting layer is formed by sequentially laminating, and the light emitting layer is sandwiched between the metal thin film layer and the negative electrode of the transparent laminated body, and the light emitting layer is an organic material film.
【0008】[0008]
【作用】金属薄膜層を設けることにより、正極の表面が
平坦化し、均一な膜厚の有機層が形成されて電界の局所
集中や結晶化が抑制され、その結果正極の導電性や光透
過率に影響をあたえることなく有機薄膜発光素子の発光
安定性や発光効率が向上する。[Function] By providing the metal thin film layer, the surface of the positive electrode is flattened, an organic layer having a uniform thickness is formed, and local concentration and crystallization of the electric field are suppressed. As a result, conductivity and light transmittance of the positive electrode are suppressed. The light emission stability and light emission efficiency of the organic thin film light emitting device are improved without affecting the above.
【0009】[0009]
【実施例】図1はこの発明の実施例に係る有機薄膜発光
素子を示す断面図である。図2はこの発明の異なる実施
例に係る有機薄膜発光素子を示す断面図である。図3は
この発明のさらに異なる実施例に係る有機薄膜発光素子
を示す断面図である。1 is a sectional view showing an organic thin film light emitting device according to an embodiment of the present invention. FIG. 2 is a sectional view showing an organic thin film light emitting device according to another embodiment of the present invention. FIG. 3 is a sectional view showing an organic thin film light emitting device according to another embodiment of the present invention.
【0010】図4はこの発明のさらに異なる実施例に係
る有機薄膜発光素子を示す断面図である。1は絶縁性基
板、2は正極、3は金属薄膜層、4は正孔注入層、5は
発光層、6は電子注入層、7は負極、8は電源である。
絶縁性基板1は素子の支持体でガラス,樹脂等の透明な
材料を用いる。正極2はインジウムスズ酸化物(IT
O),酸化スズ(SnO2 )等の透明導電膜やポリピロ
ール等の導電性高分子からなり抵抗加熱蒸着、電子ビ−
ム蒸着、スパッタ法または電解重合法、化学重合法によ
り形成する。該正極2は、透明性を持たせるために、5
0〜300nmの厚さにすることが望ましい。FIG. 4 is a sectional view showing an organic thin film light emitting device according to another embodiment of the present invention. 1 is an insulating substrate, 2 is a positive electrode, 3 is a metal thin film layer, 4 is a hole injection layer, 5 is a light emitting layer, 6 is an electron injection layer, 7 is a negative electrode, and 8 is a power supply.
The insulating substrate 1 is a support for the element and is made of a transparent material such as glass or resin. The positive electrode 2 is indium tin oxide (IT
O), tin oxide (SnO 2 ), etc., and conductive heating polymers such as polypyrrole and resistance heating vapor deposition, electron beam
It is formed by vapor deposition, sputtering, electrolytic polymerization, or chemical polymerization. The positive electrode 2 has 5% in order to have transparency.
It is desirable to set the thickness to 0 to 300 nm.
【0011】金属薄膜層3は正極2上に抵抗加熱蒸着、
電子ビ−ム蒸着、スパッタ法により形成する。金属薄膜
層3の材料としては正孔の注入性、正極への密着性の観
点から白金、金、銀、ニッケル、銅およびこれらを含有
する合金が適当である。金属薄膜層の厚さは正極2の表
面平均粗さ以上であり、発光中心波長の透過率を80%
以上に維持できることが望ましい。The metal thin film layer 3 is formed on the positive electrode 2 by resistance heating vapor deposition,
It is formed by electron beam evaporation and sputtering. As the material of the metal thin film layer 3, platinum, gold, silver, nickel, copper and alloys containing these are suitable from the viewpoint of hole injection properties and adhesion to the positive electrode. The thickness of the metal thin film layer is equal to or more than the average surface roughness of the positive electrode 2, and the transmittance of the emission center wavelength is 80%.
It is desirable to be able to maintain above.
【0012】正孔注入層4は正孔を効率良く輸送し、且
つ注入することが必要で発光した光の発光極大波長領域
においてできるだけ透明であることが望ましい。成膜方
法としてスピンコ−ト、キャスティング、LB法、抵抗
加熱蒸着、電子ビ−ム蒸着等があるが抵抗加熱蒸着が一
般的である。膜厚は200ないし5000Åであり、好
適には300ないし800Åである。正孔注入物質とし
ては化学式(I−1)ないし化学式(I−7)に示すよ
うな有機物質またはその誘導体のうち少なくともその一
種類を成分とする。代表的な正孔注入物質が以下に示さ
れる。The hole injection layer 4 is required to efficiently transport and inject holes, and it is desirable that the hole injection layer 4 be as transparent as possible in the emission maximum wavelength region of the emitted light. The film forming method includes spin coating, casting, LB method, resistance heating evaporation, electron beam evaporation and the like, but resistance heating evaporation is common. The film thickness is 200 to 5000Å, preferably 300 to 800Å. As the hole injecting substance, at least one kind of the organic substances represented by the chemical formulas (I-1) to (I-7) or the derivatives thereof is used as a component. Representative hole injecting materials are shown below.
【0013】[0013]
【化1】 [Chemical 1]
【0014】発光層5は正孔注入層または正極から注入
された正孔と、負極または電子注入層より注入された電
子の再結合により効率良く発光を行う。成膜方法はスピ
ンコ−ト、キャスティング、LB法、抵抗加熱蒸着、電
子ビ−ム蒸着、分子線エピタキシ等があるが抵抗加熱蒸
着、分子線エピタキシが好ましい。膜厚は200ないし
5000Åであるが好適には300ないし800Åであ
る。発光物質としては化学式(II−1)ないし化学式
(II−5)に示すような有機物質またはその誘導体のう
ち少なくともその一種類を成分とする。The light emitting layer 5 efficiently emits light by recombination of holes injected from the hole injection layer or the positive electrode and electrons injected from the negative electrode or the electron injection layer. The film forming method includes spin coating, casting, LB method, resistance heating evaporation, electron beam evaporation, molecular beam epitaxy and the like, but resistance heating evaporation and molecular beam epitaxy are preferable. The film thickness is 200 to 5000Å, preferably 300 to 800Å. The luminescent substance contains at least one kind of the organic substances represented by the chemical formulas (II-1) to (II-5) or the derivatives thereof.
【0015】[0015]
【化2】 [Chemical 2]
【0016】電子注入層6は電子を効率良く発光層に注
入することが望ましい。成膜方法はスピンコ−ト、キャ
スティング、LB法、抵抗加熱蒸着、電子ビ−ム蒸着、
分子線エピタキシ等があるが抵抗加熱蒸着、分子線エピ
タキシが一般的である。膜厚は200ないし5000Å
であるが好適には300ないし800Åである。電子注
入物質としては化学式(III −1)ないし化学式(III
−3)に示すような有機物質またはその誘導体のうち少
なくともその一種類を成分とする。It is desirable for the electron injection layer 6 to efficiently inject electrons into the light emitting layer. The film forming method is spin coating, casting, LB method, resistance heating vapor deposition, electron beam vapor deposition,
Although there are molecular beam epitaxy and the like, resistance heating vapor deposition and molecular beam epitaxy are common. Film thickness is 200 to 5000Å
However, it is preferably 300 to 800Å. As the electron injecting substance, the chemical formula (III -1) to the chemical formula (III
-3) At least one kind of the organic substances or their derivatives is used as a component.
【0017】[0017]
【化3】 [Chemical 3]
【0018】負極7は電子を効率良く有機層に注入する
ことが必要である。成膜方法としては抵抗加熱蒸着,電
子ビーム蒸着,スパッタ法が用いられる。負極7用材料
としては、仕事関数の小さいMg,Ag,In,Ca,
Al等およびこれらの合金,積層体等が用いられる。 実施例1 膜厚約1000ÅのITOを設けた厚さ1.1mmのガ
ラス基板上に、図1に示すように白金,金,銀または銅
を電子ビーム蒸着法により10nm成膜した。次に正孔
注入層は化学式(I−1)に示す物質を用いて成膜し
た。発光層には化学式(II−1)に示す物質を用いて成
膜した。負極としてMg−Sc合金(9:1の重量比
率)を電子ビーム蒸着法により作成した。以上の成膜は
1〜5×10 -5Paの真空度を維持して行った。The negative electrode 7 efficiently injects electrons into the organic layer.
It is necessary. Resistance heating vapor deposition and electric
Sub-beam evaporation and sputtering methods are used. Material for negative electrode 7
As for, Mg, Ag, In, Ca, which have a small work function,
Al and the like, alloys of these and laminated bodies are used. Example 1 A 1.1 mm thick glass provided with ITO having a film thickness of about 1000 Å
As shown in Fig. 1, platinum, gold, silver or copper on the lath substrate
Was deposited to a thickness of 10 nm by an electron beam evaporation method. Next hole
The injection layer is formed by using the substance represented by the chemical formula (I-1).
It was The light emitting layer is formed by using the substance represented by the chemical formula (II-1).
Filmed Mg-Sc alloy (9: 1 weight ratio as negative electrode)
Was prepared by the electron beam evaporation method. The above film formation
1-5 × 10 -FiveThe vacuum was maintained at Pa.
【0019】得られた有機薄膜発光素子に直流電圧を印
加して連続駆動した。電圧は初期輝度が200cd/m
2 となるように調整した。初期の発光効率と輝度が初期
の1/2になるまでの連続発光時間を輝度半減寿命と定
義した。結果が表1に示される。 比較例1 金属薄膜層がない他は実施例1と同様にして有機薄膜発
光素子を作成した。A DC voltage was applied to the obtained organic thin film light emitting device to continuously drive it. Voltage has an initial brightness of 200 cd / m
Adjusted to be 2 . The continuous emission time until the initial luminous efficiency and the luminance become 1/2 of the initial luminance was defined as the luminance half life. The results are shown in Table 1. Comparative Example 1 An organic thin film light emitting device was prepared in the same manner as in Example 1 except that the metal thin film layer was not provided.
【0020】[0020]
【表1】 本実施例の有機薄膜発光素子は比較例1に比し、初期発
光効率が最大3.7倍、輝度半減寿命が最大5.9倍と
なった。 実施例2 膜厚約1000ÅのITOを設けた厚さ1.1mmのガ
ラス基板上に、図2に示すように白金,金,銀または銅
を電子ビーム蒸着法により10nm成膜した。発光層は
化学式(II−1)に示す物質を用いて成膜した。負極と
してMg−Sc合金(9:1の重量比率)を電子ビーム
蒸着法により作成した。以上の成膜は1〜5×10-5P
aの真空度を維持して行った。[Table 1] The organic thin film light emitting device of this example had an initial luminous efficiency of 3.7 times at maximum and a half-life of luminance of 5.9 times at most as compared with Comparative Example 1. Example 2 As shown in FIG. 2, platinum, gold, silver, or copper was deposited to a thickness of 10 nm on a 1.1 mm-thick glass substrate provided with ITO having a film thickness of about 1000 Å by an electron beam evaporation method. The light emitting layer was formed by using the substance represented by the chemical formula (II-1). A Mg—Sc alloy (weight ratio of 9: 1) was prepared as an anode by an electron beam evaporation method. The above film formation is 1 to 5 × 10 −5 P
The vacuum degree of a was maintained.
【0021】得られた有機薄膜発光素子に直流電圧を印
加して連続駆動した。電圧は初期輝度が200cd/m
2 となるように調整した。初期の発光効率と輝度が初期
の1/2になるまでの連続発光時間を輝度半減寿命と定
義した。結果が表2に示される。 比較例2 金属薄膜層がない他は実施例2と同様にして有機薄膜発
光素子を作成した。A DC voltage was applied to the obtained organic thin film light emitting device to continuously drive it. Voltage has an initial brightness of 200 cd / m
Adjusted to be 2 . The continuous emission time until the initial luminous efficiency and the luminance become 1/2 of the initial luminance was defined as the luminance half life. The results are shown in Table 2. Comparative Example 2 An organic thin film light emitting device was prepared in the same manner as in Example 2 except that the metal thin film layer was not provided.
【0022】[0022]
【表2】 本実施例の有機薄膜発光素子は比較例2に比し、初期発
光効率が最大3.4倍、輝度半減寿命が最大5.2倍と
なった。 実施例3 膜厚約1000ÅのITOを設けた厚さ1.1mmのガ
ラス基板上に、図3に示すように白金,金,銀または銅
を電子ビーム蒸着法により10nm成膜した。発光層は
化学式(II−1)に示す物質を用いて成膜した。電子注
入層は化学式(III −1)に示す物質を用いて成膜し
た。負極としてMg−Sc合金(9:1の重量比率)を
電子ビーム蒸着法により作成した。以上の成膜は1〜5
×10-5Paの真空度を維持して行った。[Table 2] The organic thin-film light emitting device of this example had an initial luminous efficiency of up to 3.4 times and a luminance half life of up to 5.2 times compared to Comparative Example 2. Example 3 As shown in FIG. 3, platinum, gold, silver or copper was deposited to a thickness of 10 nm on a 1.1 mm-thick glass substrate provided with ITO having a film thickness of about 1000 Å by an electron beam evaporation method. The light emitting layer was formed by using the substance represented by the chemical formula (II-1). The electron injection layer was formed by using the substance represented by the chemical formula (III-1). A Mg—Sc alloy (weight ratio of 9: 1) was prepared as an anode by an electron beam evaporation method. The above film formation is 1 to 5
It was carried out while maintaining a vacuum degree of × 10 -5 Pa.
【0023】得られた有機薄膜発光素子に直流電圧を印
加して連続駆動した。電圧は初期輝度が200cd/m
2 となるように調整した。初期の発光効率と輝度が初期
の1/2になるまでの連続発光時間を輝度半減寿命と定
義した。 比較例3 金属薄膜層がない他は実施例3と同様にして有機薄膜発
光素子を作成した。A DC voltage was applied to the obtained organic thin film light emitting device to continuously drive it. Voltage has an initial brightness of 200 cd / m
Adjusted to be 2 . The continuous emission time until the initial luminous efficiency and the luminance become 1/2 of the initial luminance was defined as the luminance half life. Comparative Example 3 An organic thin film light emitting device was prepared in the same manner as in Example 3 except that the metal thin film layer was not provided.
【0024】結果が表3に示される。The results are shown in Table 3.
【0025】[0025]
【表3】 本実施例の有機薄膜発光素子は比較例3に比し、初期発
光効率が最大1.6倍、輝度半減寿命が最大3.0倍と
なった。 実施例4 膜厚約1000ÅのITOを設けた厚さ1.1mmのガ
ラス基板上に、図4に示すように白金,金,銀または銅
を電子ビーム蒸着法により10nm成膜した。次に正孔
注入層は化学式(I−1)に示す物質を用いて成膜し
た。発光層は化学式(II−1)に示す物質を用いて成膜
した。電子注入層は化学式(III −1)に示す物質を用
いて成膜した。負極としてMg−Sc合金(9:1の重
量比率)を電子ビーム蒸着法により作成した。以上の成
膜は1〜5×10-5Paの真空度を維持して行った。[Table 3] The organic thin film light emitting device of this example had an initial luminous efficiency of up to 1.6 times and a luminance half life of up to 3.0 times compared to Comparative Example 3. Example 4 As shown in FIG. 4, platinum, gold, silver or copper was deposited to a thickness of 10 nm on a 1.1 mm-thick glass substrate provided with ITO having a film thickness of about 1000 Å by an electron beam evaporation method. Next, the hole injection layer was formed using the substance represented by the chemical formula (I-1). The light emitting layer was formed by using the substance represented by the chemical formula (II-1). The electron injection layer was formed by using the substance represented by the chemical formula (III-1). A Mg—Sc alloy (weight ratio of 9: 1) was prepared as an anode by an electron beam evaporation method. The above film formation was performed while maintaining a vacuum degree of 1 to 5 × 10 −5 Pa.
【0026】得られた有機薄膜発光素子に直流電圧を印
加して連続駆動した。電圧は初期輝度が200cd/m
2 となるように調整した。初期の発光効率と輝度が初期
の1/2になるまでの連続発光時間を輝度半減寿命と定
義した。 比較例4 金属薄膜層がない他は実施例4と同様にして有機薄膜発
光素子を作成した。A DC voltage was applied to the obtained organic thin film light emitting device to continuously drive it. Voltage has an initial brightness of 200 cd / m
Adjusted to be 2 . The continuous emission time until the initial luminous efficiency and the luminance become 1/2 of the initial luminance was defined as the luminance half life. Comparative Example 4 An organic thin film light emitting device was prepared in the same manner as in Example 4 except that the metal thin film layer was not provided.
【0027】結果が表4に示される。The results are shown in Table 4.
【0028】[0028]
【表4】 本実施例の有機薄膜発光素子は比較例4に比し、初期発
光効率が最大3.5倍、輝度半減寿命が最大4.3倍と
なった。[Table 4] The organic thin-film light emitting device of this example had an initial emission efficiency of 3.5 times at maximum and a luminance half life of 4.3 times at most, as compared with Comparative Example 4.
【0029】[0029]
【発明の効果】この発明によれば透明積層体と、発光層
と、負極とを有し、透明積層体は絶縁性基板上に正極と
金属薄膜層とが順次積層されてなり、 透明積層体の金
属薄膜層と負極の間には発光層が挟持されてなり、発光
層は有機物質の膜であるとするので、金属薄膜層を設け
ることにより、正極の表面が平坦化し、均一な膜厚の有
機層が形成されて電界の局所集中や結晶化が抑制され、
その結果正極の導電性や光透過率に影響をあたえること
なく発光安定性や発光効率の向上した有機薄膜発光素子
が得られる。According to the present invention, it has a transparent laminate, a light emitting layer, and a negative electrode, and the transparent laminate is formed by sequentially laminating a positive electrode and a metal thin film layer on an insulating substrate. The light emitting layer is sandwiched between the metal thin film layer and the negative electrode, and the light emitting layer is assumed to be a film of an organic substance.Therefore, by providing the metal thin film layer, the surface of the positive electrode is flattened and the uniform film thickness The organic layer is formed to suppress local concentration of electric field and crystallization,
As a result, it is possible to obtain an organic thin film light emitting device having improved light emission stability and light emission efficiency without affecting the conductivity or light transmittance of the positive electrode.
【図1】この発明の実施例に係る有機薄膜発光素子を示
す断面図FIG. 1 is a sectional view showing an organic thin film light emitting device according to an embodiment of the present invention.
【図2】この発明の異なる実施例に係る有機薄膜発光素
子を示す断面図FIG. 2 is a sectional view showing an organic thin film light emitting device according to another embodiment of the present invention.
【図3】この発明のさらに異なる実施例に係る有機薄膜
発光素子を示す断面図FIG. 3 is a sectional view showing an organic thin film light emitting device according to still another embodiment of the present invention.
【図4】この発明のさらに異なる実施例に係る有機薄膜
発光素子を示す断面図FIG. 4 is a sectional view showing an organic thin film light emitting device according to another embodiment of the present invention.
【図5】従来の有機薄膜発光素子を示す断面図FIG. 5 is a cross-sectional view showing a conventional organic thin film light emitting device.
1 絶縁性基板 2 正極 3 金属薄膜層 4 正孔注入層 5 発光層 6 電子注入層 7 負極 8 電源 1 Insulating substrate 2 Positive electrode 3 Metal thin film layer 4 Hole injection layer 5 Light emitting layer 6 Electron injection layer 7 Negative electrode 8 Power supply
Claims (5)
積層されてなり、透明積層体の金属薄膜層と負極の間に
は発光層が挟持されてなり、 発光層は有機物質の膜であることを特徴とする有機薄膜
発光素子。1. A transparent laminated body, a light emitting layer, and a negative electrode, wherein the transparent laminated body is formed by sequentially laminating a positive electrode and a metal thin film layer on an insulating substrate, and a metal thin film layer of the transparent laminated body. An organic thin film light emitting device characterized in that a light emitting layer is sandwiched between negative electrodes, and the light emitting layer is a film of an organic substance.
て、正極はインジウムスズ酸化物からなることを特徴と
する有機薄膜発光素子。2. The organic thin film light emitting device according to claim 1, wherein the positive electrode is made of indium tin oxide.
て、金属薄膜層は白金からなることを特徴とする有機薄
膜発光素子。3. The organic thin film light emitting device according to claim 1, wherein the metal thin film layer is made of platinum.
て、金属薄膜層と発光層の間には正孔注入層が設けられ
ることを特徴とする有機薄膜発光素子。4. The organic thin film light emitting device according to claim 1, wherein a hole injection layer is provided between the metal thin film layer and the light emitting layer.
て、発光層と負極の間には電子注入層が設けられること
を特徴とする有機薄膜発光素子。5. The organic thin film light emitting device according to claim 1, wherein an electron injection layer is provided between the light emitting layer and the negative electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4242434A JPH0693256A (en) | 1992-09-11 | 1992-09-11 | Organic thin-film luminescent element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4242434A JPH0693256A (en) | 1992-09-11 | 1992-09-11 | Organic thin-film luminescent element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0693256A true JPH0693256A (en) | 1994-04-05 |
Family
ID=17089041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4242434A Pending JPH0693256A (en) | 1992-09-11 | 1992-09-11 | Organic thin-film luminescent element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0693256A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2726692A1 (en) * | 1994-11-08 | 1996-05-10 | Thomson Csf | ELECTROLUMINESCENT DIODE BASED ON RETICULATED POLYMER AND ELECTROLUMINESCENT GRAFT POLYMER |
EP0892587A3 (en) * | 1997-07-16 | 1999-09-29 | TDK Corporation | Organic EL device and method for production thereof |
JP2002237382A (en) * | 2001-02-13 | 2002-08-23 | Stanley Electric Co Ltd | Organic led element and its manufacturing method |
JP2003115393A (en) * | 2001-10-02 | 2003-04-18 | Sony Corp | Organic electroluminescence element and its manufacturing method, image display equipment |
US6596134B2 (en) * | 1994-12-13 | 2003-07-22 | The Trustees Of Princeton University | Method of fabricating transparent contacts for organic devices |
CN101894922A (en) * | 2010-06-29 | 2010-11-24 | 深圳丹邦投资集团有限公司 | Organic light-emitting device and composite anode and manufacturing method thereof |
JP2013532363A (en) * | 2010-06-18 | 2013-08-15 | コーニンクレッカ フィリップス エヌ ヴェ | Transparent light emitting device with controlled emission |
-
1992
- 1992-09-11 JP JP4242434A patent/JPH0693256A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2726692A1 (en) * | 1994-11-08 | 1996-05-10 | Thomson Csf | ELECTROLUMINESCENT DIODE BASED ON RETICULATED POLYMER AND ELECTROLUMINESCENT GRAFT POLYMER |
EP0712171A1 (en) * | 1994-11-08 | 1996-05-15 | Thomson-Csf | Light emitting diode with crosslinked polymer and light emitting graft polymer |
US6596134B2 (en) * | 1994-12-13 | 2003-07-22 | The Trustees Of Princeton University | Method of fabricating transparent contacts for organic devices |
EP0892587A3 (en) * | 1997-07-16 | 1999-09-29 | TDK Corporation | Organic EL device and method for production thereof |
US6597109B1 (en) | 1997-07-16 | 2003-07-22 | Tdk Corporation | Organic EL device and method for production thereof |
JP2002237382A (en) * | 2001-02-13 | 2002-08-23 | Stanley Electric Co Ltd | Organic led element and its manufacturing method |
JP4627897B2 (en) * | 2001-02-13 | 2011-02-09 | スタンレー電気株式会社 | Manufacturing method of organic LED element |
JP2003115393A (en) * | 2001-10-02 | 2003-04-18 | Sony Corp | Organic electroluminescence element and its manufacturing method, image display equipment |
JP2013532363A (en) * | 2010-06-18 | 2013-08-15 | コーニンクレッカ フィリップス エヌ ヴェ | Transparent light emitting device with controlled emission |
CN101894922A (en) * | 2010-06-29 | 2010-11-24 | 深圳丹邦投资集团有限公司 | Organic light-emitting device and composite anode and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3189480B2 (en) | Organic thin film light emitting device | |
JP2824411B2 (en) | Organic thin-film light emitting device | |
JP2701738B2 (en) | Organic thin film EL device | |
JP4315996B2 (en) | Organic light emitting device and method for manufacturing the same | |
JP3428152B2 (en) | Manufacturing method of organic EL element | |
JPH0525473A (en) | Organic electroluminescent element | |
US7561126B2 (en) | Method of driving electroluminescent device | |
JPH0613181A (en) | Emission method of organic thin film light emitting element | |
JP3189438B2 (en) | Organic thin film light emitting device | |
JPH03141588A (en) | Electroluminescent device | |
JPH0693256A (en) | Organic thin-film luminescent element | |
KR20020076171A (en) | Organic light-emitting device capable of high-quality display | |
JPH0794278A (en) | Organic thin film light emitting element | |
JPH05114487A (en) | Organic thin film electroluminescent element | |
US20080252208A1 (en) | Oled device with short reduction | |
JPH10208880A (en) | Light emitting element | |
JPH1140352A (en) | Organic el element and manufacture thereof | |
KR19990088325A (en) | Organic Electroluminescent Device | |
JP2000188184A (en) | Organic thin film el element and its manufacture | |
JP3910010B2 (en) | Organic electroluminescence device | |
JPH06231881A (en) | Organic thin film luminous element | |
JPH10204426A (en) | Organic thin film luminescent element | |
JPH02251429A (en) | Transparent conductive film | |
JP3253368B2 (en) | EL device | |
JP3736881B2 (en) | Organic thin film EL device |