JP3189480B2 - Organic thin film light emitting device - Google Patents

Organic thin film light emitting device

Info

Publication number
JP3189480B2
JP3189480B2 JP07602193A JP7602193A JP3189480B2 JP 3189480 B2 JP3189480 B2 JP 3189480B2 JP 07602193 A JP07602193 A JP 07602193A JP 7602193 A JP7602193 A JP 7602193A JP 3189480 B2 JP3189480 B2 JP 3189480B2
Authority
JP
Japan
Prior art keywords
light
layer
organic thin
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07602193A
Other languages
Japanese (ja)
Other versions
JPH06290873A (en
Inventor
洋太郎 白石
修 鍋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP07602193A priority Critical patent/JP3189480B2/en
Publication of JPH06290873A publication Critical patent/JPH06290873A/en
Application granted granted Critical
Publication of JP3189480B2 publication Critical patent/JP3189480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/321Inverted OLED, i.e. having cathode between substrate and anode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は有機薄膜発光素子の積
層構造に係り、特に有機薄膜層と透光性正極の二層に係
る積層構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated structure of an organic thin-film light emitting device, and more particularly to a laminated structure of an organic thin-film layer and a translucent positive electrode.

【0002】[0002]

【従来の技術】従来のブラウン管に代わるフラットディ
スプレイの需要の急増に伴い、各種表示素子の開発及び
実用化が精力的に進められている。エレクトロルミネセ
ンス素子(電場発光素子)もこうしたニ−ズに即するも
のであり、特に全固体の自発発光素子として、他のディ
スプレイにはない高解像度及び高視認性により注目を集
めている。現在、実用化されているものは、発光層にZ
nS/Mn系を用いた無機材料からなる電場発光素子で
ある。しかるに、この種の無機電場発光素子は発光に必
要な駆動電圧が100V以上と高いため駆動方法が複雑
となり製造コストが高いといった問題点がある。また、
青色発光の効率が低いため、フルカラ−化が困難であ
る。これに対して、有機材料を用いた薄膜薄膜電場発光
素子(以下有機薄膜発光素子という)は、発光に必要な
駆動電圧が大幅に低減でき、かつ各種発光材料の適用に
よりフルカラ−化の可能性を充分に持つことから、近年
研究が活発化している。
2. Description of the Related Art With the rapid increase in demand for flat displays that can replace conventional cathode ray tubes, various display elements are being developed and put into practical use. Electroluminescent elements (electroluminescent elements) are also in line with such needs, and are particularly attracting attention as all-solid-state spontaneous light-emitting elements due to high resolution and high visibility not found in other displays. At present, practically used materials include Z
This is an electroluminescent element made of an inorganic material using an nS / Mn system. However, this type of inorganic electroluminescent element has a problem that the driving voltage required for light emission is as high as 100 V or more, so that the driving method is complicated and the manufacturing cost is high. Also,
Since the efficiency of blue light emission is low, full colorization is difficult. On the other hand, a thin-film electroluminescent device using an organic material (hereinafter referred to as an organic thin-film light-emitting device) can drastically reduce the driving voltage required for light emission, and can be made full-color by applying various light-emitting materials. Research has become active in recent years because it has a sufficient amount of data.

【0003】特に、電極/正孔注入層/発光層/電極か
らなる積層型において、発光剤にトリス(8−ヒドロキ
シキノリン)アルミニウムを、正孔注入剤に1,1−ビ
ス(4−N,N−ジトリルアミノフェニル)シクロヘキ
サンを用いることにより、10V以下の印加電圧で10
00cd/m2 以上の輝度が得られたという報告がなさ
れて以来開発に拍車がかけられた(Appl.Phys.Lett. 5
1,913,(1987))。
In particular, the electrode / hole injection layer / light emitting layer / electrode
In the laminated type consisting of tris (8-hydroxy
Shiquinoline) aluminum was added to the hole injecting agent as 1,1-bi
(4-N, N-ditolylaminophenyl) cyclohexyl
By using sun, 10
00 cd / mTwoThere was no report that the above brightness was obtained.
Since then, development has been spurred (Appl. Phys. Lett.Five
1, 913, (1987)).

【0004】図5は従来の有機薄膜発光素子を示す断面
図である。絶縁性基板1の上に透光性正極7、正孔注入
層5、発光層4、電子注入層3そして金属負極2が積層
される。8は電源である。正孔注入層5、発光層4、電
子注入層3は有機物質を用いて成膜される。透光性正極
7はインジウムスズ酸化物ITO や酸化亜鉛等を用いて形
成される。
FIG. 5 is a sectional view showing a conventional organic thin film light emitting device. On the insulating substrate 1, a translucent positive electrode 7, a hole injection layer 5, a light emitting layer 4, an electron injection layer 3, and a metal negative electrode 2 are laminated. 8 is a power supply. The hole injection layer 5, the light emitting layer 4, and the electron injection layer 3 are formed using an organic substance. The translucent positive electrode 7 is formed using indium tin oxide ITO, zinc oxide, or the like.

【0005】金属負極2は仕事函数の小さい金属,合
金,積層体が用いられる。
As the metal negative electrode 2, a metal, an alloy, or a laminate having a small work function is used.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上述の従
来の有機薄膜発光素子においては絶縁性基板上のインジ
ウムスズ酸化物ITO 正極の表面平滑性が悪いために正極
上に形成される有機層に膜質の低下や界面の乱れが発生
し有機薄膜発光素子の発光安定性や発光効率が阻害され
るという問題があった。また負極が環境に晒されるため
に酸化や剥離を起こしそのためにダークスポットなど非
発光欠陥が生じるといった問題があった。
However, in the above-mentioned conventional organic thin-film light emitting device, the organic layer formed on the indium tin oxide ITO cathode on the insulating substrate has poor film smoothness due to poor surface smoothness. There has been a problem that the light emission stability and the light emission efficiency of the organic thin film light emitting element are impaired due to the reduction and the disturbance of the interface. In addition, there has been a problem in that the negative electrode is exposed to the environment, causing oxidation and peeling, which causes non-light emitting defects such as dark spots.

【0007】図6は従来の異なる有機薄膜発光素子を示
す断面図である。これは前記した従来の有機薄膜発光素
子とは積層順序が逆となっている。このような構成の有
機薄膜発光素子においては絶縁性支持体1上の金属負極
は表面平滑性が良好であるために金属負極上の有機薄膜
層の膜質は良質である。さらに金属負極は有機薄膜層に
よって保護される形となっており、酸化や剥離等の不安
定要因が除かれる。最上層の透光性正極は酸化物であ
り、耐環境性は高い。
FIG. 6 is a sectional view showing a different conventional organic thin film light emitting device. This is the reverse of the stacking order of the above-mentioned conventional organic thin film light emitting device. In the organic thin-film light-emitting device having such a configuration, the metal negative electrode on the insulating support 1 has good surface smoothness, so that the film quality of the organic thin-film layer on the metal negative electrode is good. Further, the metal negative electrode is protected by the organic thin film layer, thereby eliminating unstable factors such as oxidation and peeling. The light-transmitting positive electrode in the uppermost layer is an oxide, and has high environmental resistance.

【0008】しかしながらこのような逆構造の有機薄膜
発光素子にあっては透光性正極の成膜に際して高いエネ
ルギが有機薄膜層に印加されるため有機薄膜層に凝集や
結晶化が起こり、有機薄膜層の膜厚が不均一化して膜質
の低下を生じ、電界分布にアンバランスを生じて発光欠
陥が生じるという問題があった。またこの電界分布のア
ンバランスは局所的な発熱を起こし、このために透光性
正極が有機薄膜層から剥離するに至るという問題もあっ
た。
However, in such an organic thin-film light emitting device having an inverted structure, a high energy is applied to the organic thin-film layer when forming the light-transmitting positive electrode, so that the organic thin-film layer agglomerates or crystallizes. There has been a problem that the film thickness of the layer becomes non-uniform, the quality of the film is deteriorated, the electric field distribution is unbalanced, and light emission defects occur. Further, there is a problem that the imbalance of the electric field distribution causes local heat generation, which causes the translucent positive electrode to be separated from the organic thin film layer.

【0009】この発明は上述の点に鑑みてなされその目
的は逆構造の有機薄膜発光素子において有機薄膜層の膜
質の低下を防止して発光安定性に優れる有機薄膜発光素
子を提供することにある。
An object of the present invention is to provide an organic thin film light emitting device having an organic light emitting device having an inverted structure, which prevents deterioration of the quality of an organic thin film layer and has excellent light emission stability. .

【0010】[0010]

【課題を解決するための手段】上述の目的はこの発明に
よれば有機薄膜を用いる電場発光素子であって、(1)
絶縁性支持体と、(2)金属負極と、(3)有機薄膜層
と、(4)金属薄膜層と、(5)透光性正極とを包含
し、絶縁性支持体は素子の支持体であり、有機薄膜層は
発光層と電荷注入層のうちの少なくとも発光層からな
り、金属負極と透光性正極は有機薄膜層に電場を印加し
て発光層を光らせ、金属薄膜層は発光層からの光を透過
して透光性正極に導き、絶縁性支持体の上に金属負極
と、有機薄膜層と、金属薄膜層と、透光性正極が順次積
層されるものであるとすることにより達成される。
According to the present invention, there is provided an electroluminescent device using an organic thin film, comprising:
An insulating support, (2) a metal negative electrode, (3) an organic thin film layer, (4) a metal thin film layer, and (5) a translucent positive electrode, wherein the insulating support is a support of the device. The organic thin film layer comprises at least a light emitting layer of a light emitting layer and a charge injection layer, the metal negative electrode and the translucent positive electrode apply an electric field to the organic thin film layer to make the light emitting layer glow, and the metal thin film layer is a light emitting layer The light from the substrate is transmitted to the light-transmitting positive electrode, and the metal negative electrode, the organic thin film layer, the metal thin film layer, and the light-transmitting positive electrode are sequentially laminated on the insulating support. Is achieved by

【0011】[0011]

【作用】透光性正極成膜時に印加される高いエネルギは
金属薄膜層に吸収分散される。そのために有機薄膜層の
結晶化が防止される。
The high energy applied during the formation of the translucent positive electrode is absorbed and dispersed in the metal thin film layer. Therefore, crystallization of the organic thin film layer is prevented.

【0012】[0012]

【実施例】図1はこの発明の実施例に係る有機薄膜発光
素子を示す断面図である。図2はこの発明の異なる実施
例に係る有機薄膜発光素子を示す断面図である。図3は
この発明のさらに異なる実施例に係る有機薄膜発光素子
を示す断面図である。
FIG. 1 is a sectional view showing an organic thin-film light emitting device according to an embodiment of the present invention. FIG. 2 is a sectional view showing an organic thin-film light emitting device according to another embodiment of the present invention. FIG. 3 is a sectional view showing an organic thin-film light-emitting device according to still another embodiment of the present invention.

【0013】図4はこの発明のさらに異なる実施例に係
る有機薄膜発光素子を示す断面図である。1は絶縁性基
板、2は金属負極、3は電子注入層、4は発光層、5は
正孔注入層、6は金属薄膜層、7は透光性正極、8は電
源である。絶縁性基板1は素子の支持体でガラス,樹脂
等が用いられる。透光性正極7は効率良く正孔を注入
し、低抵抗で発光の極大波長で透明で環境安定性か高い
ことが必要である。透光性正極としてはインジウムスズ
酸化物(ITO),酸化スズ(SnO2 )等の透明導電
膜が用いられる。成膜方法は抵抗加熱蒸着、電子ビ−ム
蒸着、スパッタ法により形成する。該透光性正極7は、
透明性を持たせるために、10〜500nmの厚さにす
ることが望ましい。
FIG. 4 is a sectional view showing an organic thin-film light emitting device according to still another embodiment of the present invention. 1 is an insulating substrate, 2 is a metal negative electrode, 3 is an electron injection layer, 4 is a light emitting layer, 5 is a hole injection layer, 6 is a metal thin film layer, 7 is a translucent positive electrode, and 8 is a power supply. The insulating substrate 1 is made of glass, resin, or the like as a support for the element. The translucent positive electrode 7 needs to be capable of efficiently injecting holes, having low resistance, being transparent at the maximum wavelength of light emission, and having high environmental stability. As the translucent positive electrode, a transparent conductive film such as indium tin oxide (ITO) or tin oxide (SnO 2 ) is used. The film is formed by resistance heating evaporation, electron beam evaporation, or sputtering. The translucent positive electrode 7 is
In order to impart transparency, the thickness is desirably 10 to 500 nm.

【0014】金属薄膜層6は発光層4または正孔注入層
5の上に抵抗加熱蒸着、電子ビ−ム蒸着、スパッタ法に
より形成する。金属薄膜層6の材料としては正孔の注入
性、下地となる正孔注入層5または発光層4への密着性
等の観点から白金,金,銀,ニッケル,銅およびこれら
の合金または積層体が適当である。金属薄膜層の膜厚は
発光の極大波長に対する透過率が80%を越えることが
望ましい。
The metal thin film layer 6 is formed on the light emitting layer 4 or the hole injection layer 5 by resistance heating evaporation, electron beam evaporation, or sputtering. Platinum, gold, silver, nickel, copper, and alloys or laminates thereof are used as materials for the metal thin film layer 6 from the viewpoints of hole injecting property, adhesion to the hole injecting layer 5 or the light emitting layer 4 serving as a base, and the like. Is appropriate. It is desirable that the transmittance of the metal thin film layer with respect to the maximum wavelength of light emission exceeds 80%.

【0015】正孔注入層5は正孔を効率良く輸送し、且
つ注入することが必要で発光した光の発光極大波長領域
においてできるだけ透明であることが望ましい。成膜方
法としてスピンコ−ト、キャスティング、LB法、抵抗
加熱蒸着、電子ビ−ム蒸着等があるが抵抗加熱蒸着が一
般的である。膜厚は10〜500nmの厚さであり好適
にはl0ないし100nmである。正孔注入物質として
は化学式(I−1)ないし化学式(I−7)に示す有機
物質またはその誘導体のうち少なくとも一種類を成分と
する。代表的な正孔注入物質が以下に示される。
The hole injection layer 5 needs to transport and inject holes efficiently, and it is desirable that the hole injection layer 5 is as transparent as possible in the maximum wavelength region of emitted light. As a film forming method, there are spin coating, casting, LB method, resistance heating evaporation, electron beam evaporation, etc., but resistance heating evaporation is common. The film thickness is 10 to 500 nm, preferably 10 to 100 nm. As the hole injecting substance, at least one of the organic substances represented by the chemical formulas (I-1) to (I-7) or derivatives thereof is used as a component. Representative hole injecting materials are shown below.

【0016】[0016]

【化1】 Embedded image

【0017】発光層4は正孔注入層または透光性正極か
ら注入された正孔と、金属負極または電子注入層より注
入された電子の再結合により効率良く発光を行う。成膜
方法はスピンコ−ト、キャスティング、LB法、抵抗加
熱蒸着、電子ビ−ム蒸着、分子線エピタキシ等があるが
抵抗加熱蒸着、分子線エピタキシが好ましい。膜厚は1
0ないし500nmであるが好適には10ないし100
nmである。発光物質としては化学式(II−1)ないし
化学式(II−5)に示すような有機物質またはその誘導
体の少なくとも一種類が用いられる。
The light emitting layer 4 emits light efficiently by recombination of holes injected from the hole injection layer or the translucent positive electrode and electrons injected from the metal negative electrode or the electron injection layer. The film formation method includes spin coating, casting, LB method, resistance heating evaporation, electron beam evaporation, molecular beam epitaxy, etc., but resistance heating evaporation and molecular beam epitaxy are preferred. The film thickness is 1
0 to 500 nm, preferably 10 to 100 nm
nm. As the light-emitting substance, at least one kind of an organic substance represented by the chemical formulas (II-1) to (II-5) or a derivative thereof is used.

【0018】[0018]

【化2】 Embedded image

【0019】金属負極2は電子を効率良く有機層に注入
することが必要である。成膜方法としては抵抗加熱蒸
着,電子ビーム蒸着,スパッタ法が用いられる。金属負
極用材料としては、仕事関数の小さいMg,Ag,I
n,Ca,Al等およびこれらの合金,積層体等が用い
られる。電子注入層3は電子を効率良く輸送し、且つ注
入することが必要で発光した光の発光極大波長領域にお
いてできるだけ透明であることが望ましい。成膜方法と
してスピンコ−ト、キャスティング、LB法、抵抗加熱
蒸着、電子ビ−ム蒸着等があるが抵抗加熱蒸着が一般的
である。膜厚は5〜500nmの厚さであり好適にはl
0ないし100nmであ。、電子注入層質としては化学
式(III −1)ないし化学式(III −3)に示すような
有機物質またはその誘導体のうち少なくとも一種類が用
いられる。代表的な電子注入層質が以下に示される。
The metal anode 2 needs to efficiently inject electrons into the organic layer. As a film forming method, resistance heating evaporation, electron beam evaporation, and sputtering are used. As a material for a metal anode, Mg, Ag, I having a small work function is used.
n, Ca, Al, etc., and their alloys and laminates are used. The electron injection layer 3 needs to transport and inject electrons efficiently, and it is desirable that the electron injection layer 3 is as transparent as possible in the emission maximum wavelength region of emitted light. As a film forming method, there are spin coating, casting, LB method, resistance heating evaporation, electron beam evaporation, etc., but resistance heating evaporation is common. The film thickness is 5 to 500 nm, preferably l
0-100 nm. As the electron injection layer material, at least one of the organic substances represented by the chemical formulas (III-1) to (III-3) or derivatives thereof is used. Representative electron injection layer qualities are shown below.

【0020】[0020]

【化3】 Embedded image

【0021】実施例1 膜厚約100nmのMgIn金属負極を設けた厚さ1.1m
mのガラス基板上に、図1に示すように発光層4、正孔
注入層5を順次成膜した。発光層には上記化学式(II−
1)に示す発光物質を用いて抵抗加熱蒸着方式により7
0nm厚さに成膜した。正孔注入層5は化学式(I −
1)に示す化合物を用いて抵抗加熱蒸着方式により50
nm厚さに成膜した。金属薄膜層6として白金,金,銀
または銅を電子ビーム蒸着法により10nm厚さに成膜
した。以上の成膜方法は1〜5×10-5Paの真空度を
維持して行った。最後に透光性正極としてインジウムス
ズ酸化物ITO を酸素ガスのもとで電子ビーム蒸着法によ
り100nm厚さに成膜した。 比較例1 金属薄膜層がないこと、積層の順序が逆であること以外
は実施例1と同様にして有機薄膜発光素子を作成した。 比較例2 金属薄膜層がないこと以外は実施例1と同様にして有機
薄膜発光素子を作成した。
Example 1 A 1.1 m thick MgIn metal negative electrode having a thickness of about 100 nm was provided.
As shown in FIG. 1, a light emitting layer 4 and a hole injection layer 5 were sequentially formed on a m glass substrate. The light emitting layer has the above chemical formula (II-
Using the luminescent material shown in 1), the resistance heating evaporation method
A film was formed to a thickness of 0 nm. The hole injection layer 5 has the chemical formula (I −
Using the compound shown in 1), 50
The film was formed to have a thickness of nm. Platinum, gold, silver or copper was formed as the metal thin film layer 6 to a thickness of 10 nm by an electron beam evaporation method. The above film formation method was performed while maintaining the degree of vacuum of 1 to 5 × 10 −5 Pa. Finally, indium tin oxide ITO was formed as a light-transmitting positive electrode to a thickness of 100 nm by electron beam evaporation under an oxygen gas. Comparative Example 1 An organic thin-film light-emitting device was prepared in the same manner as in Example 1, except that the metal thin-film layer was not provided and the stacking order was reversed. Comparative Example 2 An organic thin-film light-emitting device was prepared in the same manner as in Example 1, except that no metal thin-film layer was provided.

【0022】以上のようにして調製した有機薄膜発光素
子に直流電圧を印加して連続駆動した。駆動電圧は初期
輝度が200cd/m2 となるように調整した。発光安
定性の目安として素子の発光輝度が初期の1/2になる
までの時間を輝度半減寿命と定義した。また発光欠陥の
有無を初期と1000h後において測定した。結果が表
1に示される。
The organic thin film light emitting device prepared as described above was continuously driven by applying a DC voltage. The drive voltage was adjusted so that the initial luminance was 200 cd / m 2 . As a measure of light emission stability, the time required for the light emission luminance of the element to become 1/2 of the initial value was defined as the luminance half life. The presence or absence of a light emission defect was measured at the initial stage and after 1000 hours. The results are shown in Table 1.

【0023】[0023]

【表1】 発光欠陥は肉眼で観察される。また輝度は測定器を用い
て測定される。輝度半減寿命と発光欠陥とは必ずしも一
致するものではない。金属薄膜層に白金または金を用い
ることにより輝度半減時間が最大で31倍になった。ま
た1000hの連続駆動後においても発光欠陥は検知さ
れない。 実施例2 膜厚約100nmのMgIn金属負極を設けた厚さ1.1m
mのガラス基板上に、図2に示すように発光層4を成膜
した。発光層には上記化学式(II−1)に示す発光物質
を用いて抵抗加熱蒸着方式により70nm厚さに成膜し
た。金属薄膜層6として白金,金,銀または銅を電子ビ
ーム蒸着法により10nm成膜した。以上の成膜方法は
1〜5×10-5Paの真空度を維持して行った。最後に
透光性正極7としてインジウムスズ酸化物ITO を酸素ガ
スのもとで電子ビーム蒸着法により100nm成膜し
た。 比較例3 金属薄膜層がないこと、積層の順序が逆であること以外
は実施例2と同様にして有機薄膜発光素子を作成した。 比較例4 金属薄膜層がないこと以外は実施例2と同様にして有機
薄膜発光素子を作成した。
[Table 1] Luminescence defects are observed with the naked eye. The luminance is measured using a measuring device. The luminance half life and the light emission defect do not always match. By using platinum or gold for the metal thin film layer, the luminance half-life was increased 31 times at the maximum. No light emission defect is detected even after continuous driving for 1000 hours. Example 2 A thickness of 1.1 m provided with a MgIn metal negative electrode having a thickness of about 100 nm
The light emitting layer 4 was formed on the m glass substrate as shown in FIG. The light-emitting layer was formed to a thickness of 70 nm using a light-emitting substance represented by the above chemical formula (II-1) by a resistance heating evaporation method. Platinum, gold, silver or copper was deposited as the metal thin film layer 6 to a thickness of 10 nm by an electron beam evaporation method. The above film formation method was performed while maintaining the degree of vacuum of 1 to 5 × 10 −5 Pa. Finally, indium tin oxide ITO was formed as a light-transmissive positive electrode 7 to a thickness of 100 nm by an electron beam evaporation method under an oxygen gas. Comparative Example 3 An organic thin-film light-emitting device was produced in the same manner as in Example 2, except that there was no metal thin-film layer and the order of lamination was reversed. Comparative Example 4 An organic thin-film light-emitting device was prepared in the same manner as in Example 2, except that there was no metal thin-film layer.

【0024】以上のようにして調製した有機薄膜発光素
子に直流電圧を印加して連続駆動した。駆動電圧は初期
輝度が200cd/m2 となるように調整した。発光安
定性の目安として素子の発光輝度が初期の1/2になる
までの時間を輝度半減寿命と定義した。また発光欠陥の
有無を初期と1000h後において測定した。結果が表
2に示される。
The organic thin-film light-emitting device prepared as described above was continuously driven by applying a DC voltage. The drive voltage was adjusted so that the initial luminance was 200 cd / m 2 . As a measure of light emission stability, the time required for the light emission luminance of the element to become 1/2 of the initial value was defined as the luminance half life. The presence or absence of a light emission defect was measured at the initial stage and after 1000 hours. The results are shown in Table 2.

【0025】[0025]

【表2】 金属薄膜層に白金または金を用いることにより輝度半減
時間が最大で34倍になった。また1000hの連続駆
動後においても発光欠陥は検知されない。 実施例3 膜厚約100nmのMgIn金属負極を設けた厚さ1.1m
mのガラス基板上に、図3に示すように電子注入層3、
発光層4を成膜した。電子注入層3は化学式(III −
1)に示す化合物を用い抵抗加熱蒸着法により50nm
の厚さに成膜した。発光層4には上記化学式(II−1)
に示す発光物質を用いて抵抗加熱蒸着方式により70n
m厚さに成膜した。金属薄膜層6として白金,金,銀ま
たは銅を電子ビーム蒸着法により10nm成膜した。以
上の成膜方法は1〜5×10-5Paの真空度を維持して
行った。最後に透光性正極7としてインジウムスズ酸化
物ITO を酸素ガスのもとで電子ビーム蒸着法により10
0nm成膜した。 比較例5 金属薄膜層がないこと、積層の順序が逆であること以外
は実施例3と同様にして有機薄膜発光素子を作成した。 比較例6 金属薄膜層がないこと以外は実施例3と同様にして有機
薄膜発光素子を作成した。
[Table 2] By using platinum or gold for the metal thin film layer, the luminance half time was increased 34 times at the maximum. No light emission defect is detected even after continuous driving for 1000 hours. Example 3 1.1 m thick provided with a MgIn metal negative electrode having a thickness of about 100 nm
m on a glass substrate as shown in FIG.
The light emitting layer 4 was formed. The electron injection layer 3 has the chemical formula (III-
50 nm by resistance heating evaporation using the compound shown in 1)
Was formed to a thickness of The light emitting layer 4 has the above chemical formula (II-1)
70n by resistance heating evaporation using the luminescent material shown in
The film was formed to a thickness of m. Platinum, gold, silver or copper was deposited as the metal thin film layer 6 to a thickness of 10 nm by electron beam evaporation. The above film formation method was performed while maintaining the degree of vacuum of 1 to 5 × 10 −5 Pa. Finally, indium tin oxide ITO was used as a translucent positive electrode 7 by electron beam evaporation under oxygen gas.
0 nm was formed. Comparative Example 5 An organic thin-film light-emitting device was prepared in the same manner as in Example 3, except that there was no metal thin-film layer and the order of lamination was reversed. Comparative Example 6 An organic thin-film light-emitting device was prepared in the same manner as in Example 3, except that there was no metal thin-film layer.

【0026】以上のようにして調製した有機薄膜発光素
子に直流電圧を印加して連続駆動した。駆動電圧は初期
輝度が200cd/m2 となるように調整した。発光安
定性の目安として素子の発光輝度が初期の1/2になる
までの時間を輝度半減寿命と定義した。また発光欠陥の
有無を初期と1000h後において測定した。結果が表
3に示される。
The organic thin film light emitting device prepared as described above was continuously driven by applying a DC voltage. The drive voltage was adjusted so that the initial luminance was 200 cd / m 2 . As a measure of light emission stability, the time required for the light emission luminance of the element to become 1/2 of the initial value was defined as the luminance half life. The presence or absence of a light emission defect was measured at the initial stage and after 1000 hours. The results are shown in Table 3.

【0027】[0027]

【表3】 金属薄膜層に白金または金を用いることにより輝度半減
時間が最大で30倍になった。また1000hの連続駆
動後においても発光欠陥は検知されない。 実施例4 膜厚約100nmのMgIn金属負極を設けた厚さ1.1m
mのガラス基板上に、図4に示すように電子注入層3、
発光層4、正孔注入層5を成膜した。電子注入層3は化
学式(III −1)に示す化合物を用い抵抗加熱蒸着法に
より50nmの厚さに成膜した。発光層4には上記化学
式(II−1)に示す発光物質を用いて抵抗加熱蒸着方式
により70nm厚さに成膜した。正孔注入層5は化学式
(I−1)に示す化合物を用い、抵抗加熱蒸着法により
50nmの厚さに成膜した。金属薄膜層6として白金,
金,銀または銅を電子ビーム蒸着法により10nm成膜
した。以上の成膜方法は1〜5×10-5Paの真空度を
維持して行った。最後に透光性正極7としてインジウム
スズ酸化物ITO を酸素ガスのもとで電子ビーム蒸着法に
より100nm成膜した。 比較例8 金属薄膜層がないこと、積層の順序が逆であること以外
は実施例4と同様にして有機薄膜発光素子を作成した。 比較例7 金属薄膜層がないこと以外は実施例4と同様にして有機
薄膜発光素子を作成した。
[Table 3] By using platinum or gold for the metal thin film layer, the luminance half-life was increased 30 times at the maximum. No light emission defect is detected even after continuous driving for 1000 hours. Example 4 1.1 m thick provided with a MgIn metal negative electrode having a thickness of about 100 nm
m on a glass substrate as shown in FIG.
The light emitting layer 4 and the hole injection layer 5 were formed. The electron injection layer 3 was formed to a thickness of 50 nm using a compound represented by the chemical formula (III-1) by a resistance heating evaporation method. The light-emitting layer 4 was formed to a thickness of 70 nm using a light-emitting substance represented by the above chemical formula (II-1) by a resistance heating evaporation method. The hole injection layer 5 was formed using a compound represented by the chemical formula (I-1) to a thickness of 50 nm by a resistance heating evaporation method. Platinum as the metal thin film layer 6,
Gold, silver or copper was deposited to a thickness of 10 nm by electron beam evaporation. The above film formation method was performed while maintaining the degree of vacuum of 1 to 5 × 10 −5 Pa. Finally, a 100 nm indium tin oxide ITO film was formed as a light-transmissive positive electrode 7 by an electron beam evaporation method under an oxygen gas. Comparative Example 8 An organic thin film light emitting device was prepared in the same manner as in Example 4, except that the metal thin film layer was not provided and the order of lamination was reversed. Comparative Example 7 An organic thin-film light-emitting device was prepared in the same manner as in Example 4, except that no metal thin-film layer was provided.

【0028】以上のようにして調製した有機薄膜発光素
子に直流電圧を印加して連続駆動した。駆動電圧は初期
輝度が200cd/m2 となるように調整した。発光安
定性の目安として素子の発光輝度が初期の1/2になる
までの時間を輝度半減寿命と定義した。また発光欠陥の
有無を初期と1000h後において測定した。結果が表
4に示される。
The organic thin-film light emitting device prepared as described above was continuously driven by applying a DC voltage. The drive voltage was adjusted so that the initial luminance was 200 cd / m 2 . As a measure of light emission stability, the time required for the light emission luminance of the element to become 1/2 of the initial value was defined as the luminance half life. The presence or absence of a light emission defect was measured at the initial stage and after 1000 hours. The results are shown in Table 4.

【0029】[0029]

【表4】 金属薄膜層に白金または金を用いることにより輝度半減
時間が最大で27倍になった。また1000hの連続駆
動後においても発光欠陥は検知されない。
[Table 4] By using platinum or gold for the metal thin film layer, the luminance half time was increased 27 times at the maximum. No light emission defect is detected even after continuous driving for 1000 hours.

【0030】[0030]

【発明の効果】この発明によれば有機薄膜を用いる電場
発光素子であって、(1)絶縁性支持体と、(2)金属
負極と、(3)有機薄膜層と、(4)金属薄膜層と、
(5)透光性正極とを包含し、絶縁性支持体は素子の支
持体であり、有機薄膜層は発光層と電荷注入層のうちの
少なくとも発光層からなり、金属負極と透光性正極は有
機薄膜層に電場を印加して発光層を光らせ、金属薄膜層
は発光層からの光を透過して透光性正極に導き、絶縁性
支持体の上に金属負極と、有機薄膜層と、金属薄膜層
と、透光性正極が順次積層されるものであるとするので
透光性正極成膜時に印加される高いエネルギは金属薄膜
層に吸収分散される。そのために有機薄膜層の膜質の低
下がなくなり、発光欠陥の発生が防止され、発光安定性
に優れる有機薄膜発光素子が得られる。
According to the present invention, there is provided an electroluminescent device using an organic thin film, comprising (1) an insulating support, (2) a metal negative electrode, (3) an organic thin film layer, and (4) a metal thin film. Layers and
(5) a light-transmitting positive electrode, wherein the insulating support is a support of the device, the organic thin-film layer comprises at least a light-emitting layer of a light-emitting layer and a charge injection layer, and a metal negative electrode and a light-transmitting positive electrode Applies an electric field to the organic thin-film layer to illuminate the light-emitting layer, the metal thin-film layer transmits light from the light-emitting layer and guides the light-transmitting positive electrode, and a metal negative electrode and an organic thin-film layer are placed on an insulating support. Since the metal thin film layer and the light-transmitting positive electrode are sequentially laminated, high energy applied during the formation of the light-transmitting positive electrode is absorbed and dispersed in the metal thin film layer. As a result, deterioration of the film quality of the organic thin film layer is prevented, the occurrence of light emission defects is prevented, and an organic thin film light emitting device having excellent light emission stability is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例に係る有機薄膜発光素子を示
す断面図
FIG. 1 is a sectional view showing an organic thin-film light emitting device according to an embodiment of the present invention.

【図2】この発明の異なる実施例に係る有機薄膜発光素
子を示す断面図
FIG. 2 is a sectional view showing an organic thin-film light emitting device according to another embodiment of the present invention.

【図3】この発明のさらに異なる実施例に係る有機薄膜
発光素子を示す断面図
FIG. 3 is a sectional view showing an organic thin-film light-emitting device according to still another embodiment of the present invention.

【図4】この発明のさらに異なる実施例に係る有機薄膜
発光素子を示す断面図
FIG. 4 is a sectional view showing an organic thin-film light-emitting device according to still another embodiment of the present invention.

【図5】従来の有機薄膜発光素子を示す断面図FIG. 5 is a sectional view showing a conventional organic thin film light emitting device.

【図6】従来の異なる有機薄膜発光素子を示す断面図FIG. 6 is a cross-sectional view showing a different conventional organic thin film light emitting device.

【符号の説明】[Explanation of symbols]

1 基板 2 金属負極 3 電子注入層 4 発光層 5 正孔注入層 6 金属薄膜層 7 透光性正極 8 電源 DESCRIPTION OF SYMBOLS 1 Substrate 2 Metal negative electrode 3 Electron injection layer 4 Light emitting layer 5 Hole injection layer 6 Metal thin film layer 7 Translucent positive electrode 8 Power supply

フロントページの続き (56)参考文献 特開 平4−363896(JP,A) 特開 平6−93256(JP,A) 特開 平4−254887(JP,A) 特開 平2−253593(JP,A) 特開 平6−5365(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05B 33/00 - 33/28 Continuation of the front page (56) References JP-A-4-363896 (JP, A) JP-A-6-93256 (JP, A) JP-A-4-254887 (JP, A) JP-A-2-253593 (JP) , A) JP-A-6-5365 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H05B 33/00-33/28

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機薄膜を用いる電場発光素子であって、 (1)絶縁性支持体と、 (2)金属負極と、 (3)有機薄膜層と、 (4)金属薄膜層と、 (5)透光性正極とを包含し、 絶縁性支持体は素子の支持体であり、 有機薄膜層は発光層と電荷注入層のうちの少なくとも発
光層からなり、 金属負極と透光性正極は有機薄膜層に電場を印加して発
光層を光らせ、 金属薄膜層は発光層からの光を透過して透光性正極に導
き、 絶縁性支持体の上には金属負極と、有機薄膜層と、金属
薄膜層と、透光性正極が順次積層されるものであること
を特徴とする有機薄膜発光素子。
1. An electroluminescent device using an organic thin film, comprising: (1) an insulating support; (2) a metal negative electrode; (3) an organic thin film layer; (4) a metal thin film layer; A) a light-transmissive positive electrode, wherein the insulating support is a support of the device, the organic thin film layer comprises at least a light-emitting layer of a light-emitting layer and a charge injection layer, and the metal negative electrode and the light-transmissive positive electrode are organic. An electric field is applied to the thin film layer to illuminate the light emitting layer. The metal thin film layer transmits light from the light emitting layer and guides the light to the light-transmitting positive electrode. On the insulating support, a metal negative electrode, an organic thin film layer, An organic thin-film light-emitting element comprising a metal thin-film layer and a light-transmitting positive electrode which are sequentially stacked.
【請求項2】請求項1記載の有機薄膜発光素子におい
て、電荷注入層は正孔注入層であり、金属薄膜層と発光
層の間に設けられることを特徴とする有機薄膜発光素
子。
2. The organic thin film light emitting device according to claim 1, wherein the charge injection layer is a hole injection layer and is provided between the metal thin film layer and the light emitting layer.
【請求項3】請求項1記載の有機薄膜発光素子におい
て、電荷注入層は電子注入層であり金属負極と発光層の
間に設けられることを特徴とする有機薄膜発光素子。
3. The organic thin-film light-emitting device according to claim 1, wherein the charge injection layer is an electron injection layer and is provided between the metal negative electrode and the light-emitting layer.
【請求項4】請求項1記載の有機薄膜発光素子におい
て、電荷注入層は正孔注入層と電子注入層であり、正孔
注入層は金属薄膜層と発光層の間に、また電子注入層は
金属負極と発光層の間に設けられることを特徴とする有
機薄膜発光素子。
4. The organic thin film light emitting device according to claim 1, wherein the charge injection layer is a hole injection layer and an electron injection layer, wherein the hole injection layer is between the metal thin film layer and the light emitting layer, and the electron injection layer. Is an organic thin-film light-emitting device provided between the metal negative electrode and the light-emitting layer.
【請求項5】請求項1記載の有機薄膜発光素子におい
て、金属薄膜層は白金または金からなることを特徴とす
る有機薄膜発光素子。
5. The organic thin-film light-emitting device according to claim 1, wherein the metal thin-film layer is made of platinum or gold.
【請求項6】請求項1記載の有機薄膜発光素子におい
て、金属薄膜層は異種金属の積層体であることを特徴と
する有機薄膜発光素子。
6. The organic thin-film light-emitting device according to claim 1, wherein the metal thin-film layer is a laminate of different metals.
JP07602193A 1993-04-02 1993-04-02 Organic thin film light emitting device Expired - Lifetime JP3189480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07602193A JP3189480B2 (en) 1993-04-02 1993-04-02 Organic thin film light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07602193A JP3189480B2 (en) 1993-04-02 1993-04-02 Organic thin film light emitting device

Publications (2)

Publication Number Publication Date
JPH06290873A JPH06290873A (en) 1994-10-18
JP3189480B2 true JP3189480B2 (en) 2001-07-16

Family

ID=13593180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07602193A Expired - Lifetime JP3189480B2 (en) 1993-04-02 1993-04-02 Organic thin film light emitting device

Country Status (1)

Country Link
JP (1) JP3189480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6367811B1 (en) 1998-11-24 2002-04-09 Mitsubishi Cable Industries, Ltd. Rotation shaft seal

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703436A (en) 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US6501217B2 (en) 1998-02-02 2002-12-31 International Business Machines Corporation Anode modification for organic light emitting diodes
TW511298B (en) * 1999-12-15 2002-11-21 Semiconductor Energy Lab EL display device
SG125891A1 (en) 2000-09-08 2006-10-30 Semiconductor Energy Lab Light emitting device, method of manufacturing thesame, and thin film forming apparatus
JP5159010B2 (en) * 2000-09-08 2013-03-06 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
US7488986B2 (en) * 2001-10-26 2009-02-10 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US6956240B2 (en) 2001-10-30 2005-10-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
KR20120062911A (en) 2003-09-26 2012-06-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Composite material and method for manufacturing composite material
EP2276088B1 (en) 2003-10-03 2018-02-14 Semiconductor Energy Laboratory Co, Ltd. Light emitting element, and light emitting device using the light emitting element
US8796670B2 (en) 2003-12-26 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
EP1722602A1 (en) * 2004-03-05 2006-11-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and organic electroluminescent display
JP2006295104A (en) 2004-07-23 2006-10-26 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device using the same
KR101436791B1 (en) 2004-10-29 2014-09-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Composite material, light-emitting element, light-emitting device, and manufacturing method thereof
US8420227B2 (en) 2005-03-23 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
US7851989B2 (en) 2005-03-25 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP4555727B2 (en) * 2005-04-22 2010-10-06 株式会社 日立ディスプレイズ Organic light emitting display
EP1724852A3 (en) 2005-05-20 2010-01-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
JP4596977B2 (en) * 2005-05-20 2010-12-15 株式会社 日立ディスプレイズ Organic light emitting display
US8334057B2 (en) 2005-06-08 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8017252B2 (en) 2005-06-22 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US7745989B2 (en) 2005-06-30 2010-06-29 Semiconductor Energy Laboratory Co., Ltd Light emitting element, light emitting device, and electronic apparatus
KR101003232B1 (en) * 2008-01-23 2010-12-21 주식회사 엘지화학 Organic electroluminescent device and method for fabricating the same
JP2010153365A (en) 2008-11-19 2010-07-08 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, electronic equipment, and illumination device
US8404500B2 (en) 2009-11-02 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element, light-emitting element, light-emitting device, lighting device, and electronic appliance
JP5969216B2 (en) 2011-02-11 2016-08-17 株式会社半導体エネルギー研究所 Light emitting element, display device, lighting device, and manufacturing method thereof
CN103422055A (en) * 2012-05-14 2013-12-04 海洋王照明科技股份有限公司 Conductive thin film, and preparation method and application thereof
US9570700B2 (en) 2012-09-28 2017-02-14 Ocean's King Lighting Science & Technology Co., Ltd. Organic electroluminescent device and preparation method thereof including forming a cathode by combining zinc oxide, acetic acid and a phthalocyanine substance
CN104253242B (en) * 2014-09-30 2017-01-25 合肥鑫晟光电科技有限公司 Organic electroluminescent device, production method thereof and display with same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123487U (en) * 1985-01-21 1986-08-04
JPH0584045U (en) * 1992-04-18 1993-11-12 モレックス インコーポレーテッド Thin surface mount electrical connector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6367811B1 (en) 1998-11-24 2002-04-09 Mitsubishi Cable Industries, Ltd. Rotation shaft seal
US6715769B2 (en) 1998-11-24 2004-04-06 Mitsubishi Cable Industries, Ltd. Rotation shaft seal
US6764080B2 (en) 1998-11-24 2004-07-20 Mitsubishi Cable Industries, Ltd. Rotation shaft seal

Also Published As

Publication number Publication date
JPH06290873A (en) 1994-10-18

Similar Documents

Publication Publication Date Title
JP3189480B2 (en) Organic thin film light emitting device
Tang et al. Organic electroluminescent diodes
US6558820B2 (en) High contrast light-emitting diode devices
TW585012B (en) Organic electroluminescence device having current injection layer between light emitting layer and cathode
JP3428152B2 (en) Manufacturing method of organic EL element
JPH03152184A (en) El element of organic thin film
JPH0525473A (en) Organic electroluminescent element
JPH088065A (en) Thin-film electroluminescent element
JP3189438B2 (en) Organic thin film light emitting device
JP3852518B2 (en) Organic electroluminescence device
JPH0613181A (en) Emission method of organic thin film light emitting element
JP3820752B2 (en) Organic electroluminescence device
JP2881212B2 (en) EL device
JP3852517B2 (en) Organic electroluminescence device
JP2002260858A (en) Light-emitting element and its manufacturing method
JPH0794278A (en) Organic thin film light emitting element
JPH05114487A (en) Organic thin film electroluminescent element
JPH0693257A (en) Organic electroluminescent element
JP3152506B2 (en) Organic electroluminescent device
JPH01313892A (en) Image display device and manufacture thereof
JPH11135258A (en) Manufacture of electroluminescent element
JPH07166160A (en) Organic thin film el element
JPH06231881A (en) Organic thin film luminous element
JPH0693256A (en) Organic thin-film luminescent element
JP3932605B2 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 12