JP3189480B2 - The organic thin film light emitting element - Google Patents

The organic thin film light emitting element

Info

Publication number
JP3189480B2
JP3189480B2 JP7602193A JP7602193A JP3189480B2 JP 3189480 B2 JP3189480 B2 JP 3189480B2 JP 7602193 A JP7602193 A JP 7602193A JP 7602193 A JP7602193 A JP 7602193A JP 3189480 B2 JP3189480 B2 JP 3189480B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
thin film
layer
organic thin
light emitting
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7602193A
Other languages
Japanese (ja)
Other versions
JPH06290873A (en )
Inventor
洋太郎 白石
修 鍋田
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2251/00Indexing scheme relating to organic semiconductor devices covered by group H01L51/00
    • H01L2251/50Organic light emitting devices
    • H01L2251/53Structure
    • H01L2251/5307Structure specially adapted for controlling the direction of light emission
    • H01L2251/5315Top emission
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2251/00Indexing scheme relating to organic semiconductor devices covered by group H01L51/00
    • H01L2251/50Organic light emitting devices
    • H01L2251/53Structure
    • H01L2251/5353Inverted OLED
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/52Details of devices
    • H01L51/5203Electrodes
    • H01L51/5206Anodes, i.e. with high work-function material
    • H01L51/5215Anodes, i.e. with high work-function material composed of transparent multilayers

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】この発明は有機薄膜発光素子の積層構造に係り、特に有機薄膜層と透光性正極の二層に係る積層構造に関する。 BACKGROUND OF THE INVENTION This invention relates to a laminated structure of the organic thin film light emitting element, a laminated structure, especially according to two layers of the organic thin film layer and the translucent positive electrode.

【0002】 [0002]

【従来の技術】従来のブラウン管に代わるフラットディスプレイの需要の急増に伴い、各種表示素子の開発及び実用化が精力的に進められている。 BACKGROUND ART With the proliferation of flat display demand alternative to conventional CRT, development and practical application of various display devices has been promoted energetically. エレクトロルミネセンス素子(電場発光素子)もこうしたニ−ズに即するものであり、特に全固体の自発発光素子として、他のディスプレイにはない高解像度及び高視認性により注目を集めている。 Electroluminescent element (electroluminescence element) also these two - are those Sokusuru in's, especially as spontaneous light emitting element of the total solids, it has attracted attention by high-resolution and high-visibility no other display. 現在、実用化されているものは、発光層にZ Currently, those which are practically used, Z in the light emitting layer
nS/Mn系を用いた無機材料からなる電場発光素子である。 A electroluminescent element composed of an inorganic material with nS / Mn system. しかるに、この種の無機電場発光素子は発光に必要な駆動電圧が100V以上と高いため駆動方法が複雑となり製造コストが高いといった問題点がある。 However, inorganic electroluminescent device of this type has a problem such driving method for driving voltage necessary for light emission is as high as 100V or more is that the production cost becomes complicated high. また、 Also,
青色発光の効率が低いため、フルカラ−化が困難である。 Due to the low efficiency of the blue light emission, full color - reduction is difficult. これに対して、有機材料を用いた薄膜薄膜電場発光素子(以下有機薄膜発光素子という)は、発光に必要な駆動電圧が大幅に低減でき、かつ各種発光材料の適用によりフルカラ−化の可能性を充分に持つことから、近年研究が活発化している。 In contrast, the thin film electroluminescent device (hereinafter referred to as an organic thin-film light emitting device) using an organic material, the driving voltage required for light emission can be greatly reduced, and full color by the application of various luminescent material - of potential from the fact that enough has, in recent years research has been activated a.

【0003】特に、電極/正孔注入層/発光層/電極からなる積層型において、発光剤にトリス(8−ヒドロキシキノリン)アルミニウムを、正孔注入剤に1,1−ビス(4−N,N−ジトリルアミノフェニル)シクロヘキサンを用いることにより、10V以下の印加電圧で10 In particular, in the stacked type consisting of the electrode / hole injection layer / light emitting layer / electrode, tris (8-hydroxyquinoline) aluminum in luminescent agent, a hole injection agent 1,1-bis (4-N, the use of N- ditolyl aminophenyl) cyclohexane, 10 in a voltage below 10V
00cd/m 2以上の輝度が得られたという報告がなされて以来開発に拍車がかけられた(Appl.Phys.Lett. 5 00cd / m 2 or more luminance reports that were obtained were subjected spur development since been made (Appl. 5
1 ,913,(1987))。 1, 913, (1987)).

【0004】図5は従来の有機薄膜発光素子を示す断面図である。 [0004] FIG. 5 is a sectional view showing a conventional organic thin-film light emitting element. 絶縁性基板1の上に透光性正極7、正孔注入層5、発光層4、電子注入層3そして金属負極2が積層される。 Insulating transparent positive electrode 7 on the substrate 1, a hole injection layer 5, light-emitting layer 4, the electron injection layer 3 and the metal anode 2 are laminated. 8は電源である。 8 is a power supply. 正孔注入層5、発光層4、電子注入層3は有機物質を用いて成膜される。 Hole injection layer 5, light-emitting layer 4, an electron injection layer 3 is deposited by means of an organic material. 透光性正極7はインジウムスズ酸化物ITO や酸化亜鉛等を用いて形成される。 Transparent positive electrode 7 is formed by using indium tin oxide ITO and zinc oxide.

【0005】金属負極2は仕事函数の小さい金属,合金,積層体が用いられる。 [0005] metal anode 2 is a metal having a low work function, an alloy, a laminated body is used.

【0006】 [0006]

【発明が解決しようとする課題】しかしながら上述の従来の有機薄膜発光素子においては絶縁性基板上のインジウムスズ酸化物ITO 正極の表面平滑性が悪いために正極上に形成される有機層に膜質の低下や界面の乱れが発生し有機薄膜発光素子の発光安定性や発光効率が阻害されるという問題があった。 THE INVENTION Problems to be Solved] However, in conventional organic thin-film light emitting device of the above film quality organic layer formed on the positive electrode due to poor surface smoothness of the indium tin oxide ITO positive electrode on the insulating substrate emission stability and luminous efficiency of disturbances and a decrease in the interface occurring organic thin film light emitting element is a problem that is inhibited. また負極が環境に晒されるために酸化や剥離を起こしそのためにダークスポットなど非発光欠陥が生じるといった問題があった。 The negative electrode has a problem non-emission defects such as dark spots occur because the cause oxidation or flaking in order to be exposed to the environment.

【0007】図6は従来の異なる有機薄膜発光素子を示す断面図である。 [0007] FIG. 6 is a sectional view of a conventional different organic thin film light emitting element. これは前記した従来の有機薄膜発光素子とは積層順序が逆となっている。 This stacking order is in the contrary to the conventional organic thin film light-emitting element described above. このような構成の有機薄膜発光素子においては絶縁性支持体1上の金属負極は表面平滑性が良好であるために金属負極上の有機薄膜層の膜質は良質である。 Quality of the metal negative electrode of the organic thin film layer for the metal anode on an insulating substrate 1 surface smoothness is good in the organic thin-film light emitting device having such a structure is good. さらに金属負極は有機薄膜層によって保護される形となっており、酸化や剥離等の不安定要因が除かれる。 Metal anode has a shape that is protected by the organic thin film layer, instability of the oxidation or peeling is removed. 最上層の透光性正極は酸化物であり、耐環境性は高い。 Top layer of the translucent positive electrode is an oxide, environmental resistance is high.

【0008】しかしながらこのような逆構造の有機薄膜発光素子にあっては透光性正極の成膜に際して高いエネルギが有機薄膜層に印加されるため有機薄膜層に凝集や結晶化が起こり、有機薄膜層の膜厚が不均一化して膜質の低下を生じ、電界分布にアンバランスを生じて発光欠陥が生じるという問題があった。 However such In the organic thin film light emitting device having an inverted structure occur aggregation or crystallization in an organic thin film layer for high energy upon formation of the transparent positive electrode is applied to the organic thin film layer, an organic thin film cause degradation of film quality film thickness of the layer with non-uniform, there is a problem that light emission defects caused an imbalance in the electric field distribution. またこの電界分布のアンバランスは局所的な発熱を起こし、このために透光性正極が有機薄膜層から剥離するに至るという問題もあった。 The unbalance of the electric field distribution cause local heat generation, the transparent positive electrode is a problem that leads to peeling from the organic thin film layer for this.

【0009】この発明は上述の点に鑑みてなされその目的は逆構造の有機薄膜発光素子において有機薄膜層の膜質の低下を防止して発光安定性に優れる有機薄膜発光素子を提供することにある。 [0009] lies in the present invention is its purpose been made in view of the foregoing to provide an organic thin film light-emitting device having excellent light emission stability to prevent deterioration of the film quality of the organic thin film layer in the organic thin film light emitting device having an inverted structure .

【0010】 [0010]

【課題を解決するための手段】上述の目的はこの発明によれば有機薄膜を用いる電場発光素子であって、(1) Above object, according to an aspect of is an electroluminescent device using an organic thin film according to the present invention, (1)
絶縁性支持体と、(2)金属負極と、(3)有機薄膜層と、(4)金属薄膜層と、(5)透光性正極とを包含し、絶縁性支持体は素子の支持体であり、有機薄膜層は発光層と電荷注入層のうちの少なくとも発光層からなり、金属負極と透光性正極は有機薄膜層に電場を印加して発光層を光らせ、金属薄膜層は発光層からの光を透過して透光性正極に導き、絶縁性支持体の上に金属負極と、有機薄膜層と、金属薄膜層と、透光性正極が順次積層されるものであるとすることにより達成される。 An insulating support, and (2) metal anode, (3) and the organic thin film layer, (4) and the metal thin film layer, (5) includes a transparent positive electrode, the insulating support is a support element , and the organic thin film layer comprises at least the light emitting layer of the charge injection layer and the light-emitting layer, a metal anode and the translucent positive electrode is flashing light emitting layer application of an electric field to the organic thin film layer, the metal thin film layer emitting layer and transmitting light from lead to transparent positive electrode, a metal anode on an insulating support, to the organic thin film layer, and the metal thin film layer, the transparent positive electrode is intended to be sequentially laminated It is achieved by.

【0011】 [0011]

【作用】透光性正極成膜時に印加される高いエネルギは金属薄膜層に吸収分散される。 [Action] high energy applied during the translucent SeikyokuNaru film is absorbed dispersed in the metal thin film layer. そのために有機薄膜層の結晶化が防止される。 Crystallization of the organic thin film layer is prevented to do so.

【0012】 [0012]

【実施例】図1はこの発明の実施例に係る有機薄膜発光素子を示す断面図である。 DETAILED DESCRIPTION FIG. 1 is a sectional view illustrating an organic thin film light emitting element according to an embodiment of the present invention. 図2はこの発明の異なる実施例に係る有機薄膜発光素子を示す断面図である。 Figure 2 is a cross-sectional view illustrating an organic thin film light emitting element according to different embodiments of the present invention. 図3はこの発明のさらに異なる実施例に係る有機薄膜発光素子を示す断面図である。 Figure 3 is a cross-sectional view illustrating an organic thin film light-emitting device according to still another embodiment of the present invention.

【0013】図4はこの発明のさらに異なる実施例に係る有機薄膜発光素子を示す断面図である。 [0013] FIG. 4 is a sectional view illustrating an organic thin film light-emitting device according to still another embodiment of the present invention. 1は絶縁性基板、2は金属負極、3は電子注入層、4は発光層、5は正孔注入層、6は金属薄膜層、7は透光性正極、8は電源である。 1 denotes an insulating substrate, 2 is a metal negative electrode, 3 is an electron injection layer, the fourth light emitting layer, 5 is a hole injection layer, 6 a metal thin film layer, 7 is transparent positive electrode, 8 is a power supply. 絶縁性基板1は素子の支持体でガラス,樹脂等が用いられる。 The insulating substrate 1 of glass, resin or the like is used in support of the element. 透光性正極7は効率良く正孔を注入し、低抵抗で発光の極大波長で透明で環境安定性か高いことが必要である。 Transparent positive electrode 7 injects efficiently hole needs to be higher or transparent environmental stability in emission maximum wavelength in the low resistance. 透光性正極としてはインジウムスズ酸化物(ITO),酸化スズ(SnO 2 )等の透明導電膜が用いられる。 The transparent positive electrode, indium tin oxide (ITO), a transparent conductive film such as tin oxide (SnO 2) is used. 成膜方法は抵抗加熱蒸着、電子ビ−ム蒸着、スパッタ法により形成する。 Film forming method resistance heating vapor deposition, electron beam - beam evaporation, is formed by sputtering. 該透光性正極7は、 The light transmitting positive electrode 7,
透明性を持たせるために、10〜500nmの厚さにすることが望ましい。 In order to impart transparency, it is desirable to thickness of 10 to 500 nm.

【0014】金属薄膜層6は発光層4または正孔注入層5の上に抵抗加熱蒸着、電子ビ−ム蒸着、スパッタ法により形成する。 [0014] the metal thin film layer 6 is a resistance heating evaporation on the luminescent layer 4 or a hole injection layer 5, electron beam - beam evaporation, it is formed by sputtering. 金属薄膜層6の材料としては正孔の注入性、下地となる正孔注入層5または発光層4への密着性等の観点から白金,金,銀,ニッケル,銅およびこれらの合金または積層体が適当である。 Hole injection property as the material of the metal thin film layer 6, the platinum from the viewpoint of adhesion to the hole injection layer 5 or the light emitting layer 4 serving as a base, gold, silver, nickel, copper and alloys or laminates it is appropriate. 金属薄膜層の膜厚は発光の極大波長に対する透過率が80%を越えることが望ましい。 Thickness of the metal thin film layer is desirably transmittance to the maximum wavelength of light emission is more than 80%.

【0015】正孔注入層5は正孔を効率良く輸送し、且つ注入することが必要で発光した光の発光極大波長領域においてできるだけ透明であることが望ましい。 [0015] The hole injection layer 5 holes efficiently transported, it is desirable that as transparent as possible in the emission maximum wavelength region of the light emitted must be and injecting. 成膜方法としてスピンコ−ト、キャスティング、LB法、抵抗加熱蒸着、電子ビ−ム蒸着等があるが抵抗加熱蒸着が一般的である。 A spin as a deposition method - DOO, casting, LB method, a resistance heating evaporation, electron beam - is beam vapor deposition is resistance-heating vapor deposition is generally used. 膜厚は10〜500nmの厚さであり好適にはl0ないし100nmである。 The film thickness is 100nm to l0 no Suitable a thickness of 10 to 500 nm. 正孔注入物質としては化学式(I−1)ないし化学式(I−7)に示す有機物質またはその誘導体のうち少なくとも一種類を成分とする。 As the hole injecting material and an organic material or at least one component of its derivatives shown in the formula (I-1) to formula (I-7). 代表的な正孔注入物質が以下に示される。 Typical hole injection material are shown below.

【0016】 [0016]

【化1】 [Formula 1]

【0017】発光層4は正孔注入層または透光性正極から注入された正孔と、金属負極または電子注入層より注入された電子の再結合により効率良く発光を行う。 [0017] performing a hole-emitting layer 4 is injected from the hole injection layer or the transparent positive electrode, efficiently emission by recombination of electrons injected from the metal anode or an electron injection layer. 成膜方法はスピンコ−ト、キャスティング、LB法、抵抗加熱蒸着、電子ビ−ム蒸着、分子線エピタキシ等があるが抵抗加熱蒸着、分子線エピタキシが好ましい。 Film forming method a spin - DOO, casting, LB method, a resistance heating evaporation, electron beam - beam deposition, there are molecular beam epitaxy, etc. the resistance heating deposition, molecular beam epitaxy is preferred. 膜厚は1 The thickness of 1
0ないし500nmであるが好適には10ないし100 From 0 but not to a 500nm 10 not suitable to 100
nmである。 It is nm. 発光物質としては化学式(II−1)ないし化学式(II−5)に示すような有機物質またはその誘導体の少なくとも一種類が用いられる。 At least one organic substance or a derivative thereof as shown in the luminescent substance the formula (II-1) to formula (II-5) is used.

【0018】 [0018]

【化2】 ## STR2 ##

【0019】金属負極2は電子を効率良く有機層に注入することが必要である。 The metal anode 2 is necessary to efficiently injected into the organic layer and electrons. 成膜方法としては抵抗加熱蒸着,電子ビーム蒸着,スパッタ法が用いられる。 Resistance heating evaporation as a deposition method, electron beam deposition, sputtering method is used. 金属負極用材料としては、仕事関数の小さいMg,Ag,I The metal anode material, small Mg work function, Ag, I
n,Ca,Al等およびこれらの合金,積層体等が用いられる。 n, Ca, Al, etc., and their alloys, laminates and the like are used. 電子注入層3は電子を効率良く輸送し、且つ注入することが必要で発光した光の発光極大波長領域においてできるだけ透明であることが望ましい。 Electron injection layer 3 is efficiently transport electrons, it is desirable that as transparent as possible in the emission maximum wavelength region of the light emitted must be and injecting. 成膜方法としてスピンコ−ト、キャスティング、LB法、抵抗加熱蒸着、電子ビ−ム蒸着等があるが抵抗加熱蒸着が一般的である。 A spin as a deposition method - DOO, casting, LB method, a resistance heating evaporation, electron beam - is beam vapor deposition is resistance-heating vapor deposition is generally used. 膜厚は5〜500nmの厚さであり好適にはl Suitably l thickness is the thickness of the 5~500nm
0ないし100nmであ。 0 to 100nm der. 、電子注入層質としては化学式(III −1)ないし化学式(III −3)に示すような有機物質またはその誘導体のうち少なくとも一種類が用いられる。 , At least one is used in the organic substance or a derivative thereof as shown in formula (III -1) to Formula (III -3) as the electron injection layer quality. 代表的な電子注入層質が以下に示される。 Representative electron injection layer quality is shown below.

【0020】 [0020]

【化3】 [Formula 3]

【0021】実施例1 膜厚約100nmのMgIn金属負極を設けた厚さ1.1m The thickness of 1.1m having a MgIn metal negative electrode of Example 1 having a film thickness of about 100nm
mのガラス基板上に、図1に示すように発光層4、正孔注入層5を順次成膜した。 On a glass substrate m, the light-emitting layer 4 as shown in FIG. 1, were sequentially formed hole injection layer 5. 発光層には上記化学式(II− Formula is the light emitting layer (II-
1)に示す発光物質を用いて抵抗加熱蒸着方式により7 By resistance heating deposition method using the light-emitting substance indicated as 1) 7
0nm厚さに成膜した。 0nm was formed in thickness. 正孔注入層5は化学式(I − Hole injection layer 5 has the formula (I -
1)に示す化合物を用いて抵抗加熱蒸着方式により50 50 by resistance heating deposition method using the compounds shown in 1)
nm厚さに成膜した。 nm was formed in thickness. 金属薄膜層6として白金,金,銀または銅を電子ビーム蒸着法により10nm厚さに成膜した。 Platinum as the metal thin film layer 6, a gold, silver or copper was deposited in 10nm thickness by electron beam evaporation. 以上の成膜方法は1〜5×10 -5 Paの真空度を維持して行った。 Above film forming method was carried out by maintaining the vacuum degree of 1~5 × 10 -5 Pa. 最後に透光性正極としてインジウムスズ酸化物ITO を酸素ガスのもとで電子ビーム蒸着法により100nm厚さに成膜した。 Finally deposited 100nm thick by electron beam evaporation of indium tin oxide ITO under oxygen gas as the translucent positive electrode. 比較例1 金属薄膜層がないこと、積層の順序が逆であること以外は実施例1と同様にして有機薄膜発光素子を作成した。 No Comparative Example 1 metal thin film layer, except that the order of lamination is reversed created an organic thin film light-emitting element in the same manner as in Example 1. 比較例2 金属薄膜層がないこと以外は実施例1と同様にして有機薄膜発光素子を作成した。 Except that there is no Comparative Example 2 metal thin film layer was prepared an organic thin film light-emitting element in the same manner as in Example 1.

【0022】以上のようにして調製した有機薄膜発光素子に直流電圧を印加して連続駆動した。 [0022] was continuously driven by applying a DC voltage to the organic thin film light emitting device prepared as described above. 駆動電圧は初期輝度が200cd/m 2となるように調整した。 Driving voltage was adjusted so that the initial luminance is 200 cd / m 2. 発光安定性の目安として素子の発光輝度が初期の1/2になるまでの時間を輝度半減寿命と定義した。 Emission luminance of the device as a measure of luminous stability time until half the initial defined as luminance half life. また発光欠陥の有無を初期と1000h後において測定した。 Was also measured the presence of light emission defects after the initial and 1000h. 結果が表1に示される。 Results are shown in Table 1.

【0023】 [0023]

【表1】 [Table 1] 発光欠陥は肉眼で観察される。 Emission defects are observed with the naked eye. また輝度は測定器を用いて測定される。 The luminance is measured using a measuring instrument. 輝度半減寿命と発光欠陥とは必ずしも一致するものではない。 It does not necessarily coincide with luminance half life and the light emitting defects. 金属薄膜層に白金または金を用いることにより輝度半減時間が最大で31倍になった。 Luminance half-life becomes 31 times at the maximum by using platinum or gold in the metal thin film layer. また1000hの連続駆動後においても発光欠陥は検知されない。 The emission defect even after continuous driving of 1000h is not detected. 実施例2 膜厚約100nmのMgIn金属負極を設けた厚さ1.1m The thickness 1.1m provided with MgIn metal negative electrode of Example 2 having a film thickness of about 100nm
mのガラス基板上に、図2に示すように発光層4を成膜した。 Glass substrate to a m, was formed a luminescent layer 4 as shown in FIG. 発光層には上記化学式(II−1)に示す発光物質を用いて抵抗加熱蒸着方式により70nm厚さに成膜した。 The light emitting layer was formed to 70nm thick by resistance heating deposition method using a light-emitting substance represented by the above chemical formula (II-1). 金属薄膜層6として白金,金,銀または銅を電子ビーム蒸着法により10nm成膜した。 Platinum as the metal thin film layer 6, a gold, silver or copper was 10nm deposited by electron beam evaporation. 以上の成膜方法は1〜5×10 -5 Paの真空度を維持して行った。 Above film forming method was carried out by maintaining the vacuum degree of 1~5 × 10 -5 Pa. 最後に透光性正極7としてインジウムスズ酸化物ITO を酸素ガスのもとで電子ビーム蒸着法により100nm成膜した。 Finally 100nm deposited by electron beam evaporation of indium tin oxide ITO under oxygen gas as the translucent positive electrode 7. 比較例3 金属薄膜層がないこと、積層の順序が逆であること以外は実施例2と同様にして有機薄膜発光素子を作成した。 No Comparative Example 3 metal thin film layer, except that the order of lamination is reversed created an organic thin film light-emitting element in the same manner as in Example 2. 比較例4 金属薄膜層がないこと以外は実施例2と同様にして有機薄膜発光素子を作成した。 Except that there is no Comparative Example 4 metal thin film layer was prepared an organic thin film light-emitting element in the same manner as in Example 2.

【0024】以上のようにして調製した有機薄膜発光素子に直流電圧を印加して連続駆動した。 [0024] was continuously driven by applying a DC voltage to the organic thin film light emitting device prepared as described above. 駆動電圧は初期輝度が200cd/m 2となるように調整した。 Driving voltage was adjusted so that the initial luminance is 200 cd / m 2. 発光安定性の目安として素子の発光輝度が初期の1/2になるまでの時間を輝度半減寿命と定義した。 Emission luminance of the device as a measure of luminous stability time until half the initial defined as luminance half life. また発光欠陥の有無を初期と1000h後において測定した。 Was also measured the presence of light emission defects after the initial and 1000h. 結果が表2に示される。 The results are shown in Table 2.

【0025】 [0025]

【表2】 [Table 2] 金属薄膜層に白金または金を用いることにより輝度半減時間が最大で34倍になった。 Luminance half-life becomes 34 times at the maximum by using platinum or gold in the metal thin film layer. また1000hの連続駆動後においても発光欠陥は検知されない。 The emission defect even after continuous driving of 1000h is not detected. 実施例3 膜厚約100nmのMgIn金属負極を設けた厚さ1.1m The thickness 1.1m provided with MgIn metal negative electrode of Example 3 having a film thickness of about 100nm
mのガラス基板上に、図3に示すように電子注入層3、 Glass substrate to a m, the electron injection layer 3 as shown in FIG. 3,
発光層4を成膜した。 A light-emitting layer 4 was formed. 電子注入層3は化学式(III − Electron injection layer 3 has the formula (III -
1)に示す化合物を用い抵抗加熱蒸着法により50nm 50nm by resistance heating evaporation method using compounds shown in 1)
の厚さに成膜した。 It was deposited to a thickness of. 発光層4には上記化学式(II−1) Formula is the light emitting layer 4 (II-1)
に示す発光物質を用いて抵抗加熱蒸着方式により70n 70n by resistance heating deposition method using the light-emitting substance indicated as
m厚さに成膜した。 m was formed in thickness. 金属薄膜層6として白金,金,銀または銅を電子ビーム蒸着法により10nm成膜した。 Platinum as the metal thin film layer 6, a gold, silver or copper was 10nm deposited by electron beam evaporation. 以上の成膜方法は1〜5×10 -5 Paの真空度を維持して行った。 Above film forming method was carried out by maintaining the vacuum degree of 1~5 × 10 -5 Pa. 最後に透光性正極7としてインジウムスズ酸化物ITO を酸素ガスのもとで電子ビーム蒸着法により10 The last electron beam evaporation of indium tin oxide ITO under oxygen gas as the translucent positive electrode 7 10
0nm成膜した。 0nm was formed. 比較例5 金属薄膜層がないこと、積層の順序が逆であること以外は実施例3と同様にして有機薄膜発光素子を作成した。 No Comparative Example 5 metal thin film layer, except that the order of lamination is reversed created an organic thin film light-emitting element in the same manner as in Example 3. 比較例6 金属薄膜層がないこと以外は実施例3と同様にして有機薄膜発光素子を作成した。 Except that there is no Comparative Example 6 metal thin film layer was prepared an organic thin film light-emitting element in the same manner as in Example 3.

【0026】以上のようにして調製した有機薄膜発光素子に直流電圧を印加して連続駆動した。 [0026] was continuously driven by applying a DC voltage to the organic thin film light emitting device prepared as described above. 駆動電圧は初期輝度が200cd/m 2となるように調整した。 Driving voltage was adjusted so that the initial luminance is 200 cd / m 2. 発光安定性の目安として素子の発光輝度が初期の1/2になるまでの時間を輝度半減寿命と定義した。 Emission luminance of the device as a measure of luminous stability time until half the initial defined as luminance half life. また発光欠陥の有無を初期と1000h後において測定した。 Was also measured the presence of light emission defects after the initial and 1000h. 結果が表3に示される。 The results are shown in Table 3.

【0027】 [0027]

【表3】 [Table 3] 金属薄膜層に白金または金を用いることにより輝度半減時間が最大で30倍になった。 Luminance half-life became 30 times at the maximum by using platinum or gold in the metal thin film layer. また1000hの連続駆動後においても発光欠陥は検知されない。 The emission defect even after continuous driving of 1000h is not detected. 実施例4 膜厚約100nmのMgIn金属負極を設けた厚さ1.1m The thickness 1.1m provided with MgIn metal negative electrode of Example 4 having a film thickness of about 100nm
mのガラス基板上に、図4に示すように電子注入層3、 Glass substrate to a m, the electron injection layer 3 as shown in FIG. 4,
発光層4、正孔注入層5を成膜した。 Emitting layer 4 was formed hole injection layer 5. 電子注入層3は化学式(III −1)に示す化合物を用い抵抗加熱蒸着法により50nmの厚さに成膜した。 Was deposited to a thickness of 50nm by an electron injection layer 3 has the formula a resistance heating evaporation method using compounds shown in (III -1). 発光層4には上記化学式(II−1)に示す発光物質を用いて抵抗加熱蒸着方式により70nm厚さに成膜した。 The light-emitting layer 4 was formed to 70nm thick by resistance heating deposition method using a light-emitting substance represented by the above chemical formula (II-1). 正孔注入層5は化学式(I−1)に示す化合物を用い、抵抗加熱蒸着法により50nmの厚さに成膜した。 Hole injection layer 5 using the compound represented by the chemical formula (I-1), was formed to a thickness of 50nm by a resistance heating evaporation method. 金属薄膜層6として白金, Platinum as the metal thin film layer 6,
金,銀または銅を電子ビーム蒸着法により10nm成膜した。 Gold, and the silver or copper to 10nm formed by an electron beam deposition method. 以上の成膜方法は1〜5×10 -5 Paの真空度を維持して行った。 Above film forming method was carried out by maintaining the vacuum degree of 1~5 × 10 -5 Pa. 最後に透光性正極7としてインジウムスズ酸化物ITO を酸素ガスのもとで電子ビーム蒸着法により100nm成膜した。 Finally 100nm deposited by electron beam evaporation of indium tin oxide ITO under oxygen gas as the translucent positive electrode 7. 比較例8 金属薄膜層がないこと、積層の順序が逆であること以外は実施例4と同様にして有機薄膜発光素子を作成した。 Comparative Example 8 that there is no metal thin film layer, except that the order of lamination is reversed created an organic thin film light-emitting element in the same manner as in Example 4. 比較例7 金属薄膜層がないこと以外は実施例4と同様にして有機薄膜発光素子を作成した。 Except that there is no Comparative Example 7 metal thin film layer was prepared an organic thin film light-emitting element in the same manner as in Example 4.

【0028】以上のようにして調製した有機薄膜発光素子に直流電圧を印加して連続駆動した。 [0028] was continuously driven by applying a DC voltage to the organic thin film light emitting device prepared as described above. 駆動電圧は初期輝度が200cd/m 2となるように調整した。 Driving voltage was adjusted so that the initial luminance is 200 cd / m 2. 発光安定性の目安として素子の発光輝度が初期の1/2になるまでの時間を輝度半減寿命と定義した。 Emission luminance of the device as a measure of luminous stability time until half the initial defined as luminance half life. また発光欠陥の有無を初期と1000h後において測定した。 Was also measured the presence of light emission defects after the initial and 1000h. 結果が表4に示される。 The results are shown in Table 4.

【0029】 [0029]

【表4】 [Table 4] 金属薄膜層に白金または金を用いることにより輝度半減時間が最大で27倍になった。 Luminance half-life becomes 27 times at the maximum by using platinum or gold in the metal thin film layer. また1000hの連続駆動後においても発光欠陥は検知されない。 The emission defect even after continuous driving of 1000h is not detected.

【0030】 [0030]

【発明の効果】この発明によれば有機薄膜を用いる電場発光素子であって、(1)絶縁性支持体と、(2)金属負極と、(3)有機薄膜層と、(4)金属薄膜層と、 [Effect of the Invention A field emitting device using the organic thin film according to the present invention, (1) and the insulating support, and (2) metal anode, and (3) an organic thin film layer, (4) the metal thin film and the layer,
(5)透光性正極とを包含し、絶縁性支持体は素子の支持体であり、有機薄膜層は発光層と電荷注入層のうちの少なくとも発光層からなり、金属負極と透光性正極は有機薄膜層に電場を印加して発光層を光らせ、金属薄膜層は発光層からの光を透過して透光性正極に導き、絶縁性支持体の上に金属負極と、有機薄膜層と、金属薄膜層と、透光性正極が順次積層されるものであるとするので透光性正極成膜時に印加される高いエネルギは金属薄膜層に吸収分散される。 (5) includes a transparent positive electrode, the insulating support is a support of the device, the organic thin film layer comprises at least the light emitting layer of the charge injection layer and the light-emitting layer, a metal anode and the transparent positive electrode flashing light-emitting layer by applying an electric field to the organic thin film layer, the metal thin film layer leads to transparent positive electrode to transmit light from the light-emitting layer, and a metal anode on an insulating support, and an organic thin film layer a metal thin film layer, high energy applied during the translucent SeikyokuNaru film because the transparent positive electrode is intended to be sequentially stacked is absorbed dispersed in the metal thin film layer. そのために有機薄膜層の膜質の低下がなくなり、発光欠陥の発生が防止され、発光安定性に優れる有機薄膜発光素子が得られる。 Therefore reduction of the film quality of the organic thin film layer is eliminated, the occurrence of light emission defects are prevented, the organic thin film light-emitting device having excellent light emission stability.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】この発明の実施例に係る有機薄膜発光素子を示す断面図 Figure 1 is a cross-sectional view showing an organic thin film light emitting element according to an embodiment of the present invention

【図2】この発明の異なる実施例に係る有機薄膜発光素子を示す断面図 2 is a cross-sectional view illustrating an organic thin film light emitting element according to different embodiments of the present invention

【図3】この発明のさらに異なる実施例に係る有機薄膜発光素子を示す断面図 3 is a cross-sectional view showing an organic thin film light-emitting device according to still another embodiment of the present invention

【図4】この発明のさらに異なる実施例に係る有機薄膜発光素子を示す断面図 4 is a cross-sectional view showing an organic thin film light-emitting device according to still another embodiment of the present invention

【図5】従来の有機薄膜発光素子を示す断面図 Figure 5 is a sectional view showing a conventional organic thin-film light emitting element

【図6】従来の異なる有機薄膜発光素子を示す断面図 6 is a sectional view showing a conventional different organic thin film light emitting element

【符号の説明】 DESCRIPTION OF SYMBOLS

1 基板 2 金属負極 3 電子注入層 4 発光層 5 正孔注入層 6 金属薄膜層 7 透光性正極 8 電源 1 substrate 2 metal anode 3 electron injecting layer 4 the light-emitting layer 5 hole injection layer 6 thin metal layer 7 translucent positive electrode 8 Power

フロントページの続き (56)参考文献 特開 平4−363896(JP,A) 特開 平6−93256(JP,A) 特開 平4−254887(JP,A) 特開 平2−253593(JP,A) 特開 平6−5365(JP,A) (58)調査した分野(Int.Cl. 7 ,DB名) H05B 33/00 - 33/28 Following (56) references of the front page Patent flat 4-363896 (JP, A) JP flat 6-93256 (JP, A) JP flat 4-254887 (JP, A) JP flat 2-253593 (JP , a) JP flat 6-5365 (JP, a) (58 ) investigated the field (Int.Cl. 7, DB name) H05B 33/00 - 33/28

Claims (6)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】有機薄膜を用いる電場発光素子であって、 (1)絶縁性支持体と、 (2)金属負極と、 (3)有機薄膜層と、 (4)金属薄膜層と、 (5)透光性正極とを包含し、 絶縁性支持体は素子の支持体であり、 有機薄膜層は発光層と電荷注入層のうちの少なくとも発光層からなり、 金属負極と透光性正極は有機薄膜層に電場を印加して発光層を光らせ、 金属薄膜層は発光層からの光を透過して透光性正極に導き、 絶縁性支持体の上には金属負極と、有機薄膜層と、金属薄膜層と、透光性正極が順次積層されるものであることを特徴とする有機薄膜発光素子。 1. A field emission device using the organic thin film, and (1) an insulating support, and (2) metal anode, and (3) an organic thin film layer, and (4) the metal thin film layer, (5 ) includes a transparent positive electrode, the insulating support is a support of the device, the organic thin film layer comprises at least the light emitting layer of the charge injection layer and the light-emitting layer, a metal anode and the translucent positive electrode of the organic flashing light-emitting layer by applying an electric field to the thin film layer, the metal thin film layer leads to transparent positive electrode to transmit light from the light-emitting layer, and a metal anode is on an insulating substrate, and an organic thin film layer, the organic thin film light emitting element, wherein the metal thin film layer, the transparent positive electrode is intended to be sequentially laminated.
  2. 【請求項2】請求項1記載の有機薄膜発光素子において、電荷注入層は正孔注入層であり、金属薄膜層と発光層の間に設けられることを特徴とする有機薄膜発光素子。 In the organic thin film light emitting element 2. A method according to claim 1, wherein the charge injection layer is a hole injection layer, an organic thin film light emitting element, characterized in that provided between the metal thin film layer and the light emitting layer.
  3. 【請求項3】請求項1記載の有機薄膜発光素子において、電荷注入層は電子注入層であり金属負極と発光層の間に設けられることを特徴とする有機薄膜発光素子。 3. The organic thin film light emitting element according to claim 1 wherein, the organic thin film light emitting element, wherein a charge injection layer is provided between the electron injection layer and a metal anode and the light emitting layer.
  4. 【請求項4】請求項1記載の有機薄膜発光素子において、電荷注入層は正孔注入層と電子注入層であり、正孔注入層は金属薄膜層と発光層の間に、また電子注入層は金属負極と発光層の間に設けられることを特徴とする有機薄膜発光素子。 4. A organic thin film light emitting element according to claim 1, wherein the charge injection layer is a hole injection layer and an electron injection layer, a hole injection layer between the metal thin film layer and the light emitting layer and an electron injection layer the organic thin film light emitting element, characterized in that provided between the metal anode and the light emitting layer.
  5. 【請求項5】請求項1記載の有機薄膜発光素子において、金属薄膜層は白金または金からなることを特徴とする有機薄膜発光素子。 5. The organic thin film light emitting element according to claim 1, wherein the metal thin film layer is an organic thin film light emitting element characterized in that it consists of platinum or gold.
  6. 【請求項6】請求項1記載の有機薄膜発光素子において、金属薄膜層は異種金属の積層体であることを特徴とする有機薄膜発光素子。 6. The organic thin film light emitting element according to claim 1 wherein, the organic thin film light emitting element metal thin layer which is a laminate of different metals.
JP7602193A 1993-04-02 1993-04-02 The organic thin film light emitting element Expired - Lifetime JP3189480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7602193A JP3189480B2 (en) 1993-04-02 1993-04-02 The organic thin film light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7602193A JP3189480B2 (en) 1993-04-02 1993-04-02 The organic thin film light emitting element

Publications (2)

Publication Number Publication Date
JPH06290873A true JPH06290873A (en) 1994-10-18
JP3189480B2 true JP3189480B2 (en) 2001-07-16

Family

ID=13593180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7602193A Expired - Lifetime JP3189480B2 (en) 1993-04-02 1993-04-02 The organic thin film light emitting element

Country Status (1)

Country Link
JP (1) JP3189480B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703436A (en) 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US6501217B2 (en) 1998-02-02 2002-12-31 International Business Machines Corporation Anode modification for organic light emitting diodes
JP5159010B2 (en) * 2000-09-08 2013-03-06 株式会社半導体エネルギー研究所 The method for manufacturing a light emitting device
US7488986B2 (en) 2001-10-26 2009-02-10 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US6956240B2 (en) 2001-10-30 2005-10-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
KR20130062367A (en) 2003-09-26 2013-06-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device
EP1521316B1 (en) 2003-10-03 2016-05-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a light emitting element
US8796670B2 (en) 2003-12-26 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US20070170843A1 (en) * 2004-03-05 2007-07-26 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and organic electroluminescent display
JP2006295104A (en) 2004-07-23 2006-10-26 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device using the same
WO2006101016A1 (en) 2005-03-23 2006-09-28 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
US7851989B2 (en) 2005-03-25 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP4555727B2 (en) * 2005-04-22 2010-10-06 株式会社 日立ディスプレイズ The organic light-emitting display device
JP4596977B2 (en) * 2005-05-20 2010-12-15 株式会社 日立ディスプレイズ The organic light-emitting display device
EP1724852A3 (en) 2005-05-20 2010-01-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US8334057B2 (en) 2005-06-08 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8017252B2 (en) 2005-06-22 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US7745989B2 (en) 2005-06-30 2010-06-29 Semiconductor Energy Laboratory Co., Ltd Light emitting element, light emitting device, and electronic apparatus
CN101940065A (en) * 2008-01-23 2011-01-05 Lg化学株式会社 Organic luminescent device and a production method for the same
US9224976B2 (en) 2008-11-19 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US8404500B2 (en) 2009-11-02 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element, light-emitting element, light-emitting device, lighting device, and electronic appliance
JP5969216B2 (en) 2011-02-11 2016-08-17 株式会社半導体エネルギー研究所 Emitting element, a display device, an illumination device, and a manufacturing method thereof
CN103422055A (en) * 2012-05-14 2013-12-04 海洋王照明科技股份有限公司 Conductive thin film, and preparation method and application thereof
EP2903049B1 (en) * 2012-09-28 2017-12-27 Ocean's King Lighting Science & Technology Co., Ltd Organic electroluminescent device and preparation method thereof
CN104253242B (en) * 2014-09-30 2017-01-25 合肥鑫晟光电科技有限公司 The organic electroluminescent device and fabrication method and a display device having the

Also Published As

Publication number Publication date Type
JPH06290873A (en) 1994-10-18 application

Similar Documents

Publication Publication Date Title
US5955836A (en) Organic electroluminescent component with exciplex formed from a mixed layer of a mixture of hole transporting and electron transporting organic material
Lee et al. Thin film light emitting devices from an electroluminescent ruthenium complex
US6469437B1 (en) Highly transparent organic light emitting device employing a non-metallic cathode
US6633122B2 (en) Electroluminescence device with multiple laminated bodies having common materials and process for producing the same
US6255774B1 (en) Multilayer cathode for organic light-emitting device
Kido et al. Bright blue electroluminescence from poly (N‐vinylcarbazole)
US6551725B2 (en) Inorganic buffer structure for organic light-emitting diode devices
US6010796A (en) Electroluminescent device
US6188176B1 (en) Organic electroluminescent device and preparation method with ITO electrode (111) orientation
US6420031B1 (en) Highly transparent non-metallic cathodes
US5817431A (en) Electron injecting materials for organic electroluminescent devices and devices using same
US5710484A (en) Organic thin film electroluminescent device having a carbon layer between the hole injection layer and the organic thin film layer
Tang et al. Organic electroluminescent diodes
JP2824411B2 (en) The organic thin film light emitting element
EP0319881A2 (en) Electroluminescence element
US6313261B1 (en) Polymer light emitting diode
JPH06267658A (en) Organic el element
US5709959A (en) Organic thin film electroluminescence device
JPH08124679A (en) Electroluminescent device
JPH05331459A (en) Organic electroluminescent element
JPH1074586A (en) Two layer electron injection electrode used in electroluminescence device
JP2001118682A (en) Organic electroluminescent element
JPH11273859A (en) Organic electroluminescent element and its manufacture
JPH09249876A (en) Light emission element
JPH09202878A (en) Near ultraviolet or ultraviolet region light-emission element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 12