JP2824411B2 - Organic thin-film light emitting device - Google Patents

Organic thin-film light emitting device

Info

Publication number
JP2824411B2
JP2824411B2 JP7217130A JP21713095A JP2824411B2 JP 2824411 B2 JP2824411 B2 JP 2824411B2 JP 7217130 A JP7217130 A JP 7217130A JP 21713095 A JP21713095 A JP 21713095A JP 2824411 B2 JP2824411 B2 JP 2824411B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting device
thin film
organic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7217130A
Other languages
Japanese (ja)
Other versions
JPH0963771A (en
Inventor
静士 時任
浩司 野田
康訓 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16699330&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2824411(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP7217130A priority Critical patent/JP2824411B2/en
Publication of JPH0963771A publication Critical patent/JPH0963771A/en
Application granted granted Critical
Publication of JP2824411B2 publication Critical patent/JP2824411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は平面発光ディスプレ
イに用いる発光素子に関するものであり、特に発光物質
として蛍光性有機化合物を利用した有機薄膜発光素子の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device used for a flat light emitting display, and more particularly to an improvement in an organic thin film light emitting device using a fluorescent organic compound as a light emitting substance.

【0002】[0002]

【従来の技術】近年、情報化社会の進歩に伴い、従来の
CRTよりも低消費電力でかつ薄型のディスプレイへの
ニーズが高まっている。この様なディスプレイとしては
液晶ディスプレイやプラズマディスプレイがあり、すで
に実用化されている。しかし、時代のニーズはさらに高
度化し、さらに低消費電力化、鮮明なフルカラー化が望
まれている。
2. Description of the Related Art In recent years, with the progress of the information-oriented society, the need for a thinner display with lower power consumption than conventional CRTs has been increasing. Such displays include liquid crystal displays and plasma displays, which have already been put to practical use. However, the needs of the times have become more sophisticated, and further lower power consumption and clearer full color are desired.

【0003】最近、それらのニーズを背景に、有機化合
物を利用した有機薄膜発光素子への期待が高まってい
る。これまでに報告されている素子の構造としては、陽
極および陰極の間に1層または複数層の有機化合物層が
挟まれた構造となっており、有機化合物層としては2層
構造あるいは3層構造がある。
[0003] In recent years, with these needs in the background, expectations for an organic thin-film light-emitting device using an organic compound are increasing. The structure of the device reported so far has a structure in which one or more organic compound layers are sandwiched between an anode and a cathode, and the organic compound layer has a two-layer structure or a three-layer structure. There is.

【0004】2層構造の例としては、陽極と陰極との間
に正孔輸送層と発光層が形成された構造(特開昭59−
194393、Appl.Phys.Lett.51,
913(1987))又は陽極と陰極との間に発光層と
電子輸送層とが形成された構造(USP No.5,0
85947、特開平2−250952、Appl.Ph
ys.Lett.55.P1489(1989))があ
る。また、3層構造の例としては、陽極と陰極との間に
正孔輸送層と発光層と電子輸送層とが形成された構造
(Appl.Phys.Lett.57,531(19
90))がある。また、単一層に全ての役割を持たせた
単層構造(Nature,347,539(199
0)、Appl.Phys.Lett.61,761
(1992))も高分子や混合系で報告されている。こ
れらの素子構造が図6,7,8,9に示される。
As an example of a two-layer structure, a structure in which a hole transport layer and a light emitting layer are formed between an anode and a cathode (Japanese Patent Laid-Open No.
194393, Appl. Phys. Lett. 51,
913 (1987)) or a structure in which a light emitting layer and an electron transporting layer are formed between an anode and a cathode (USP Nos. 5,0 and 0).
85947, JP-A-2-250952, Appl. Ph
ys. Lett. 55. P1489 (1989)). As an example of the three-layer structure, a structure in which a hole transport layer, a light emitting layer, and an electron transport layer are formed between an anode and a cathode (Appl. Phys. Lett. 57, 531 (19)
90)). Further, a single layer structure in which a single layer has all the functions (Nature, 347, 539 (199)
0), Appl. Phys. Lett. 61,761
(1992)) have also been reported for polymers and mixed systems. These element structures are shown in FIGS.

【0005】図6には、基板10上に設けられた陽極1
2と陰極14との間に単一の有機化合物層である発光層
16が形成された単層構造の例が示される。この場合の
発光層16は、正孔輸送層及び電子輸送層の機能も果た
している。
FIG. 6 shows an anode 1 provided on a substrate 10.
An example of a single-layer structure in which a light emitting layer 16 which is a single organic compound layer is formed between the cathode 2 and the cathode 14 is shown. In this case, the light emitting layer 16 also functions as a hole transport layer and an electron transport layer.

【0006】図7には、基板10上に設けられた陽極1
2と陰極14との間に有機化合物層である発光層16と
正孔輸送層18とが形成された2層構造の例が示され
る。この場合の発光層16は、電子輸送層の機能も果た
している。
FIG. 7 shows an anode 1 provided on a substrate 10.
An example of a two-layer structure in which a light-emitting layer 16 and a hole transport layer 18 which are organic compound layers are formed between a cathode 2 and a cathode 14 is shown. In this case, the light emitting layer 16 also functions as an electron transport layer.

【0007】図8には、基板10上に設けられた陽極1
2と陰極14との間に有機化合物層である発光層16と
電子輸送層20とが形成された2層構造の例が示され
る。この場合の発光層16は、正孔輸送層の機能も果た
している。
FIG. 8 shows an anode 1 provided on a substrate 10.
An example of a two-layer structure in which a light emitting layer 16 which is an organic compound layer and an electron transporting layer 20 are formed between a cathode 2 and a cathode 14 is shown. In this case, the light emitting layer 16 also functions as a hole transport layer.

【0008】図9には、基板10上に設けられた陽極1
2と陰極14との間に有機化合物層である発光層16と
正孔輸送層18と電子輸送層20とが形成された3層構
造の例が示される。
FIG. 9 shows an anode 1 provided on a substrate 10.
An example of a three-layer structure in which a light-emitting layer 16, which is an organic compound layer, a hole transport layer 18, and an electron transport layer 20 are formed between the cathode 2 and the cathode 14 is shown.

【0009】これら有機薄膜発光素子における発光メカ
ニズムは、陽極から注入された正孔と陰極から注入され
た電子とが、正孔輸送層18あるいは電子輸送層20を
介して発光層16に到達し、そこで再結合することによ
って発光層16を構成する有機化合物の励起状態を作り
出し、その励起状態が基底状態に戻るときに有機化合物
の蛍光と同じ波長の光を放出するというものである。
The light emission mechanism of these organic thin film light emitting devices is such that holes injected from the anode and electrons injected from the cathode reach the light emitting layer 16 via the hole transport layer 18 or the electron transport layer 20, Then, by recombination, an excited state of the organic compound forming the light emitting layer 16 is created, and when the excited state returns to the ground state, light having the same wavelength as the fluorescence of the organic compound is emitted.

【0010】発光層用材料として用いられる有機化合物
は強い蛍光性を示す材料である。上記正孔輸送層18、
発光層16、電子輸送層20に使用可能な材料として
は、これまで様々な有機化合物が報告されている。たと
えば、正孔輸送層18の材料としては、芳香族3級アミ
ンが報告されている。
The organic compound used as the material for the light emitting layer is a material showing strong fluorescence. The hole transport layer 18,
Various organic compounds have been reported as materials that can be used for the light emitting layer 16 and the electron transport layer 20. For example, an aromatic tertiary amine has been reported as a material for the hole transport layer 18.

【0011】また、発光層16の材料としては、以下の
化学式で表されるアルミニウムトリスオキシン(特開昭
59−194393、特開昭63−295695)
The material of the light emitting layer 16 is aluminum trisoxin represented by the following chemical formula (Japanese Patent Laid-Open Nos. 59-194393 and 63-295695).

【化1】 や、スチリルアミン誘導体、スチリルベンゼン誘導体
(特開平2−209988)が報告されている。
Embedded image And styrylamine derivatives and styrylbenzene derivatives (JP-A-2-209988).

【0012】また、電子輸送層20の材料としては、オ
キサジアゾール誘導体等(Appl.Phys.Let
t.63,2032(1993))が報告されている。
As the material of the electron transport layer 20, oxadiazole derivatives and the like (Appl. Phys. Let.
t. 63, 2032 (1993)).

【0013】これら低分子量の化合物ばかりではなく、
高分子量の化合物でも多くの報告例があり、特にポリ
(P−フェニレンビニレン)系誘導体(Nature,
347,539(1990))は、単層構造の素子でも
良好な特性が得られている。
Not only these low molecular weight compounds,
There have been many reports of high molecular weight compounds, especially poly (P-phenylenevinylene) derivatives (Nature,
347, 539 (1990)), good characteristics are obtained even with an element having a single-layer structure.

【0014】これらの材料を使用した有機薄膜発光素子
は、その発光色や明るさから見て、発光素子としての性
能は十分に実用レベルにある。
The organic thin-film light-emitting device using these materials has a sufficiently practical performance as a light-emitting device in view of its light-emitting color and brightness.

【0015】[0015]

【発明が解決しようとする課題】しかし、これら有機薄
膜発光素子は未だ実用に至っていない。その最大の原因
は素子の耐久性が乏しいことにある。
However, these organic thin-film light-emitting devices have not been put to practical use yet. The biggest cause is that the durability of the element is poor.

【0016】これまで、様々な素子構造および有機化合
物を採用することにより、初期的には数1000cd/
2 の高輝度が直流電圧10V程度で達成されている
が、連続駆動あるいは長期保存によって輝度の低下と駆
動電圧の上昇といった特性の劣化が起り、これが有機薄
膜発光素子の実用化を妨げている。この素子寿命を支配
している要因は幾つか報告されているが、従来は薄膜の
耐熱性がその主要因であると考えられていた。そのた
め、有機化合物層の膜構造を安定化させるために、熱安
定性に優れた、つまり軟化温度(Tg)や融点の高い有
機化合物の合成が試みられている(Appl.Phy
s.Lett.61,2503(1992))。
Hitherto, by adopting various device structures and organic compounds, initially several thousands cd /
Although a high luminance of m 2 has been achieved at a DC voltage of about 10 V, deterioration in characteristics such as a decrease in luminance and an increase in drive voltage due to continuous driving or long-term storage has occurred, which has hindered the practical use of organic thin-film light emitting devices. . Several factors governing the life of the element have been reported, but it has heretofore been considered that the heat resistance of the thin film is the main factor. Therefore, in order to stabilize the film structure of the organic compound layer, synthesis of an organic compound having excellent thermal stability, that is, an organic compound having a high softening temperature (Tg) and a high melting point has been attempted (Appl. Phy.
s. Lett. 61, 2503 (1992)).

【0017】しかし最近、以下の化学式で表される芳香
族3級アミンのトリフェニルジアミン誘導体
However, recently, a triphenyldiamine derivative of an aromatic tertiary amine represented by the following chemical formula:

【化2】 を中心にした系統的な実験から、素子の寿命はこれら軟
化温度や融点よりも正孔輸送層のイオン化ポテンシャル
に関係していることが報告されている(Appl.Ph
ys.Lett.,66,2679(1995))。こ
れは、陽極である酸化錫インジウム(ITO)と正孔輸
送層のエネルギー障壁すなわちITO電極のフェルミ準
位と正孔輸送層の最高占有準位のエネルギー差が小さい
ほど素子の寿命が長くなることを意味している。
Embedded image It has been reported from a systematic experiment centered on that the lifetime of the device is more related to the ionization potential of the hole transport layer than to the softening temperature and the melting point (Appl. Ph.
ys. Lett. , 66, 2679 (1995)). This is because the lifetime of the device becomes longer as the energy barrier between indium tin oxide (ITO) as the anode and the hole transport layer, that is, the energy difference between the Fermi level of the ITO electrode and the highest occupied level of the hole transport layer becomes smaller. Means

【0018】一般に、ITO電極のフェルミ準位は4.
6eV(Nature,Vol.370,354(19
94))であることが知られており、この値は仕事関数
に対応している。また、正孔輸送層に使用される代表的
なジアミン誘導体であるトリフェニルジアミン(TP
D)の最高占有準位は5.5eV(Appl.Phy
s.Lett.,61,2503(1992))である
ことが知られており、この値はイオン化ポテンシャルに
対応している。
Generally, the Fermi level of an ITO electrode is 4.
6 eV (Nature, Vol. 370, 354 (19)
94)), which corresponds to the work function. Further, triphenyldiamine (TP) which is a typical diamine derivative used for the hole transport layer is used.
D) has the highest occupied level of 5.5 eV (Appl.
s. Lett. , 61, 2503 (1992)), which corresponds to the ionization potential.

【0019】上述のTPDを正孔輸送層に使用する場
合、正孔キャリアにとってはITO電極と正孔輸送層と
の間に約0.9eVの障壁が存在することになる。この
エネルギー差が小さければ障壁部に無理な電圧がかかる
必要がなく、素子の発熱が抑えられる。多くのジアミン
誘導体でイオン化ポテンシャルの大きな材料の合成が試
みられているが、有機材料からのアプローチだけでは障
壁低減に限界がある。従って、電極材料を改良して、従
来のITOよりも仕事関数の大きな透明電極を開発する
ことが望まれている。
When the above-mentioned TPD is used for the hole transport layer, a barrier of about 0.9 eV exists between the ITO electrode and the hole transport layer for the hole carrier. If this energy difference is small, it is not necessary to apply an excessive voltage to the barrier portion, and the heat generation of the element can be suppressed. Although synthesis of materials having a large ionization potential has been attempted with many diamine derivatives, there is a limit to barrier reduction only by an approach using an organic material. Therefore, it is desired to develop a transparent electrode having a larger work function than conventional ITO by improving the electrode material.

【0020】尚、発光層が正孔輸送層の機能も果たして
いる型の素子の場合は、陽極と発光層との間のエネルギ
ー障壁が問題となる。例えば、イオン化ポテンシャルが
5.0eVのポリ(P−フェニレンビニレン)の場合、
0.4eVの障壁が存在することになる(Natur
e,370,354(1990))。
In the case of a device in which the light emitting layer also functions as a hole transport layer, there is a problem of an energy barrier between the anode and the light emitting layer. For example, in the case of poly (P-phenylenevinylene) having an ionization potential of 5.0 eV,
There will be a 0.4 eV barrier (Natur
e, 370, 354 (1990)).

【0021】本発明は上記従来の課題に鑑みなされたも
のであり、その目的は、仕事関数が従来の陽極材料であ
るITOよりも大きい金属酸化物薄膜を用いて正孔輸送
層あるいは発光層とのエネルギー障壁を低減させ、駆動
電圧が低下でき発光性能が長時間に亘って保持できる耐
久性に優れた有機薄膜発光素子を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to use a metal oxide thin film having a work function larger than that of ITO, which is a conventional anode material, with a hole transport layer or a light emitting layer. It is an object of the present invention to provide an organic thin-film light-emitting device having excellent durability, which can reduce the energy barrier of the device, reduce the driving voltage, and maintain the light-emitting performance for a long time.

【0022】[0022]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、陽極および陰極と、これら
に挟まれた1層または複数層の有機化合物層より構成さ
れる有機薄膜発光素子において、前記陽極が、仕事関数
が酸化錫インジウム(ITO)よりも大きな金属酸化物
薄膜からなることを特徴とする。
In order to achieve the above object, the present invention is directed to an organic thin film comprising an anode, a cathode and one or more organic compound layers sandwiched between the anode and the cathode. In the light emitting device, the anode is made of a metal oxide thin film having a work function larger than that of indium tin oxide (ITO).

【0023】請求項2記載の発明は、請求項1記載の有
機薄膜発光素子において、前記陽極を、膜厚500オン
グストロームから2000オングストロームの範囲のI
TO薄膜と50オングストロームから300オングスト
ロームの範囲の金属酸化物薄膜とにより2層構造とした
ことを特徴とする。
According to a second aspect of the present invention, in the organic thin-film light-emitting device according to the first aspect, the anode is formed of an I thin film having a thickness of 500 Å to 2,000 Å.
It has a two-layer structure comprising a TO thin film and a metal oxide thin film in a range of 50 Å to 300 Å.

【0024】請求項3記載の発明は、請求項1記載の有
機薄膜発光素子において、前記有機化合物層が発光層で
あることを特徴とする。
According to a third aspect of the present invention, in the organic thin film light emitting device according to the first aspect, the organic compound layer is a light emitting layer.

【0025】請求項4記載の発明は、請求項1記載の有
機薄膜発光素子において、前記有機化合物層が正孔輸送
層と発光層とからなることを特徴とする。
According to a fourth aspect of the present invention, in the organic thin-film light emitting device according to the first aspect, the organic compound layer comprises a hole transport layer and a light emitting layer.

【0026】請求項5記載の発明は、請求項1記載の有
機薄膜発光素子において、前記有機化合物層が発光層と
電子輸送層とからなることを特徴とする。
According to a fifth aspect of the present invention, in the organic thin film light emitting device according to the first aspect, the organic compound layer comprises a light emitting layer and an electron transport layer.

【0027】請求項6記載の発明は、請求項1記載の有
機薄膜発光素子において、前記有機化合物層が正孔輸送
層と発光層と電子輸送層とからなることを特徴とする。
According to a sixth aspect of the present invention, in the organic thin film light emitting device according to the first aspect, the organic compound layer comprises a hole transport layer, a light emitting layer, and an electron transport layer.

【0028】請求項7記載の発明は、請求項1記載の有
機薄膜発光素子において、前記金属酸化物は、酸化バナ
ジウム、酸化ルテニウム、酸化モリブデンなどの仕事関
数が4.6eVよりも大きな酸化物であることを特徴と
する。
According to a seventh aspect of the present invention, in the organic thin-film light emitting device according to the first aspect, the metal oxide is an oxide having a work function larger than 4.6 eV, such as vanadium oxide, ruthenium oxide, and molybdenum oxide. There is a feature.

【0029】[0029]

【発明の実施の形態】以下、本発明の好適な実施の形態
を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0030】図1には、本発明に係る有機薄膜発光素子
の断面図が示される。図1において、ガラス等の基板1
0の上に陽極12が形成され、陽極12の上にTPDか
らなる正孔輸送層18が形成され、正孔輸送層18の上
にアルミキノリノール錯体(Alq)からなる発光層1
6が形成され、発光層16の上にMgAg合金からなる
陰極14が形成されている。
FIG. 1 is a sectional view of an organic thin-film light emitting device according to the present invention. In FIG. 1, a substrate 1 such as glass
0, an anode 12 is formed on the anode 12, a hole transport layer 18 made of TPD is formed on the anode 12, and a light emitting layer 1 made of aluminum quinolinol complex (Alq) is formed on the hole transport layer 18.
6 is formed, and the cathode 14 made of the MgAg alloy is formed on the light emitting layer 16.

【0031】陽極12としては、従来の陽極材料である
ITOよりも仕事関数が大きく導電性が高い材料が使用
される。たとえば、ルテニウム酸化物(RuOx )、モ
リブデン酸化物(MoOx )、バナジウム酸化物(VO
x )などが好ましい。
As the anode 12, a material having a higher work function and higher conductivity than ITO, which is a conventional anode material, is used. For example, ruthenium oxide (RuO x ), molybdenum oxide (MoO x ), vanadium oxide (VO
x ) and the like are preferred.

【0032】表1には、各金属酸化物薄膜の仕事関数の
例が示される。これらの値は、大気中紫外光電子分光法
で実測したものである。表1に示された金属酸化物薄膜
の仕事関数は、ITOよりも大きな値となっており、本
発明に係る有機薄膜発光素子の陽極材料として使用が可
能である。
Table 1 shows an example of the work function of each metal oxide thin film. These values are measured by atmospheric ultraviolet photoelectron spectroscopy. The work function of the metal oxide thin film shown in Table 1 is larger than that of ITO, and can be used as an anode material of the organic thin film light emitting device according to the present invention.

【0033】[0033]

【表1】 これらの金属酸化物薄膜の中で光の透過性の乏しいもの
はITOとの2層構造の電極とする。この例が図2に示
される。図2においては、基板10の上にITO層22
が形成され、ITO層22の上に金属酸化物薄膜24が
形成されて2層構造の陽極12が構成されている。尚、
金属酸化物薄膜24の上には所定の有機化合物層及び陰
極が形成されているが図示は省略した。
[Table 1] Among these metal oxide thin films, those having poor light transmittance are electrodes having a two-layer structure with ITO. This example is shown in FIG. In FIG. 2, an ITO layer 22 is formed on a substrate 10.
Is formed, and a metal oxide thin film 24 is formed on the ITO layer 22 to form the anode 12 having a two-layer structure. still,
A predetermined organic compound layer and a cathode are formed on the metal oxide thin film 24, but are not shown.

【0034】陽極を2層構造とした場合の金属酸化物薄
膜24の膜厚は300オングストローム以下で50オン
グストローム以上が好ましい。ITOの膜厚は500オ
ングストロームから2000オングストロームの範囲と
する。金属酸化物薄膜の作製は、電子ビーム蒸着、直流
スパッタ法、RFマグネトロンスパッタ法、ICB蒸着
法など、酸化物薄膜を作製するのに用いられる方法であ
れば、その作製方法は限定されない。
When the anode has a two-layer structure, the thickness of the metal oxide thin film 24 is preferably 300 Å or less and 50 Å or more. The thickness of the ITO is in the range of 500 Å to 2000 Å. The method for manufacturing the metal oxide thin film is not limited as long as it is a method used for manufacturing an oxide thin film, such as electron beam evaporation, direct current sputtering, RF magnetron sputtering, or ICB evaporation.

【0035】本発明に用いることができる有機化合物
は、図1に示されたものだけではなく、従来公知の材料
すべてが適用される。たとえば、正孔輸送層材料として
は、芳香族3級アミン(USP No.4,175,9
60,USP No.4,539,507、Phil.
Mag.B,53,193(1986))、フタロシア
ニン誘導体やピラゾリン誘導体が挙げられ、特に芳香族
3級アミンは最も有用な化合物である。発光層用材料と
しては、金属キレート化オキシノイド化合物(特開昭5
9−194393)、オキサジアゾール誘導体、ブタジ
エン誘導体、ペリレン誘導体、スチリルベンゼン誘導体
(特開平2−247277)、ペリノン誘導体等が挙げ
られる。電子輸送層材料としては、オキサジアゾール化
合物(Appl.Phys.Lett.55,1489
(1989))、ブタジエン誘導体、ペリレン誘導体な
どが挙げられ、また、金属キレート化オキシノイド化合
物(特開昭59−194393)も使用できる。
As the organic compound which can be used in the present invention, not only those shown in FIG. 1 but all conventionally known materials are applied. For example, as a hole transport layer material, an aromatic tertiary amine (USP No. 4,175,9)
60, USP No. 4,539,507, Phil.
Mag. B, 53, 193 (1986)), phthalocyanine derivatives and pyrazoline derivatives, and aromatic tertiary amines are particularly useful. As a material for the light emitting layer, a metal chelated oxinoid compound (Japanese Unexamined Patent Publication No.
9-194393), oxadiazole derivatives, butadiene derivatives, perylene derivatives, styrylbenzene derivatives (JP-A-2-247277), perinone derivatives and the like. As an electron transport layer material, an oxadiazole compound (Appl. Phys. Lett. 55, 1489) is used.
(1989)), butadiene derivatives, perylene derivatives and the like, and metal chelated oxinoid compounds (JP-A-59-194393) can also be used.

【0036】陰極材料は、仕事関数の小さい銀、錫、マ
グネシウム、アルミニウム、カルシウム、あるいはこれ
らの合金が用いられる。また、アルミニウムやゲルマニ
ウムをドープした酸化亜鉛も透明な陰極として利用でき
る。陽極と陰極の少なくとも一方は素子の発光波長域で
十分に透明であることが望ましい。
As the cathode material, silver, tin, magnesium, aluminum, calcium, or an alloy thereof having a small work function is used. Also, zinc oxide doped with aluminum or germanium can be used as a transparent cathode. It is desirable that at least one of the anode and the cathode is sufficiently transparent in the emission wavelength region of the device.

【0037】本発明に係る有機薄膜発光素子は、図1に
示されるように、以上の各層をガラス基板やシリコンな
どの半導体基板上に順次積層することで素子として構成
される。これらは、素子の安定性、特に大気中の水分に
対する保護のために、シリコンオイル等と一緒にガラス
セルに封入するようにしてもよい。
As shown in FIG. 1, the organic thin-film light-emitting device according to the present invention is formed as an element by sequentially laminating the above layers on a glass substrate or a semiconductor substrate such as silicon. These may be sealed in a glass cell together with silicon oil or the like for the stability of the element, particularly for protection against moisture in the atmosphere.

【0038】尚、本発明に係る有機薄膜発光素子は、図
1に示される構造に限られるものではなく、必要により
図6,7,8,9に示されるような構造とすることもで
きる。
The organic thin-film light emitting device according to the present invention is not limited to the structure shown in FIG. 1, but may have a structure as shown in FIGS.

【0039】以下、本発明に係る有機薄膜発光素子の具
体例を実施例によりさらに詳細に説明する。
Hereinafter, specific examples of the organic thin-film light emitting device according to the present invention will be described in more detail with reference to examples.

【0040】[0040]

【実施例】【Example】

実施例1.本実施例では、金属酸化物薄膜の作製方法と
その特性について示す。
Embodiment 1 FIG. Example 1 In this example, a method for manufacturing a metal oxide thin film and its characteristics will be described.

【0041】表1に示された各材料を使用してガラス基
板上に高周波マグネトロンスパッタ法により金属酸化物
薄膜を形成した。この金属酸化物薄膜の形成条件及び特
性が表2に示される。
Using each material shown in Table 1, a metal oxide thin film was formed on a glass substrate by a high-frequency magnetron sputtering method. Table 2 shows the forming conditions and characteristics of the metal oxide thin film.

【0042】[0042]

【表2】 基板温度は150℃で、スパッタガス圧は2×10-3
orr(0.27Pa)とした。酸化モリブデン薄膜と
酸化ルテニウム薄膜が高い導電性を示し、酸化バナジウ
ム薄膜は半導体的であった。これらの金属酸化物薄膜は
着色しており、表2に示されるように可視域での光の透
過性が低いので、上述の通りITOとともに2層構造と
するのが好ましい。表2には、各金属酸化物薄膜の典型
的な組成も参考として示される。この組成は、スパッタ
成膜の条件(ガスの圧力、ガスの種類)によって若干変
動する。
[Table 2] The substrate temperature is 150 ° C. and the sputtering gas pressure is 2 × 10 −3 T
orr (0.27 Pa). The molybdenum oxide thin film and the ruthenium oxide thin film showed high conductivity, and the vanadium oxide thin film was semiconductor-like. Since these metal oxide thin films are colored and have low light transmittance in the visible region as shown in Table 2, it is preferable to form a two-layer structure together with ITO as described above. Table 2 also shows a typical composition of each metal oxide thin film for reference. This composition slightly varies depending on the conditions of the sputter film formation (gas pressure, gas type).

【0043】表3には、ITOと前述の金属酸化物薄膜
とを積層した、図2に示されるような2層構造電極の導
電性と光透過率が示される。金属酸化物薄膜の膜厚は透
明性を高めるために、300オングストローム以下にし
た。また、ITOの膜厚は1200オングストロームと
した。
Table 3 shows the conductivity and light transmittance of a two-layer electrode as shown in FIG. 2 in which ITO and the above-mentioned metal oxide thin film were laminated. The thickness of the metal oxide thin film was set to 300 Å or less in order to enhance transparency. The thickness of the ITO was 1200 Å.

【0044】本実施例の場合、電極を2層構造とするこ
とで、その表面抵抗は約25Ω/□に設定することがで
きた。また、光透過率は、表2に示された各金属酸化物
薄膜の値よりも向上させることができた。
In the case of this embodiment, the surface resistance could be set to about 25 Ω / □ by forming the electrodes in a two-layer structure. Further, the light transmittance was able to be improved from the value of each metal oxide thin film shown in Table 2.

【0045】[0045]

【表3】 実施例2.本実施例では、図1に示される構造の有機薄
膜発光素子を製作し、その特性を評価した。
[Table 3] Embodiment 2. FIG. In this example, an organic thin film light emitting device having the structure shown in FIG. 1 was manufactured and its characteristics were evaluated.

【0046】ガラス基板上に実施例1の方法により約1
500オングストロームの酸化バナジウム薄膜からなる
陽極を形成した。その陽極上に、真空蒸着法により、真
空度約2×10-7Torr(2.7×10-5Pa)、蒸
着速度約30オングストローム/分の条件でTPDを約
500オングストローム形成し、正孔輸送層とした。発
光層としてはアルミキノリノール錯体を用いた。陰極と
しては、真空度1×10-6Torr(1.3×10-4
a)、蒸着速度約150オングストローム/分でMgと
Agの合金(Mg:Ag=10:1)を約1800オン
グストローム形成した。素子1個のサイズは3mm×3
mmであり、25mm×35mmの基板上に15個作製
した。
On a glass substrate, about 1
An anode made of a 500 Å vanadium oxide thin film was formed. On the anode, about 500 Å of TPD is formed by vacuum evaporation under the conditions of a degree of vacuum of about 2 × 10 −7 Torr (2.7 × 10 −5 Pa) and a deposition rate of about 30 Å / min. It was a transport layer. An aluminum quinolinol complex was used for the light emitting layer. As the cathode, a degree of vacuum of 1 × 10 −6 Torr (1.3 × 10 −4 P
a) An alloy of Mg and Ag (Mg: Ag = 10: 1) was formed at about 1800 Å at a deposition rate of about 150 Å / min. The size of one element is 3 mm x 3
mm, and 15 pieces were produced on a 25 mm × 35 mm substrate.

【0047】以上のように作製した有機薄膜発光素子の
陽極側に正、陰極側に負の直流電圧を印加し、ガラス基
板側からの発光を観察したところ、印加電圧3Vで1c
d/m2 で緑色の発光を開始し、緑色発光が長時間に亘
って観察された。従って、1cd/m2 の輝度が得られ
る印加電圧を発光開始電圧とすれば、本実施例の素子の
発光開始電圧は3Vであった。更に、5V印加では20
cd/m2 の輝度を示した。最高輝度は印加電圧12V
で300cd/m2 であった。
When a positive DC voltage was applied to the anode side and a negative DC voltage was applied to the cathode side of the organic thin-film light-emitting device manufactured as described above, and light emission from the glass substrate side was observed, the applied voltage was 3 V and 1 c
Green light emission was started at d / m 2 , and green light emission was observed over a long period of time. Therefore, assuming that the applied voltage at which a luminance of 1 cd / m 2 is obtained is the light emission start voltage, the light emission start voltage of the device of this example was 3 V. Furthermore, when 5V is applied, 20
It showed a luminance of cd / m 2 . Maximum brightness is applied voltage 12V
Was 300 cd / m 2 .

【0048】比較例1.ガラス基板上に高周波マグネト
ロンスパッタ法でITOを1500オングストローム成
膜して陽極とし、その上に、実施例2と同様の方法で、
正孔輸送層、発光層、MgAg電極を真空蒸着し、比較
用の素子を作製した。この比較用の素子では、1cd/
2 の輝度が得られる印加電圧すなわち発光開始電圧は
5Vであった。最高輝度は印加電圧15Vで5000c
d/m2 の性能が得られた。駆動電流10mA/cm2
での発光効率は約0.85lm/Wであった。この素子
の発光寿命を10mA/cm2 の駆動条件で測定したと
ころ、図4に示されるように、半減寿命(初期輝度の半
分に低下するまでの時間)が80時間であった。
Comparative Example 1 On a glass substrate, 1500 angstrom of ITO was formed by a high-frequency magnetron sputtering method to form an anode, and on the anode, a method similar to that of Example 2 was used.
The hole transport layer, the light emitting layer, and the MgAg electrode were vacuum-deposited to prepare a comparative device. In this comparative device, 1 cd /
The applied voltage at which a luminance of m 2 was obtained, that is, the light emission starting voltage was 5 V. Maximum brightness is 5000c at applied voltage of 15V
A performance of d / m 2 was obtained. Drive current 10 mA / cm 2
Was about 0.85 lm / W. When the light emission lifetime of this device was measured under a driving condition of 10 mA / cm 2 , as shown in FIG. 4, the half-life (time required to decrease to half of the initial luminance) was 80 hours.

【0049】比較例2.ガラス基板上に高周波マグネト
ロンスパッタ法でIn2 3 を1500オングストロー
ム成膜し、その上に、実施例2と同様の方法で、正孔輸
送層、発光層、MgAg電極を真空蒸着し、比較用の素
子を作製した。この比較用の素子では、1cd/m2
輝度が得られる発光開始電圧は7Vで、最高輝度は印加
電圧15Vで4000cd/m2 であった。
Comparative Example 2 1500 Å of In 2 O 3 was formed on a glass substrate by a high-frequency magnetron sputtering method, and a hole transport layer, a light emitting layer, and an MgAg electrode were vacuum-deposited thereon in the same manner as in Example 2 for comparison. Was manufactured. In this comparative device, the light emission starting voltage at which a luminance of 1 cd / m 2 was obtained was 7 V, and the maximum luminance was 4000 cd / m 2 at an applied voltage of 15 V.

【0050】比較例3.ガラス基板上に高周波マグネト
ロンスパッタ法でSnO2 を1500オングストローム
成膜し、その上に、実施例2と同様の方法で、正孔輸送
層、発光層、MgAg電極を真空蒸着した。この素子で
は、1cd/m2 の輝度が得られる発光開始電圧は7V
で、最高輝度は印加電圧15Vで4000cd/m2
あった。
Comparative Example 3 1500 Å of SnO 2 was formed on a glass substrate by a high-frequency magnetron sputtering method, and a hole transport layer, a light emitting layer, and a MgAg electrode were vacuum-deposited thereon in the same manner as in Example 2. In this device, the light emission starting voltage at which a luminance of 1 cd / m 2 is obtained is 7 V
The maximum luminance was 4000 cd / m 2 at an applied voltage of 15 V.

【0051】このように、実施例2と比較例1、2、3
とを比較すると、本発明による素子では発光開始電圧が
低減していることが分った。しかし、酸化バナジウム電
極の光透過性が低いため、十分な輝度が達成できなかっ
た。そこで、ITO薄膜との積層によって光透過性を改
善した2層電極での実施例を次に示す。
Thus, Example 2 and Comparative Examples 1, 2, 3
In comparison with the above, it was found that the light emission starting voltage was reduced in the device according to the present invention. However, due to the low light transmittance of the vanadium oxide electrode, sufficient luminance could not be achieved. Therefore, an embodiment using a two-layer electrode in which light transmittance is improved by lamination with an ITO thin film will be described below.

【0052】実施例3.高周波マグネトロンスパッタ法
で、ガラス基板上に1200オングストロームのITO
と300オングストロームの酸化バナジウム薄膜を連続
して成膜して2層構造電極(透明電極)を形成した。こ
の電極上に実施例2と同様に、正孔輸送層を約500オ
ングストローム、発光層を約500オングストローム、
MgAg電極を約1800オングストローム成膜して有
機薄膜発光素子を作製した。この有機薄膜発光素子の発
光開始電圧と発光効率を測定した結果が表4に示され
る。
Embodiment 3 FIG. 1200 angstroms of ITO on a glass substrate by high frequency magnetron sputtering
And a 300 angstrom vanadium oxide thin film were continuously formed to form a two-layer structure electrode (transparent electrode). On this electrode, as in Example 2, the hole transport layer was about 500 Å, the light emitting layer was about 500 Å,
An MgAg electrode was formed into a film of about 1800 angstroms to produce an organic thin film light emitting device. Table 4 shows the results of measuring the light emission starting voltage and the light emission efficiency of this organic thin film light emitting device.

【0053】[0053]

【表4】 表4に示されるように、この素子の発光開始電圧は3V
であった。また、図5に示されるように、わずか5Vの
印加で100cd/m2 もの輝度が観察された。最高輝
度は12Vで5000cd/m2 であり、発光効率は
0.92lm/W(駆動電流10mA/cm2 )であっ
た。この素子の半減寿命を10mA/cm2 の駆動条件
で測定したところ、図4に示されるように、100時間
以上であった。ITOのみを用いた素子にくらべ、より
低い印加電圧で強い発光が可能であり発光効率も改善さ
れ、かつ、発光寿命も長くなることが分った。
[Table 4] As shown in Table 4, the light emission starting voltage of this device was 3 V
Met. Further, as shown in FIG. 5, a luminance as high as 100 cd / m 2 was observed by applying only 5 V. The maximum luminance was 5000 cd / m 2 at 12 V, and the luminous efficiency was 0.92 lm / W (drive current 10 mA / cm 2 ). When the half-life of this device was measured under the driving condition of 10 mA / cm 2 , it was 100 hours or more as shown in FIG. Compared to the device using only ITO, it was found that intense light emission was possible at a lower applied voltage, the light emission efficiency was improved, and the light emission life was longer.

【0054】更に、酸化バナジウム薄膜を100オング
ストロームとした2層構造電極の場合、発光開始電圧は
3Vで上述の例と変わらなかったが、最高輝度が高くな
り、発光効率は1.0lm/Wとなった。
Further, in the case of a two-layer structure electrode having a vanadium oxide thin film of 100 Å, the light emission starting voltage was 3 V, which was the same as the above example, but the maximum luminance was high and the light emission efficiency was 1.0 lm / W. became.

【0055】実施例4.ガラス基板上に1400オング
ストロームのITOと300オングストロームの酸化ル
テニウム薄膜を成膜した2層構造電極の上に、実施例2
と同様に、正孔輸送層を約500オングストローム、発
光層を約500オングストローム、MgAg電極を約1
800オングストローム成膜して有機薄膜発光素子を作
製し、実施例3と同様に発光開始電圧と発光効率を測定
した。
Embodiment 4 FIG. Example 2 Example 2 was formed on a two-layer electrode in which 1400 Å of ITO and 300 Å of ruthenium oxide thin film were formed on a glass substrate.
Similarly, the hole transport layer is about 500 Å, the light emitting layer is about 500 Å, and the MgAg electrode is about 1 Å.
An organic thin film light emitting device was manufactured by forming a film of 800 angstrom, and the light emission starting voltage and the light emission efficiency were measured in the same manner as in Example 3.

【0056】表4に示されるように、この素子の発光開
始電圧は3.5Vであった。また、5V印加で30cd
/m2 の輝度が観察された(図4)。発光効率は0.8
5lm/Wであった。
As shown in Table 4, the light emission starting voltage of this device was 3.5 V. In addition, 30 cd with 5 V applied
/ M 2 was observed (FIG. 4). Luminous efficiency is 0.8
It was 5 lm / W.

【0057】本実施例においては、酸化ルテニウムの膜
厚をさらに薄くすれば電極の光透過率が改善され、効率
がさらに向上する。
In this embodiment, if the thickness of ruthenium oxide is further reduced, the light transmittance of the electrode is improved, and the efficiency is further improved.

【0058】実施例5.ガラス基板上に、1200オン
グストロームのITOと300オングストロームの酸化
モリブデンを連続成膜した2層構造電極を形成し、その
上に実施例2と同様に、正孔輸送層、発光層、電極を真
空蒸着して有機薄膜発光素子を作製し、実施例3と同様
に発光開始電圧と発光効率を測定した。
Embodiment 5 FIG. On a glass substrate, a two-layer electrode was formed by continuously depositing 1200 Å of ITO and 300 Å of molybdenum oxide, and a hole transport layer, a light-emitting layer, and an electrode were vacuum-deposited thereon in the same manner as in Example 2. Thus, an organic thin-film light-emitting device was manufactured, and the light-emission starting voltage and the light-emission efficiency were measured in the same manner as in Example 3.

【0059】表4に示されるように、この素子の発光開
始電圧は3.5Vで、印加電圧5Vでは30cd/m2
の輝度を示した(図5)。
As shown in Table 4, the light emission starting voltage of this device was 3.5 V, and 30 cd / m 2 at an applied voltage of 5 V.
(FIG. 5).

【0060】実施例6.次に、上部電極(陰極)から、
光を取り出す場合の素子についての実施例を示す。
Embodiment 6 FIG. Next, from the upper electrode (cathode)
An example of an element for extracting light will be described.

【0061】図3には、本実施例に係る有機薄膜発光素
子の断面図が示される。図3において、ガラス基板10
上に、酸化ルテニウムを1500オングストローム成膜
して陽極12とし、その上に、実施例2と同様に、正孔
輸送層18と発光層16とを真空蒸着した。最後に、陰
極14として、仕事関数の小さなアルミ添加酸化亜鉛を
高周波スパッタ法で約1200オングストローム成膜し
た。
FIG. 3 is a sectional view of the organic thin-film light emitting device according to this embodiment. In FIG. 3, a glass substrate 10
A film of ruthenium oxide was formed to a thickness of 1500 angstroms to form the anode 12, on which the hole transport layer 18 and the light emitting layer 16 were vacuum-deposited in the same manner as in Example 2. Finally, as the cathode 14, aluminum-added zinc oxide having a small work function was formed into a film of about 1200 angstroms by a high frequency sputtering method.

【0062】この素子で、酸化ルテニウム電極(陽極1
2)に正の電圧を印加し、酸化亜鉛電極(陰極14)を
通して光を観測したところ、透明な陰極14側から明瞭
な発光が観察された。この場合、酸化ルテニウム電極が
黒色であるためMgAg金属電極の場合よりもコントラ
スト比の高い発光が得られた。
In this device, a ruthenium oxide electrode (anode 1) was used.
When a positive voltage was applied to 2) and light was observed through the zinc oxide electrode (cathode 14), clear light emission was observed from the transparent cathode 14 side. In this case, since the ruthenium oxide electrode was black, light emission with a higher contrast ratio was obtained than in the case of the MgAg metal electrode.

【0063】[0063]

【発明の効果】以上説明したように、本発明によれば、
金属酸化物薄膜電極と正孔輸送層あるいは発光層とのエ
ネルギー障壁を小さくでき、正孔輸送層や発光層への正
孔注入が容易となり、低い印加電圧で素子駆動が可能と
なる。その結果、発光効率が改善され、素子の長寿命化
が達成できる。よって、本発明の発光素子は各種ディス
プレイ分野への応用が可能となる。
As described above, according to the present invention,
The energy barrier between the metal oxide thin film electrode and the hole transport layer or the light emitting layer can be reduced, holes can be easily injected into the hole transport layer or the light emitting layer, and the device can be driven with a low applied voltage. As a result, the luminous efficiency is improved, and the life of the element can be extended. Therefore, the light emitting device of the present invention can be applied to various display fields.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る有機薄膜発光素子の断面図であ
る。
FIG. 1 is a cross-sectional view of an organic thin-film light emitting device according to the present invention.

【図2】 本発明に係る2層構造電極の断面図である。FIG. 2 is a sectional view of a two-layer electrode according to the present invention.

【図3】 本発明に係る陰極から光を取り出す有機薄膜
発光素子の断面図である。
FIG. 3 is a cross-sectional view of an organic thin-film light-emitting device that extracts light from a cathode according to the present invention.

【図4】 各種素子の駆動時間に対する発光輝度の変化
を示す図である。
FIG. 4 is a diagram showing a change in light emission luminance with respect to driving time of various elements.

【図5】 各種素子の印加電圧と発光輝度との関係を示
す図である。
FIG. 5 is a diagram showing a relationship between applied voltages of various elements and light emission luminance.

【図6】 単層構造の有機薄膜発光素子の断面図であ
る。
FIG. 6 is a cross-sectional view of an organic thin film light emitting device having a single layer structure.

【図7】 正孔輸送層を有する2層構造有機薄膜発光素
子の断面図である。
FIG. 7 is a cross-sectional view of a two-layer organic thin film light emitting device having a hole transport layer.

【図8】 電子輸送層を有する2層構造有機薄膜発光素
子の断面図である。
FIG. 8 is a cross-sectional view of a two-layer organic thin-film light emitting device having an electron transport layer.

【図9】 3層構造の有機薄膜発光素子の断面図であ
る。
FIG. 9 is a sectional view of an organic thin-film light emitting device having a three-layer structure.

【符号の説明】[Explanation of symbols]

10 基板、12 陽極、14 陰極、16 発光層、
18 正孔輸送層、20 電子輸送層、22 ITO
層、24 金属酸化物薄膜。
10 substrate, 12 anode, 14 cathode, 16 light emitting layer,
18 hole transport layer, 20 electron transport layer, 22 ITO
Layer, 24 metal oxide thin film.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−151063(JP,A) 特開 平6−5369(JP,A) 特開 平4−772(JP,A) 特開 平4−121953(JP,A) 特開 平2−144851(JP,A) 特開 平2−209988(JP,A) (58)調査した分野(Int.Cl.6,DB名) H05B 33/26──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-151063 (JP, A) JP-A-6-5369 (JP, A) JP-A-4-772 (JP, A) JP-A-4- 121953 (JP, A) JP-A-2-1444851 (JP, A) JP-A-2-209988 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H05B 33/26

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽極および陰極と、これらに挟まれた1
層または複数層の有機化合物層より構成される有機薄膜
発光素子において、前記陽極が、仕事関数が酸化錫イン
ジウム(ITO)よりも大きな金属酸化物薄膜からなる
ことを特徴とする有機薄膜発光素子。
1. An anode and a cathode, and an anode and a cathode sandwiched therebetween.
An organic thin-film light-emitting device comprising a layer or a plurality of organic compound layers, wherein the anode comprises a metal oxide thin film having a work function larger than that of indium tin oxide (ITO).
【請求項2】 請求項1記載の有機薄膜発光素子におい
て、前記陽極を、膜厚500オングストロームから20
00オングストロームの範囲のITO薄膜と50オング
ストロームから300オングストロームの範囲の金属酸
化物薄膜とにより2層構造としたことを特徴とする有機
薄膜発光素子。
2. The organic thin-film light emitting device according to claim 1, wherein said anode is formed to a thickness of 500 Å to 20 Å.
An organic thin-film light-emitting device having a two-layer structure comprising an ITO thin film in a range of 00 Å and a metal oxide thin film in a range of 50 Å to 300 Å.
【請求項3】 請求項1記載の有機薄膜発光素子におい
て、前記有機化合物層が発光層であることを特徴とする
有機薄膜発光素子。
3. The organic thin film light emitting device according to claim 1, wherein said organic compound layer is a light emitting layer.
【請求項4】 請求項1記載の有機薄膜発光素子におい
て、前記有機化合物層が正孔輸送層と発光層とからなる
ことを特徴とする有機薄膜発光素子。
4. The organic thin film light emitting device according to claim 1, wherein said organic compound layer comprises a hole transport layer and a light emitting layer.
【請求項5】 請求項1記載の有機薄膜発光素子におい
て、前記有機化合物層が発光層と電子輸送層とからなる
ことを特徴とする有機薄膜発光素子。
5. The organic thin-film light-emitting device according to claim 1, wherein said organic compound layer comprises a light-emitting layer and an electron transport layer.
【請求項6】 請求項1記載の有機薄膜発光素子におい
て、前記有機化合物層が正孔輸送層と発光層と電子輸送
層とからなることを特徴とする有機薄膜発光素子。
6. The organic thin film light emitting device according to claim 1, wherein said organic compound layer comprises a hole transport layer, a light emitting layer, and an electron transport layer.
【請求項7】 請求項1記載の有機薄膜発光素子におい
て、前記金属酸化物は、酸化バナジウム、酸化ルテニウ
ム、酸化モリブデンなどの仕事関数が4.6eVよりも
大きな酸化物であることを特徴とする有機薄膜発光素
子。
7. The organic thin-film light emitting device according to claim 1, wherein the metal oxide is an oxide having a work function larger than 4.6 eV, such as vanadium oxide, ruthenium oxide, and molybdenum oxide. Organic thin film light emitting device.
JP7217130A 1995-08-25 1995-08-25 Organic thin-film light emitting device Expired - Lifetime JP2824411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7217130A JP2824411B2 (en) 1995-08-25 1995-08-25 Organic thin-film light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7217130A JP2824411B2 (en) 1995-08-25 1995-08-25 Organic thin-film light emitting device

Publications (2)

Publication Number Publication Date
JPH0963771A JPH0963771A (en) 1997-03-07
JP2824411B2 true JP2824411B2 (en) 1998-11-11

Family

ID=16699330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7217130A Expired - Lifetime JP2824411B2 (en) 1995-08-25 1995-08-25 Organic thin-film light emitting device

Country Status (1)

Country Link
JP (1) JP2824411B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123095A (en) * 2003-10-17 2005-05-12 Junji Kido Organic electroluminescent element
WO2005031798A3 (en) * 2003-09-26 2005-05-26 Semiconductor Energy Lab Light-emitting device and method for manufacturing the same
JP2005267926A (en) * 2004-03-17 2005-09-29 Japan Science & Technology Agency Double-faced light-emitting organic el panel
EP1693483A2 (en) 2002-08-02 2006-08-23 Idemitsu Kosan Co., Ltd. Sputtering target, sintered article, conductive film fabricated by utilizing the same, organic el device, and substrate for use therein
JP2006344774A (en) * 2005-06-09 2006-12-21 Rohm Co Ltd Organic el device, organic el display using the same, and method of manufacturing organic el device
JP2007201327A (en) * 2006-01-30 2007-08-09 Denso Corp Organic el panel, and manufacturing method thereof
US7387904B2 (en) 2003-10-03 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US7521855B2 (en) 2004-12-06 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
WO2009133903A1 (en) 2008-04-28 2009-11-05 大日本印刷株式会社 Device having hole injection/transport layer, method for manufacturing the same, and ink for forming hole injection/transport layer
WO2009133907A1 (en) 2008-04-28 2009-11-05 大日本印刷株式会社 Device having hole injection transport layer, method for production thereof, and ink for formation of hole injection transport layer
US7667389B2 (en) 2004-12-06 2010-02-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US7812520B2 (en) 2003-07-01 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Full color display based on organic light-emitting device
WO2011013759A1 (en) 2009-07-31 2011-02-03 大日本印刷株式会社 Device material for hole injection/transport layer, ink for forming hole injection/transport layer, device having hole injection/transport layer, and method for manufacturing same
WO2011013761A1 (en) 2009-07-31 2011-02-03 大日本印刷株式会社 Device material for hole injection/transport layer, ink for forming hole injection/transport layer, device having hole injection/transport layer, and method for manufacturing same
US7893427B2 (en) 2004-07-23 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US7951470B2 (en) 2004-08-23 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and lighting system
US7977865B2 (en) 2005-03-23 2011-07-12 Semiconductor Energy Laboratory Co., Ltd. Composite material, material for light-emitting element, light-emitting element, light-emitting device and electronic device
US7994711B2 (en) 2005-08-08 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US8008652B2 (en) 2004-09-24 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8173277B2 (en) 2005-09-12 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic appliance using the same
JP2012209400A (en) * 2011-03-29 2012-10-25 Dainippon Printing Co Ltd Organic thin-film solar cell and organic thin-film solar cell module
US8334057B2 (en) 2005-06-08 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
CN102842685A (en) * 2011-06-23 2012-12-26 三星显示有限公司 Anode containing metal oxide and organic light emitting device having the same
US8362688B2 (en) 2005-03-25 2013-01-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8404500B2 (en) 2009-11-02 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element, light-emitting element, light-emitting device, lighting device, and electronic appliance
US8415878B2 (en) 2005-07-06 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8420227B2 (en) 2005-03-23 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
US8426034B2 (en) 2005-02-08 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
WO2013061720A1 (en) 2011-10-25 2013-05-02 大日本印刷株式会社 Material for positive hole injection transport layer, ink for positive hole injection transport layer, device, and production methods for same
US8659008B2 (en) 2005-07-08 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Composite material and light emitting element, light emitting device, and electronic device using the composite material
US8796670B2 (en) 2003-12-26 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US8896014B2 (en) 2010-11-24 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, manufacturing method thereof, and lighting device
US9224976B2 (en) 2008-11-19 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9252381B2 (en) 2009-06-19 2016-02-02 Dai Nippon Printing Co., Ltd. Organic electronic device and method for producing the same
US9564609B2 (en) 2011-02-11 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including electrode of three layers
US10134996B2 (en) 2004-10-29 2018-11-20 Semicondcutor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, and manufacturing method thereof
WO2019165716A1 (en) * 2018-03-02 2019-09-06 昆山工研院新型平板显示技术中心有限公司 Light-emitting device and manufacturing method therefor, and display device
US11527558B2 (en) 2017-09-30 2022-12-13 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Display device

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501217B2 (en) 1998-02-02 2002-12-31 International Business Machines Corporation Anode modification for organic light emitting diodes
US6208076B1 (en) 1999-01-13 2001-03-27 Tdk Corporation Organic electroluminescent device with silicone oxide and/or germanium oxide insulative layer
US6373186B1 (en) * 1999-01-21 2002-04-16 Tdk Corporation Organic electroluminescent device with high resistance inorganic hole injecting layer
US6541908B1 (en) * 1999-09-30 2003-04-01 Rockwell Science Center, Llc Electronic light emissive displays incorporating transparent and conductive zinc oxide thin film
US6828045B1 (en) 2003-06-13 2004-12-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and production method thereof
SG111968A1 (en) * 2001-09-28 2005-06-29 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
US7579771B2 (en) 2002-04-23 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
JP2003317971A (en) 2002-04-26 2003-11-07 Semiconductor Energy Lab Co Ltd Light emitting device and its producing method
US7897979B2 (en) 2002-06-07 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
FR2844136B1 (en) * 2002-09-03 2006-07-28 Corning Inc MATERIAL USEFUL IN THE MANUFACTURE OF LUMINOUS DISPLAY DEVICES, PARTICULARLY ORGANIC ELECTROLUMINESCENT DIODES
JP4396163B2 (en) * 2003-07-08 2010-01-13 株式会社デンソー Organic EL device
JP4731865B2 (en) * 2003-10-03 2011-07-27 株式会社半導体エネルギー研究所 Light emitting device
US7541734B2 (en) 2003-10-03 2009-06-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having a layer with a metal oxide and a benzoxazole derivative
US7605534B2 (en) 2003-12-02 2009-10-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element having metal oxide and light-emitting device using the same
ATE433200T1 (en) 2003-12-16 2009-06-15 Panasonic Corp ORGANIC ELECTROLUMINENCE COMPONENT AND PRODUCTION METHOD THEREOF
JP4742584B2 (en) * 2004-03-23 2011-08-10 株式会社豊田中央研究所 electrode
JP4628690B2 (en) * 2004-03-24 2011-02-09 株式会社 日立ディスプレイズ Organic light emitting display
US7183707B2 (en) 2004-04-12 2007-02-27 Eastman Kodak Company OLED device with short reduction
WO2005115060A1 (en) 2004-05-21 2005-12-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP4925569B2 (en) 2004-07-08 2012-04-25 ローム株式会社 Organic electroluminescent device
EP1624502B1 (en) 2004-08-04 2015-11-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, and electronic appliance
WO2006035958A1 (en) 2004-09-30 2006-04-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting element
KR101197690B1 (en) 2004-09-30 2012-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting element and display device using the same
WO2006057420A1 (en) * 2004-11-26 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP4809666B2 (en) * 2004-11-26 2011-11-09 株式会社半導体エネルギー研究所 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE
KR101326286B1 (en) 2004-11-30 2013-11-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting element and light emitting device
CN100592548C (en) 2004-11-30 2010-02-24 株式会社半导体能源研究所 Light emitting element, light emitting device, and electronic appliance
US7714501B2 (en) 2004-12-01 2010-05-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electronic equipment
US7989694B2 (en) 2004-12-06 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element, solar battery, and photo sensor
EP1820218A4 (en) 2004-12-06 2010-03-24 Semiconductor Energy Lab Organic field-effect transistor and semiconductor device including the same
WO2006062218A1 (en) 2004-12-06 2006-06-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device using the same
JP2006164808A (en) * 2004-12-09 2006-06-22 Hitachi Ltd Light emitting element, lighting system and display device having it
KR101169407B1 (en) 2004-12-14 2012-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP5072233B2 (en) * 2005-02-15 2012-11-14 株式会社半導体エネルギー研究所 LIGHT EMITTING ELEMENT, LIGHTING DEVICE, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE
US9530968B2 (en) * 2005-02-15 2016-12-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
EP2423994A1 (en) 2005-02-28 2012-02-29 Semiconductor Energy Laboratory Co, Ltd. Composite material, light emitting element, light emitting device and electronic appliance using the composite material
JP5201798B2 (en) * 2005-03-22 2013-06-05 株式会社半導体エネルギー研究所 Liquid crystal display
US7626198B2 (en) 2005-03-22 2009-12-01 Semiconductor Energy Laboratory Co., Ltd. Nonlinear element, element substrate including the nonlinear element, and display device
US7649197B2 (en) 2005-03-23 2010-01-19 Semiconductor Energy Laboratory Co., Ltd. Composite material, and light emitting element and light emitting device using the composite material
JP2006269351A (en) * 2005-03-25 2006-10-05 Aitesu:Kk Top emission multiphoton organic el display panel
US7777232B2 (en) 2005-04-11 2010-08-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device using the same
US8049208B2 (en) 2005-04-22 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor device having composite electrode
EP1724852A3 (en) 2005-05-20 2010-01-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US8269227B2 (en) 2005-06-09 2012-09-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US8017252B2 (en) 2005-06-22 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8729795B2 (en) 2005-06-30 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US7745989B2 (en) 2005-06-30 2010-06-29 Semiconductor Energy Laboratory Co., Ltd Light emitting element, light emitting device, and electronic apparatus
CN101263616B (en) 2005-07-25 2011-05-11 株式会社半导体能源研究所 Light emitting element, light emitting device, and electronic apparatus
JP2007035893A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Organic power generation element
JP2007242938A (en) * 2006-03-09 2007-09-20 Toppan Printing Co Ltd Organic el element
US9112170B2 (en) 2006-03-21 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US7851995B2 (en) 2006-05-05 2010-12-14 Global Oled Technology Llc Electroluminescent device having improved light output
US8974918B2 (en) 2006-07-04 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP2008108530A (en) * 2006-10-25 2008-05-08 Hitachi Displays Ltd Organic el display device
WO2008075615A1 (en) 2006-12-21 2008-06-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
US7875881B2 (en) 2007-04-03 2011-01-25 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
KR100813854B1 (en) * 2007-04-23 2008-03-17 삼성에스디아이 주식회사 Organic light emitting device and manufacturing method thereof
KR101482760B1 (en) 2007-06-14 2015-01-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device, electronic device, and manufacturing method of light-emitting device
US8093806B2 (en) 2007-06-20 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method for manufacturing the same, and electronic apparatus
JP5208591B2 (en) 2007-06-28 2013-06-12 株式会社半導体エネルギー研究所 Light emitting device and lighting device
JP2009060012A (en) 2007-09-03 2009-03-19 Canon Inc Organic field-effect element and manufacturing method therefor, and display device
JP2009123618A (en) 2007-11-16 2009-06-04 Toppan Printing Co Ltd Organic el display device and its manufacturing method
CN101940065A (en) * 2008-01-23 2011-01-05 Lg化学株式会社 Organic luminescent device and a production method for the same
JP5026533B2 (en) 2008-02-15 2012-09-12 昭和電工株式会社 ELECTRODE SURFACE TREATMENT METHOD AND ELECTRODE AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENCE ELEMENT
US8242487B2 (en) 2008-05-16 2012-08-14 E I Du Pont De Nemours And Company Anode for an organic electronic device
US8637854B2 (en) 2008-05-16 2014-01-28 Lg Chem, Ltd. Stacked organic light emitting diode
JP5138542B2 (en) 2008-10-24 2013-02-06 パナソニック株式会社 Organic electroluminescence device and method for manufacturing the same
WO2010065505A2 (en) * 2008-12-01 2010-06-10 E. I. Du Pont De Nemours And Company Anode for an organic electronic device
US8461758B2 (en) 2008-12-19 2013-06-11 E I Du Pont De Nemours And Company Buffer bilayers for electronic devices
TW201101478A (en) 2009-03-25 2011-01-01 Toppan Printing Co Ltd Organic electroluminescence device, method for manufacturing the same, image display device, and method for manufacturing the same
US20120068167A1 (en) 2009-05-19 2012-03-22 Showa Denko K.K. Surface treatment method for electrodes, electrode, and process for producing organic electroluminescent element
KR101707430B1 (en) 2009-05-29 2017-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device, lighting device, and electronic appliance
US9741955B2 (en) 2009-05-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and method for manufacturing the same
JP5526610B2 (en) 2009-06-09 2014-06-18 凸版印刷株式会社 Structure of organic EL display and manufacturing method thereof
KR20140054454A (en) 2009-10-27 2014-05-08 다이니폰 인사츠 가부시키가이샤 Nanoparticle containing transition metal compound, method for producing same, ink for hole injection/transport layer, device having hole injection/transport layer, and method for producing same
JP4798282B2 (en) 2009-10-27 2011-10-19 大日本印刷株式会社 Device having hole injection transport layer, method for producing the same, and ink for forming hole injection transport layer
JP4926229B2 (en) * 2009-11-11 2012-05-09 淳二 城戸 Organic electroluminescent device
JP2011139044A (en) 2009-12-01 2011-07-14 Semiconductor Energy Lab Co Ltd Luminous element, luminous device, electronic equipment, and lighting device
WO2011155635A1 (en) 2010-06-08 2011-12-15 住友金属鉱山株式会社 Method for producing metal oxide film, metal oxide film, element using the metal oxide film, substrate with metal oxide film, and device using the substrate with metal oxide film
WO2012046560A1 (en) 2010-10-04 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
JP2012182443A (en) 2011-02-11 2012-09-20 Semiconductor Energy Lab Co Ltd Light-emitting element and light-emitting device
EP2503618B1 (en) 2011-03-23 2014-01-01 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
JP6023461B2 (en) 2011-05-13 2016-11-09 株式会社半導体エネルギー研究所 Light emitting element, light emitting device
US9419239B2 (en) 2011-07-08 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
JP5796385B2 (en) * 2011-07-13 2015-10-21 大日本印刷株式会社 Organic device
US9159939B2 (en) 2011-07-21 2015-10-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
JP2013058562A (en) 2011-09-07 2013-03-28 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
KR101301730B1 (en) * 2011-09-28 2013-08-30 율촌화학 주식회사 Blue phosphorescent organic light emitting device with minimum layer structure
JP6440169B2 (en) * 2013-03-28 2018-12-19 国立研究開発法人物質・材料研究機構 Organic EL device and manufacturing method thereof
CN104175642A (en) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 Electroconductive film and preparation method and application thereof
KR102244374B1 (en) 2013-08-09 2021-04-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
TWI790559B (en) 2013-08-09 2023-01-21 日商半導體能源研究所股份有限公司 Light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
US10153449B2 (en) 2014-10-16 2018-12-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693483A2 (en) 2002-08-02 2006-08-23 Idemitsu Kosan Co., Ltd. Sputtering target, sintered article, conductive film fabricated by utilizing the same, organic el device, and substrate for use therein
US7812520B2 (en) 2003-07-01 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Full color display based on organic light-emitting device
US8178869B2 (en) 2003-09-26 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
WO2005031798A3 (en) * 2003-09-26 2005-05-26 Semiconductor Energy Lab Light-emitting device and method for manufacturing the same
US8507903B2 (en) 2003-09-26 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US8216875B2 (en) 2003-09-26 2012-07-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US7732808B2 (en) 2003-09-26 2010-06-08 Semiconductor Energy Laboratory Co., Ltd Light-emitting device and method for manufacturing the same
US7387904B2 (en) 2003-10-03 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US7994496B2 (en) 2003-10-03 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US8994007B2 (en) 2003-10-03 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US9461271B2 (en) 2003-10-03 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
JP2005123095A (en) * 2003-10-17 2005-05-12 Junji Kido Organic electroluminescent element
US8558451B2 (en) 2003-10-17 2013-10-15 Junji Kido Organic electroluminescent device
US9570697B2 (en) 2003-12-26 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10886497B2 (en) 2003-12-26 2021-01-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US8796670B2 (en) 2003-12-26 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JP2005267926A (en) * 2004-03-17 2005-09-29 Japan Science & Technology Agency Double-faced light-emitting organic el panel
US8368059B2 (en) 2004-07-23 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US7893427B2 (en) 2004-07-23 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US8872169B2 (en) 2004-07-23 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US9520532B2 (en) 2004-07-23 2016-12-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US8368060B2 (en) 2004-07-23 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US7951470B2 (en) 2004-08-23 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and lighting system
US8008652B2 (en) 2004-09-24 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8643003B2 (en) 2004-09-24 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US10134996B2 (en) 2004-10-29 2018-11-20 Semicondcutor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, and manufacturing method thereof
US7521855B2 (en) 2004-12-06 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
US8692454B2 (en) 2004-12-06 2014-04-08 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
US9257489B2 (en) 2004-12-06 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
US8492971B2 (en) 2004-12-06 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
US7999460B2 (en) 2004-12-06 2011-08-16 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
US7667389B2 (en) 2004-12-06 2010-02-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US8426034B2 (en) 2005-02-08 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
US8420227B2 (en) 2005-03-23 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
US7977865B2 (en) 2005-03-23 2011-07-12 Semiconductor Energy Laboratory Co., Ltd. Composite material, material for light-emitting element, light-emitting element, light-emitting device and electronic device
US8986854B2 (en) 2005-03-23 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Composite material, material for light-emitting element, light-emitting element, light-emitting device and electronic device
US8916276B2 (en) 2005-03-23 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
US8362688B2 (en) 2005-03-25 2013-01-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US9246056B2 (en) 2005-03-25 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US9263645B2 (en) 2005-06-08 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8334057B2 (en) 2005-06-08 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP2006344774A (en) * 2005-06-09 2006-12-21 Rohm Co Ltd Organic el device, organic el display using the same, and method of manufacturing organic el device
US8415878B2 (en) 2005-07-06 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8901814B2 (en) 2005-07-06 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8659008B2 (en) 2005-07-08 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Composite material and light emitting element, light emitting device, and electronic device using the composite material
US7994711B2 (en) 2005-08-08 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US8173277B2 (en) 2005-09-12 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic appliance using the same
US8623523B2 (en) 2005-09-12 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic appliance using the same
JP2007201327A (en) * 2006-01-30 2007-08-09 Denso Corp Organic el panel, and manufacturing method thereof
JP4626526B2 (en) * 2006-01-30 2011-02-09 株式会社デンソー Organic EL panel and manufacturing method thereof
WO2009133903A1 (en) 2008-04-28 2009-11-05 大日本印刷株式会社 Device having hole injection/transport layer, method for manufacturing the same, and ink for forming hole injection/transport layer
WO2009133907A1 (en) 2008-04-28 2009-11-05 大日本印刷株式会社 Device having hole injection transport layer, method for production thereof, and ink for formation of hole injection transport layer
US9224976B2 (en) 2008-11-19 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9252381B2 (en) 2009-06-19 2016-02-02 Dai Nippon Printing Co., Ltd. Organic electronic device and method for producing the same
WO2011013761A1 (en) 2009-07-31 2011-02-03 大日本印刷株式会社 Device material for hole injection/transport layer, ink for forming hole injection/transport layer, device having hole injection/transport layer, and method for manufacturing same
WO2011013759A1 (en) 2009-07-31 2011-02-03 大日本印刷株式会社 Device material for hole injection/transport layer, ink for forming hole injection/transport layer, device having hole injection/transport layer, and method for manufacturing same
US8803188B2 (en) 2009-11-02 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element, light-emitting element, Light-emitting device, lighting device, and electronic appliance
US8404500B2 (en) 2009-11-02 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element, light-emitting element, light-emitting device, lighting device, and electronic appliance
US8896014B2 (en) 2010-11-24 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, manufacturing method thereof, and lighting device
US9564609B2 (en) 2011-02-11 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including electrode of three layers
JP2012209400A (en) * 2011-03-29 2012-10-25 Dainippon Printing Co Ltd Organic thin-film solar cell and organic thin-film solar cell module
CN102842685A (en) * 2011-06-23 2012-12-26 三星显示有限公司 Anode containing metal oxide and organic light emitting device having the same
CN102842685B (en) * 2011-06-23 2018-01-02 三星显示有限公司 Anode including metal oxide and the organic luminescent device with this anode
US9130176B2 (en) 2011-10-25 2015-09-08 Dai Nippon Printing Co., Ltd. Material for hole injection transport layers, ink for forming hole injection transport layers, device, and production methods thereof
WO2013061720A1 (en) 2011-10-25 2013-05-02 大日本印刷株式会社 Material for positive hole injection transport layer, ink for positive hole injection transport layer, device, and production methods for same
US11527558B2 (en) 2017-09-30 2022-12-13 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Display device
WO2019165716A1 (en) * 2018-03-02 2019-09-06 昆山工研院新型平板显示技术中心有限公司 Light-emitting device and manufacturing method therefor, and display device
US10971693B2 (en) 2018-03-02 2021-04-06 Kunshan New Flat Panel Display Technology Center Co., Ltd. Light emitting devices, methods for preparing the same, and display devices

Also Published As

Publication number Publication date
JPH0963771A (en) 1997-03-07

Similar Documents

Publication Publication Date Title
JP2824411B2 (en) Organic thin-film light emitting device
US6469437B1 (en) Highly transparent organic light emitting device employing a non-metallic cathode
US6320311B2 (en) Organic EL device having a hole injecting electrode including a transparent electrode and a metal electrode
US5969474A (en) Organic light-emitting device with light transmissive anode and light transmissive cathode including zinc-doped indium oxide
US7309956B2 (en) Top-emitting OLED device with improved-off axis viewing performance
US7619244B2 (en) Organic light emitting display apparatus
JPH1187068A (en) Organic el element and manufacture thereof
JP2000082586A (en) Organic el element
JPH11339970A (en) Organic electroluminescent display device
JPH1126169A (en) Organic el element and its manufacture
US7061175B2 (en) Efficiency transparent cathode
KR100844788B1 (en) Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method
JPH04137485A (en) Electroluminesence element
JP2001237080A (en) Organic electroluminescence element
JPH1140365A (en) Organic el element and its manufacture
JP2000100575A (en) Organic el element
JP2881212B2 (en) EL device
JP2002260858A (en) Light-emitting element and its manufacturing method
JP3555736B2 (en) Organic electroluminescent device
JPH1140352A (en) Organic el element and manufacture thereof
JP2001230071A (en) Organic electroluminescence display element and its manufacturing method
JP4026343B2 (en) Method for manufacturing organic electroluminescence element
JPH0693256A (en) Organic thin-film luminescent element
JP3253368B2 (en) EL device
JP2000091079A (en) Organic el element