JPH05340634A - Heat storage type air conditioner - Google Patents

Heat storage type air conditioner

Info

Publication number
JPH05340634A
JPH05340634A JP14534892A JP14534892A JPH05340634A JP H05340634 A JPH05340634 A JP H05340634A JP 14534892 A JP14534892 A JP 14534892A JP 14534892 A JP14534892 A JP 14534892A JP H05340634 A JPH05340634 A JP H05340634A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
heat exchange
storage tank
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14534892A
Other languages
Japanese (ja)
Inventor
Tetsuei Kuramoto
哲英 倉本
Shigeo Aoyama
繁男 青山
Kozo Suzuki
皓三 鈴木
Yoshihide Sugita
吉秀 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Matsushita Refrigeration Co
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Tokyo Electric Power Co Inc filed Critical Matsushita Refrigeration Co
Priority to JP14534892A priority Critical patent/JPH05340634A/en
Publication of JPH05340634A publication Critical patent/JPH05340634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To obtain a compact heat reservoir having a high efficiency particularly in a cycle having an ice storage tank of a heat storage type air conditioner. CONSTITUTION:A heat storage type air conditioner has a primary side cycle communicating with a heat source side and a secondary side cycle communicating with a load side. A primary side heat exchanger 13a in a heat reservoir STR is formed of heat transfer tubes P1 and fins F1, F2 mounted perpendicularly to a longitudinal direction of the tubes P1. Heat insulators D1, D2 are mounted at free end sides of the fins F1, F2 thereby to conduct an operation in which a decrease in performance of the exchanger 13a due to icing progress at night, cold storage is suppressed to a minimum limit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を熱源とする空気
調和機において、夜間電力を利用するための蓄熱機能、
及びその制御機能を備えた蓄熱式空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using air as a heat source, and has a heat storage function for utilizing nighttime electric power.
And a heat storage type air conditioner having a control function thereof.

【0002】[0002]

【従来の技術】従来の蓄熱式空気調和機については、既
にさまざまな開発がなされており、例えば、冷凍・第6
2巻第714号(昭和62年4月号)P358に示され
ているような蓄熱式空気調和機がある。
2. Description of the Related Art Various conventional heat storage type air conditioners have already been developed, for example, refrigeration / sixth type.
There is a heat storage type air conditioner as shown in P358 of Volume 2, No. 714 (April, 1987).

【0003】その基本的な技術について述べると、図6
に示すように、空冷ヒ−トポンプ1は、圧縮機2,四方
弁3,室外側熱交換器4,室外側膨張弁5,フロン対ブ
ライン熱交換器6を環状に順次接続して冷凍サイクルA
を形成し、一方、フロン対ブライン熱交換器6,ブライ
ン対水熱交換器7,蓄熱槽8,ブラインポンプ9を環状
に順次接続してブライン循環サイクルBを形成してい
る。
The basic technique will be described with reference to FIG.
As shown in FIG. 1, the air-cooling heat pump 1 has a refrigeration cycle A in which a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an outdoor expansion valve 5, a Freon-to-brine heat exchanger 6 are sequentially connected in an annular shape.
On the other hand, a freon-to-brine heat exchanger 6, a brine-to-water heat exchanger 7, a heat storage tank 8, and a brine pump 9 are sequentially connected in an annular shape to form a brine circulation cycle B.

【0004】また、負荷側についてはブライン対水熱交
換器7,蓄熱槽8,冷温水ポンプ10,室内機12を環
状に順次接続して冷温水循環サイクルCを形成してい
る。
On the load side, the brine-to-water heat exchanger 7, the heat storage tank 8, the cold / hot water pump 10, and the indoor unit 12 are sequentially connected in an annular shape to form a cold / hot water circulation cycle C.

【0005】この蓄熱式空気調和機において夜間運転
は、冷凍サイクルAにおいて四方弁3によって製氷運
転,蓄熱運転が切り替えられ、製氷運転時は図中の実線
矢印の方向に冷媒が流れて冷房サイクルが形成され、フ
ロン対ブライン熱交換器6を介してブライン循環サイク
ルBにおける蓄熱槽8内の伝熱管の周囲に氷として蓄冷
される。
In this heat storage type air conditioner, during the nighttime operation, the four-way valve 3 switches the ice making operation and the heat storing operation in the refrigeration cycle A, and during the ice making operation, the refrigerant flows in the direction of the solid line arrow in the figure to perform the cooling cycle. It is formed and stored as ice around the heat transfer tube in the heat storage tank 8 in the brine circulation cycle B via the Freon-to-brine heat exchanger 6.

【0006】また、蓄熱運転時には図中の破線方向に冷
媒が流れて暖房サイクルが形成され、同じくフロン対ブ
ライン熱交換器6を介してブライン循環サイクルBにお
ける蓄熱槽8内に温水として蓄熱される。この場合、ブ
ライン対水熱交換器7は使用されない。
Further, during the heat storage operation, the refrigerant flows in the direction of the broken line in the drawing to form a heating cycle, and heat is stored as hot water in the heat storage tank 8 in the brine circulation cycle B through the CFC-to-brine heat exchanger 6 as well. .. In this case, the brine to water heat exchanger 7 is not used.

【0007】一方、昼間運転は、冷温水循環サイクルC
において蓄熱槽8内の冷温水を冷温水ポンプ10により
室内機12へ送り、冷暖房を行う。
On the other hand, during the daytime operation, the cold / hot water circulation cycle C is used.
In, the cold / hot water in the heat storage tank 8 is sent to the indoor unit 12 by the cold / hot water pump 10 to perform cooling / heating.

【0008】この際、冷温水循環サイクルCでの効率を
高めるべく、冷凍サイクルA、ブライン循環サイクルB
を冷房、あるいは暖房モ−ドで運転して、ブライン対水
熱交換器7を介して冷温水循環サイクルC内の冷温水の
予冷、あるいは予熱を行う。
At this time, in order to increase the efficiency of the cold / hot water circulation cycle C, a refrigeration cycle A and a brine circulation cycle B
Is operated in the cooling or heating mode to precool or preheat the cold / hot water in the cold / hot water circulation cycle C via the brine-to-water heat exchanger 7.

【0009】以上のように、夜間の余剰電力エネルギー
を熱に変換して蓄熱しておき、昼間にその電力を利用す
ることにより、昼間の高負荷時刻における電力ピークを
抑え、電力利用の平準化が可能である。
As described above, the surplus power energy at night is converted into heat to store the heat and the power is used in the daytime to suppress the power peak at the time of high load in the daytime and level the power usage. Is possible.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前述の
従来例では、熱源側と負荷側との間に熱交換器2台を介
しているため効率が悪く、また負荷側へは冷温水を直接
搬送するため、水漏れ事故が生じた場合、近年OA化が
進歩したオフィス内のOA機器への水損は避けられな
い。
However, in the above-mentioned conventional example, since the two heat exchangers are interposed between the heat source side and the load side, the efficiency is low, and cold / hot water is directly conveyed to the load side. Therefore, when a water leakage accident occurs, water loss to OA equipment in an office, which has been improved in OA in recent years, cannot be avoided.

【0011】更に、夜間の製氷運転時においては蓄熱槽
内伝熱管周囲の氷厚が増すと冷媒と水との間の熱通過率
が低下するため効率的な蓄冷が行えないという欠点を有
していた。
Further, in the ice making operation at night, if the thickness of the ice around the heat transfer tube in the heat storage tank increases, the heat transfer rate between the refrigerant and the water decreases, so that efficient cold storage cannot be performed. Was there.

【0012】そこで、本発明は、高効率で、かつ安全性
の高い蓄熱式空気調和機を提供することを目的とするも
のである。
Therefore, an object of the present invention is to provide a heat storage type air conditioner having high efficiency and high safety.

【0013】[0013]

【課題を解決するための手段】上記課題を解決する本発
明の技術的手段は、蓄熱槽を介して1次側冷凍サイクル
と2次側冷凍サイクルとからなる蓄熱式空気調和機にお
いて、蓄熱槽を、伝熱管とその長さ方向に直角に設置し
たフィンと、前記フィンの両自由端側に設置した断熱材
とから構成される1次側熱交換部、及び伝熱管とフィン
とから構成される2次側熱交換部とより構成したもので
ある。
Means for Solving the Problems The technical means of the present invention for solving the above problems is to provide a heat storage tank in a heat storage type air conditioner comprising a primary side refrigeration cycle and a secondary side refrigeration cycle via a heat storage tank. Is composed of a heat transfer tube and fins installed at right angles to its length, and a primary side heat exchange section composed of a heat insulating material installed on both free end sides of the fin, and a heat transfer tube and fins. And a secondary side heat exchange section.

【0014】[0014]

【作用】この技術的手段による作用は次のようになる。The function of this technical means is as follows.

【0015】圧縮機、四方弁、室外側熱交換器、膨張
弁、切替弁、冷媒対冷媒熱交換器の1次側熱交換部、蓄
熱槽内の1次側熱交換部とを連通した1次側冷凍サイク
ルにおいて、夜間電力を利用して冷媒対冷媒熱交換器を
使用しない状態で、切替弁、及び膨張弁の制御により、
蓄熱槽内の伝熱管を介して水に蓄冷、または蓄熱してお
く。
The compressor, the four-way valve, the outdoor heat exchanger, the expansion valve, the switching valve, the primary side heat exchange section of the refrigerant-refrigerant heat exchanger, and the primary side heat exchange section in the heat storage tank are connected to each other. In the secondary refrigeration cycle, by using the nighttime electric power and not using the refrigerant-refrigerant heat exchanger, by controlling the switching valve and the expansion valve,
Cool or store heat in water via a heat transfer tube in the heat storage tank.

【0016】ここで蓄冷運転時には、蓄熱槽内の1次側
熱交換部のフィンによる伝熱面積増加のため、伝熱管の
みの場合に比べて着氷量は多くなる。
During the cold storage operation, the amount of icing ice is larger than that of the heat transfer tube alone because the heat transfer area is increased by the fins of the primary side heat exchange section in the heat storage tank.

【0017】しかし、更に製氷運転を続けると、氷厚が
増し、伝熱管内の冷媒と伝熱管外の水との間の熱抵抗が
増加するため熱通過率が大幅に低下し、効率的な製氷が
行えなくなる。
However, when the ice making operation is further continued, the ice thickness increases, and the thermal resistance between the refrigerant inside the heat transfer tube and the water outside the heat transfer tube increases, so that the heat transmission rate decreases significantly, and the efficiency is improved. I can't make ice.

【0018】従って、蓄熱槽内の1次側熱交換部外表面
への着氷進行を製氷量センサーで氷厚を計測することに
より検知して、氷厚が所定値に達すると四方弁を切り替
えて一時的に蓄熱運転を行うことによりホットガスを蓄
熱槽に導いて1次側熱交換部外表面近傍の氷層を一部融
解する。
Therefore, the progress of ice accretion on the outer surface of the primary side heat exchange section in the heat storage tank is detected by measuring the ice thickness with the ice making amount sensor, and when the ice thickness reaches a predetermined value, the four-way valve is switched. By temporarily performing the heat storage operation, the hot gas is guided to the heat storage tank to partially melt the ice layer near the outer surface of the primary side heat exchange section.

【0019】この時フィンの自由端側に設置した断熱材
のため、氷が1次側熱交換部の全周をおおうことはな
く、氷は伝熱管の左右に分離した後、氷自身の浮力によ
り水面付近に浮上する。そして、再度四方弁を切り替え
て製氷運転を行う。
At this time, since the heat insulating material is installed on the free end side of the fins, the ice does not cover the entire circumference of the primary side heat exchange section, and after the ice is separated into the right and left sides of the heat transfer tube, the buoyancy of the ice itself. To float near the surface of the water. Then, the four-way valve is switched again to perform the ice making operation.

【0020】一方、昼間運転では1次側冷凍サイクルに
おいて切替弁の制御により蓄熱槽の1次側熱交換部を使
用しない状態で運転し、蓄熱槽内の蓄冷熱に加えて、冷
媒対冷媒熱交換器を介して1次側冷凍サイクルにおける
冷房・暖房能力を2次側冷凍サイクル内の冷媒へ熱交換
する2次側冷凍サイクルの運転を行う。
On the other hand, in the daytime operation, the primary side refrigeration cycle is operated in a state where the primary side heat exchange section of the heat storage tank is not used by the control of the switching valve, and the refrigerant-refrigerant heat is added in addition to the cold storage heat in the heat storage tank. The operation of the secondary side refrigeration cycle is performed in which the cooling / heating capacity in the primary side refrigeration cycle is exchanged with the refrigerant in the secondary side refrigeration cycle via the exchanger.

【0021】即ち、蓄熱槽内に蓄冷熱として蓄えられた
蓄熱材と冷媒が、蓄熱槽内のフィン付き2次側熱交換部
を介して高速に熱交換して、その冷媒を冷媒搬送ポンプ
にて室内側熱交換器へ搬送して室内空気と熱交換(冷
房、または暖房)する。
That is, the heat storage material and the refrigerant stored as the cold storage heat in the heat storage tank exchange heat at high speed through the finned secondary side heat exchange section in the heat storage tank, and the refrigerant is transferred to the refrigerant transfer pump. And transfers it to the indoor heat exchanger to exchange heat with the indoor air (cooling or heating).

【0022】これにより、夜間電力を利用した蓄冷熱に
より昼間に暖房、または冷房運転が行えるだけでなく、
夜間蓄冷運転時伝熱管外表面への着氷進行による熱通過
率の低下を最小限に抑えた効率の良い運転ができるとと
もに、昼間運転時の負荷応答性が高まる。
As a result, not only heating or cooling operation can be performed in the daytime by the stored cold heat using nighttime electric power,
During night-time cold storage operation, efficient operation can be achieved with a minimum decrease in heat transfer rate due to ice accretion on the outer surface of the heat transfer tube, and load response during daytime operation is improved.

【0023】[0023]

【実施例】以下、本発明の一実施例を添付図面に基づい
て説明を行うが、従来と同一構成については同一符号を
付し、その詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. The same components as those of the prior art will be designated by the same reference numerals and detailed description thereof will be omitted.

【0024】図1は本発明の一実施例の蓄熱式空気調和
機の冷凍サイクル図である。この実施例の蓄熱式空気調
和機は、室外ユニット11と室内ユニット12とからな
る。
FIG. 1 is a refrigeration cycle diagram of a heat storage type air conditioner according to an embodiment of the present invention. The heat storage type air conditioner of this embodiment includes an outdoor unit 11 and an indoor unit 12.

【0025】室外ユニット11は、圧縮機2、四方弁
3、室外側熱交換器4、膨張弁5、三方弁KV1、1次
側熱交換部14aと2次側熱交換部14bとからなる冷
媒対冷媒熱交換器HEX、水16を充填した、1次側熱
交換部13aと2次側熱交換部13bとからなる蓄熱槽
STR、及び冷媒搬送ポンプPMとから構成されてい
る。
The outdoor unit 11 is a refrigerant comprising a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an expansion valve 5, a three-way valve KV1, a primary side heat exchange section 14a and a secondary side heat exchange section 14b. It is composed of a heat exchanger for refrigerant HEX, a heat storage tank STR that is filled with water 16 and includes a primary side heat exchange section 13a and a secondary side heat exchange section 13b, and a refrigerant transfer pump PM.

【0026】一方、室内ユニット12は、室内側熱交換
器17から構成されている。また、図2は図1中の蓄熱
槽STRの縦方向の断面図、図3は同1次側熱交換部1
3aの側面図、図4は図3のA−A断面図である。
On the other hand, the indoor unit 12 comprises an indoor heat exchanger 17. 2 is a vertical cross-sectional view of the heat storage tank STR in FIG. 1, and FIG. 3 is the primary side heat exchange section 1 of the same.
3a is a side view, and FIG. 4 is a sectional view taken along line AA of FIG.

【0027】蓄熱槽STRの1次側熱交換部13aと2
次側熱交換部13bは図2、図3、及び図4に示すよう
に、1次側熱交換部13aは伝熱管P1とその長さ方向
に直角に設置した2枚のフィンF1,フィンF2と前記
フィンF1及びF2の両自由端側に設置した断熱材D
1,断熱材D2より構成され、2次側熱交換部13bは
フィンF3、及び伝熱管P2より構成されている。
Primary side heat exchange parts 13a and 2 of the heat storage tank STR
As shown in FIG. 2, FIG. 3, and FIG. 4, the primary heat exchange part 13a includes a heat transfer tube P1 and two fins F1 and F2 installed at right angles to the heat transfer tube P1. And the heat insulating material D installed on both free end sides of the fins F1 and F2
1, the heat insulating material D2, and the secondary heat exchange part 13b is composed of the fin F3 and the heat transfer tube P2.

【0028】室外ユニット11において、圧縮機2と、
四方弁3と、室外側熱交換器4と、膨張弁5とを順次連
通し、さらに三方弁KV1を介して冷媒対冷媒熱交換器
HEXの1次側熱交換部14aと、蓄熱槽STR内の1
次側熱交換部13aとを並列に連通して1次側冷凍サイ
クルを形成している。
In the outdoor unit 11, the compressor 2 and
The four-way valve 3, the outdoor heat exchanger 4, and the expansion valve 5 are sequentially communicated with each other, and the three-way valve KV1 is further used to connect the primary side heat exchange section 14a of the refrigerant-refrigerant heat exchanger HEX and the heat storage tank STR. Of 1
The primary side refrigeration cycle is formed by communicating with the secondary side heat exchange section 13a in parallel.

【0029】一方、蓄熱槽内STRの2次側熱交換部1
3bと、冷媒対冷媒熱交換器HEXの2次側熱交換部1
4bと、可逆式冷媒搬送ポンプPMと、室内側熱交換器
17とを順次連通してなる2次側冷凍サイクルを形成し
ている。
On the other hand, the secondary side heat exchange section 1 of the STR in the heat storage tank
3b and the secondary heat exchanger 1 of the refrigerant-to-refrigerant heat exchanger HEX
4b, the reversible refrigerant transport pump PM, and the indoor heat exchanger 17 are sequentially connected to each other to form a secondary refrigeration cycle.

【0030】次に、この−実施例の構成における作用を
説明する。(表1)は本実施例における各場合の四方弁
3、膨張弁5、三方弁KV1の開閉状態、及び各熱交換
器の作用状態(蒸発器、あるいは凝縮器)を示す。以
下、(表1)を参照して説明する。
Next, the operation of the structure of this embodiment will be described. Table 1 shows the open / closed states of the four-way valve 3, the expansion valve 5, and the three-way valve KV1 and the working state (evaporator or condenser) of each heat exchanger in each case in this embodiment. Hereinafter, description will be made with reference to (Table 1).

【0031】[0031]

【表1】 [Table 1]

【0032】まず、夜間の製氷・蓄熱運転(1次側冷凍
サイクル)について説明する。1次側冷凍サイクルにお
いて、蓄熱槽STRが作用し、冷媒対冷媒熱交換器HE
Xは作用しないように三方弁KV1を切替え、2次側冷
凍サイクル内の冷媒搬送ポンプPMは停止している。こ
の場合の1次側冷凍サイクルの作用を以下説明してい
く。
First, the nighttime ice making / heat storage operation (primary refrigeration cycle) will be described. In the primary side refrigeration cycle, the heat storage tank STR operates to operate the refrigerant-refrigerant heat exchanger HE.
The three-way valve KV1 is switched so that X does not act, and the refrigerant transfer pump PM in the secondary side refrigeration cycle is stopped. The operation of the primary side refrigeration cycle in this case will be described below.

【0033】尚、四方弁3のモ−ドについては、圧縮機
2吐出側と室外側熱交換器4とを、かつ、圧縮機2吸入
側と蓄熱槽STRとを連通する場合を冷房モ−ド、圧縮
機2吐出側と蓄熱槽STRとを、かつ、圧縮機2吸入側
と室外側熱交換器4とを連通する場合を暖房モ−ドと定
義する。
Regarding the mode of the four-way valve 3, a cooling mode is used when the discharge side of the compressor 2 and the outdoor heat exchanger 4 and the suction side of the compressor 2 and the heat storage tank STR are connected to each other. A mode in which the discharge side of the compressor 2 communicates with the heat storage tank STR and the suction side of the compressor 2 communicates with the outdoor heat exchanger 4 is defined as a heating mode.

【0034】また、三方弁KV1については1次側冷凍
サイクル内にて蓄熱槽STRと膨張弁5とを連通する設
定を第1モ−ド,冷媒対冷媒熱交換器HEXと膨張弁5
とを連通する設定を第2モ−ドと定義する。
As for the three-way valve KV1, the first mode is set so that the heat storage tank STR and the expansion valve 5 communicate with each other in the primary side refrigeration cycle, and the refrigerant-refrigerant heat exchanger HEX and the expansion valve 5 are connected.
The setting communicating with and is defined as the second mode.

【0035】夜間製氷運転;四方弁3を冷房モ−ド,膨
張弁5を所定の開度,三方弁KV1を第1モ−ドとす
る。この時、圧縮機2から送られる高温高圧の冷媒は、
室外側熱交換器4にて凝縮し、膨張弁5で減圧されて液
あるいは二相状態となり、蓄熱槽STR内の1次側熱交
換部13aの管内にて蒸発して水16から吸熱した後、
圧縮機2へ戻る。
Night-time ice making operation: The four-way valve 3 is set to the cooling mode, the expansion valve 5 is set to a predetermined opening, and the three-way valve KV1 is set to the first mode. At this time, the high temperature and high pressure refrigerant sent from the compressor 2 is
After being condensed in the outdoor heat exchanger 4, decompressed by the expansion valve 5 to be in a liquid or two-phase state, evaporated in the pipe of the primary side heat exchange section 13a in the heat storage tank STR, and absorbed from the water 16 ,
Return to compressor 2.

【0036】このとき、1次側熱交換部13aはフィン
F1及びフィンF2による伝熱面積増加のため、伝熱管
のみの場合に比べて着氷量は多くなる。図5(a)に1
次側熱交換部13aにおける着氷状態を示す。
At this time, since the heat transfer area of the primary side heat exchange section 13a is increased by the fins F1 and F2, the amount of icing ice is larger than that when only the heat transfer tube is used. 1 in FIG.
The ice accretion state in the secondary side heat exchange part 13a is shown.

【0037】しかし、更に製氷運転を続けると、氷厚が
増し、伝熱管内の冷媒と伝熱管外の水との間の熱抵抗が
増加するため熱通過率が大幅に低下し、効率的な製氷が
行えなくなるため、蓄熱槽内の1次側熱交換部13a外
表面への着氷進行を製氷量センサーで氷厚を計測するこ
とにより検知して、氷厚が所定値に達すると四方弁3を
切り替えて一時的に蓄熱運転を行うことによりホットガ
スを蓄熱槽STRに導いて1次側熱交換部13a外表面
近傍の氷層を一部融解する。
However, if the ice making operation is further continued, the ice thickness increases, and the thermal resistance between the refrigerant inside the heat transfer tube and the water outside the heat transfer tube increases, so the heat transfer rate drops significantly and the efficiency is improved. Since ice making cannot be performed, the progress of ice accretion on the outer surface of the primary side heat exchange section 13a in the heat storage tank is detected by measuring the ice thickness with the ice making amount sensor, and when the ice thickness reaches a predetermined value, the four-way valve By switching 3 to temporarily perform the heat storage operation, the hot gas is guided to the heat storage tank STR to partially melt the ice layer near the outer surface of the primary side heat exchange section 13a.

【0038】図5(b)に1次側熱交換部13aにおけ
る氷の分離状態を示す。図5(b)に示すように、フィ
ンの自由端側に設置した断熱材D1及び断熱材D2のた
め氷が1次側熱交換部13aの全周をおおうことはな
く、氷は伝熱管P1の左右に分離した後氷自身の浮力に
より水面付近に浮上する。
FIG. 5 (b) shows an ice separation state in the primary side heat exchange section 13a. As shown in FIG. 5 (b), the ice does not cover the entire circumference of the primary side heat exchange section 13 a due to the heat insulating material D 1 and the heat insulating material D 2 installed on the free end side of the fin, and the ice does not cover the heat transfer tube P 1 After separating to the left and right, it floats near the water surface by the buoyancy of the ice itself.

【0039】そして、再度四方弁3を切り替えて製氷運
転を行う。 夜間蓄熱運転;四方弁3を暖房モ−ド,膨張弁5を所定
の開度,三方弁KV1を第1モ−ドとする。この時、圧
縮機2から送られる高温高圧の冷媒は、蓄熱槽STR内
の1次側熱交換部13aの管内にて凝縮して水16へ放
熱した後、膨張弁5で減圧されて液あるいは二相状態と
なり、室外側熱交換器4の管内にて蒸発して室外から吸
熱した後、圧縮機2へ戻る。
Then, the four-way valve 3 is switched again to perform the ice making operation. Nighttime heat storage operation: The four-way valve 3 is in the heating mode, the expansion valve 5 is in a predetermined opening degree, and the three-way valve KV1 is in the first mode. At this time, the high-temperature and high-pressure refrigerant sent from the compressor 2 is condensed in the pipe of the primary side heat exchange section 13a in the heat storage tank STR and radiates heat to the water 16, and is then decompressed by the expansion valve 5 to form liquid or liquid. It becomes a two-phase state, evaporates in the pipe of the outdoor heat exchanger 4, absorbs heat from the outside, and then returns to the compressor 2.

【0040】これにより、蓄熱槽STR内夜間製氷運転
の場合と同様に、フィンF1及びフィンF2による伝熱
面積増加のため、効率の良い蓄熱が行える。
As a result, as in the nighttime ice making operation in the heat storage tank STR, the heat transfer area is increased by the fins F1 and F2, so that efficient heat storage can be performed.

【0041】次に、昼間運転について説明する。この場
合、蓄熱槽STRには蓄冷(蓄熱)されているが、1次
側冷凍サイクルにおいて三方弁KV1を第1モ−ドとし
て冷媒対冷媒熱交換器HEXの2次側熱交換部14aを
蒸発器(凝縮器)として作用させて運転を行う。
Next, the daytime operation will be described. In this case, the heat is stored in the heat storage tank STR (heat storage), but in the primary side refrigeration cycle, the three-way valve KV1 is used as the first mode to evaporate the secondary side heat exchange section 14a of the refrigerant-refrigerant heat exchanger HEX. It operates as a condenser (condenser).

【0042】同時に、2次側冷凍サイクルにおいて、冷
媒対冷媒熱交換器HEXの2次側熱交換部14bを作用
させて運転を行う。
At the same time, in the secondary side refrigeration cycle, the secondary side heat exchange section 14b of the refrigerant-to-refrigerant heat exchanger HEX is operated to operate.

【0043】この状態で、2次側冷凍サイクル内の冷媒
は、冷媒搬送ポンプPMにて、蓄熱槽STR内の2次側
熱交換部13bに送られ、2次側熱交換部13bはフィ
ンF3、及び伝熱管P2より構成されているため、伝熱
面積が大きくとれ、かつ高効率で蓄熱槽STR内の水1
6と高速で熱交換される。
In this state, the refrigerant in the secondary side refrigeration cycle is sent to the secondary side heat exchange section 13b in the heat storage tank STR by the refrigerant transfer pump PM, and the secondary side heat exchange section 13b is connected to the fin F3. , And the heat transfer pipe P2, a large heat transfer area can be obtained, and the water in the heat storage tank STR can be efficiently used.
Heat exchange with 6 at high speed.

【0044】冷房時は図1中の矢印aのように冷媒は流
れ、蓄熱槽STR内の2次側熱交換部13bにおいて冷
却された冷媒は、更に、冷媒対冷媒熱交換器HEXの2
次側熱交換部14bへ送られ、1次側冷凍サイクル内の
冷媒対冷媒熱交換器HEXの2次側熱交換部14aとの
熱交換により冷却され液冷媒となり、その後、室内側熱
交換器17に送られ、そこで室内空気と熱交換して室内
空気を冷却すると共に、冷媒自身は高温のガス冷媒とな
って蓄熱槽STR内の2次側熱交換部13bに戻るとい
う作用を繰り返す。
During cooling, the refrigerant flows as shown by the arrow a in FIG. 1, and the refrigerant cooled in the secondary side heat exchange section 13b in the heat storage tank STR is further cooled by the refrigerant-refrigerant heat exchanger HEX 2.
It is sent to the secondary side heat exchange section 14b and cooled by heat exchange with the secondary side heat exchange section 14a of the refrigerant-refrigerant heat exchanger HEX in the primary side refrigeration cycle to become a liquid refrigerant, and then the indoor side heat exchanger. The refrigerant is sent to 17, where it exchanges heat with the indoor air to cool the indoor air, and the refrigerant itself becomes a high-temperature gas refrigerant and returns to the secondary side heat exchange section 13b in the heat storage tank STR.

【0045】また、暖房時は図1中の矢印bのように冷
媒は流れ、蓄熱槽STR内の2次側熱交換部13bにお
いて加熱された冷媒は、更に、冷媒対冷媒熱交換器HE
Xの2次側熱交換部14bへ送られ、1次側冷凍サイク
ル内の冷媒対冷媒熱交換器HEXの2次側熱交換部14
aとの熱交換により加熱されガス冷媒となる。
Further, during heating, the refrigerant flows as shown by the arrow b in FIG. 1, and the refrigerant heated in the secondary heat exchange section 13b in the heat storage tank STR is further cooled by the refrigerant-refrigerant heat exchanger HE.
It is sent to the secondary side heat exchange section 14b of X and is sent to the secondary side heat exchange section 14 of the refrigerant-refrigerant heat exchanger HEX in the primary side refrigeration cycle.
It is heated by heat exchange with a to become a gas refrigerant.

【0046】その後、可逆式冷媒搬送ポンプPMによ
り、室内側熱交換器17に送られ、そこで室内空気と熱
交換して室内空気を加熱すると共に、冷媒自身は低温の
液冷媒となって可逆式冷媒搬送ポンプPMに戻るという
作用を繰り返す。
Thereafter, the reversible refrigerant transfer pump PM is sent to the indoor heat exchanger 17, where it exchanges heat with the indoor air to heat the indoor air, and the refrigerant itself becomes a low-temperature liquid refrigerant and is reversible. The action of returning to the refrigerant transport pump PM is repeated.

【0047】このようにして、昼間の室内負荷が大きい
場合も対応ができ、室内機での冷房・暖房運転が行われ
る。
In this way, even when the indoor load during the daytime is large, it is possible to cope with it, and the cooling / heating operation in the indoor unit is performed.

【0048】以上のように、上記実施例では蓄熱槽を介
して1次側冷凍サイクルと2次側冷凍サイクルとからな
る蓄熱式空気調和機において、蓄熱槽STRを、伝熱管
P1とその長さ方向に直角に設置したフィンF1,F2
と前記フィンF1,F2の両自由端側に設置した断熱材
D1,D2とから構成される1次側熱交換部13a、及
び伝熱管P2とフィンF3とから構成される2次側熱交
換部13bとより構成している。
As described above, in the above embodiment, in the heat storage type air conditioner consisting of the primary side refrigeration cycle and the secondary side refrigeration cycle via the heat storage tank, the heat storage tank STR is composed of the heat transfer pipe P1 and its length. Fins F1 and F2 installed at right angles to the direction
And a heat exchanger D1 and D2 installed on both free end sides of the fins F1 and F2, and a heat exchanger 13a including a heat transfer tube P2 and a fin F3. It is composed of 13b.

【0049】これにより、夜間電力を利用した蓄冷(蓄
熱)により冷房(暖房)運転が行えるだけでなく、蓄熱
槽STR内のフィンF1,F2,F3、及び断熱材D
1,D2付き1次側熱交換部13aにより夜間蓄冷運転
時、伝熱管外表面への着氷進行による熱通過率の低下を
最小限に抑えた効率の良い蓄冷ができる。
As a result, not only the cooling (heating) operation can be performed by the cold storage (heat storage) using the night power, but also the fins F1, F2, F3 in the heat storage tank STR, and the heat insulating material D.
By the primary side heat exchange unit 13a with D1 and D2, during the nighttime cold storage operation, efficient cold storage can be performed while minimizing the decrease in the heat transfer rate due to the progress of icing on the outer surface of the heat transfer tube.

【0050】更に、蓄熱槽STR内のフィン付き2次側
熱交換部13bにより高速で蓄冷(蓄熱)を取出すこと
が可能になり、負荷応答性が向上する。
Further, the secondary heat exchange section 13b with fins in the heat storage tank STR makes it possible to take out cold (heat storage) at a high speed, and the load response is improved.

【0051】[0051]

【発明の効果】以上のように本発明は、蓄熱槽を介して
1次側冷凍サイクルと2次側冷凍サイクルとからなる蓄
熱式空気調和機において、前記蓄熱槽を伝熱管とその長
さ方向に直角に設置したフィンと前記フィンの両自由端
側に設置した断熱材とから構成される1次側熱交換部、
及び伝熱管とフィンとから構成される2次側熱交換部と
より構成している。
As described above, according to the present invention, in the heat storage type air conditioner comprising the primary side refrigeration cycle and the secondary side refrigeration cycle with the heat storage tank, the heat storage tank is connected to the heat transfer tube and its longitudinal direction. A primary side heat exchange section composed of fins installed at right angles to and heat insulating materials installed on both free end sides of the fins,
And a secondary-side heat exchange section including heat transfer tubes and fins.

【0052】これにより、夜間電力を利用した蓄冷熱に
より低運転費にて冷房・暖房運転が行えるだけでなく、
蓄熱槽内のフィン、及び断熱材付き1次側熱交換部によ
り夜間蓄冷運転時伝熱管外表面への着氷進行による熱通
過率の低下を最小限に抑えた効率の良い蓄冷ができる。
As a result, not only the cooling / heating operation can be performed at a low operating cost by the cold storage heat using night power,
The fins in the heat storage tank and the primary-side heat exchange section with a heat insulating material enable efficient cold storage with a minimum reduction in the heat transfer rate due to the progress of icing on the outer surface of the heat transfer tubes during nighttime cold storage operation.

【0053】更に、蓄熱槽内のフィン付き2次側熱交換
部により高速で蓄冷熱を取出すことが可能になり、負荷
応答性が向上する。
Further, the secondary side heat exchanging portion with fins in the heat storage tank can take out the cold stored heat at a high speed, and the load responsiveness is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における蓄熱式空気調和機の
冷凍システム図
FIG. 1 is a refrigeration system diagram of a heat storage type air conditioner according to an embodiment of the present invention.

【図2】本発明の一実施例における蓄熱槽内の熱交換器
の断面図
FIG. 2 is a sectional view of a heat exchanger in a heat storage tank according to an embodiment of the present invention.

【図3】本発明の一実施例における蓄熱槽内1次側熱交
換部の側面図
FIG. 3 is a side view of the primary side heat exchange section in the heat storage tank according to the embodiment of the present invention.

【図4】図3におけるA−A断面図4 is a sectional view taken along line AA in FIG.

【図5】(a)夜間蓄冷運転時の蓄熱槽内1次側熱交換
部における着氷状態を示す図 (b)夜間蓄冷運転時の蓄熱槽内1次側熱交換部におけ
る氷の分離状態を示す断面図
FIG. 5 (a) is a diagram showing an ice accretion state in the primary side heat exchange section in the heat storage tank during the nighttime cold storage operation (b) Ice separation state in the primary side heat exchange section in the heat storage tank during the nighttime cold storage operation Cross section showing

【図6】従来例を示すヒ−トポンプ式空気調和機の冷凍
システム図
FIG. 6 is a refrigeration system diagram of a heat pump type air conditioner showing a conventional example.

【符号の説明】[Explanation of symbols]

2 圧縮機 3 四方弁 4 室外側熱交換器 5 膨張弁 13a 蓄熱槽の1次側熱交換部 13b 蓄熱槽の2次側熱交換部 14a 冷媒対冷媒熱交換器の1次側熱交換部 14b 冷媒対冷媒熱交換器の2次側熱交換部 17 室内側熱交換器 STR 蓄熱槽 P1,P2 伝熱管 F1,F2,F3 フィン D1,D2 断熱材 HEX 冷媒対冷媒熱交換器 PM 冷媒搬送ポンプ KV1 三方弁 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Expansion valve 13a Primary heat exchange part of heat storage tank 13b Secondary heat exchange part of heat storage tank 14a Primary heat exchange part of refrigerant-refrigerant heat exchanger 14b Secondary side heat exchange part of refrigerant-to-refrigerant heat exchanger 17 Indoor side heat exchanger STR Heat storage tank P1, P2 Heat transfer pipes F1, F2, F3 Fins D1, D2 Insulation material HEX Refrigerant-to-refrigerant heat exchanger PM Refrigerant transfer pump KV1 Three-way valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 皓三 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 杉田 吉秀 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kozo Suzuki 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Co., Inc. (72) Yoshihide Sugita 1-3-1, Uchisaiwai-cho, Chiyoda-ku, Tokyo Kyoden Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、四方弁と、室外側熱交換器
と、膨張弁と、切替弁とを直列に接続し、1次側熱交換
部と2次側熱交換部とを有した冷媒対冷媒熱交換器及び
1次側熱交換部と2次側熱交換部とを有した蓄熱槽の各
1次側熱交換部を並列に配置して前記切替弁により冷媒
の流路を切替え可能にした1次側冷凍サイクルと、前記
蓄熱槽内の2次側熱交換部と、冷媒対冷媒熱交換器の2
次側熱交換部と、冷媒搬送ポンプと、室内側熱交換器と
を環状に接続した2次側冷凍サイクルとからなり、前記
蓄熱槽を、伝熱管とその長さ方向に直角に設置したフィ
ンと前記フィンの両自由端側に設置した断熱材とから構
成される1次側熱交換部、及び伝熱管とフィンとから構
成される2次側熱交換部とより構成した蓄熱式空気調和
機。
1. A compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and a switching valve are connected in series, and a primary side heat exchange section and a secondary side heat exchange section are provided. Refrigerant-to-refrigerant heat exchangers, primary heat exchange parts of a heat storage tank having a primary side heat exchange part and a secondary side heat exchange part are arranged in parallel, and the flow path of the refrigerant is switched by the switching valve. The primary side refrigeration cycle made possible, the secondary side heat exchange section in the heat storage tank, and the refrigerant-refrigerant heat exchanger 2
A fin having a secondary heat exchange section, a refrigerant transfer pump, and a secondary refrigeration cycle in which an indoor heat exchanger is annularly connected, and the heat storage tank is installed at right angles to the heat transfer tube and its length direction. Reservoir type air conditioner composed of a primary side heat exchange part composed of a heat insulating material installed on both free end sides of the fin, and a secondary side heat exchange part composed of a heat transfer tube and fins. ..
JP14534892A 1992-06-05 1992-06-05 Heat storage type air conditioner Pending JPH05340634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14534892A JPH05340634A (en) 1992-06-05 1992-06-05 Heat storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14534892A JPH05340634A (en) 1992-06-05 1992-06-05 Heat storage type air conditioner

Publications (1)

Publication Number Publication Date
JPH05340634A true JPH05340634A (en) 1993-12-21

Family

ID=15383112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14534892A Pending JPH05340634A (en) 1992-06-05 1992-06-05 Heat storage type air conditioner

Country Status (1)

Country Link
JP (1) JPH05340634A (en)

Similar Documents

Publication Publication Date Title
CN203857622U (en) Air conditioning system provided with compressor and waste heat recovery and defrosting device
CN113007831B (en) Three-pipe multi-online hot water system and control method thereof
WO2013061473A1 (en) Hot-water supply and air-conditioning device
JP3404133B2 (en) Thermal storage type air conditioner
KR100487512B1 (en) Versatile air conditioner and method for controlling thereof
CN109869942B (en) Flat pipe sleeve type heat recovery heat pump air conditioning system and working method thereof
JPH05340634A (en) Heat storage type air conditioner
JP3297467B2 (en) Thermal storage type air conditioner
CN113531967A (en) Compressor waste heat recovery defrosting system based on phase change energy storage and working method
JP3502155B2 (en) Thermal storage type air conditioner
JPH1038347A (en) Heat accumulative type air conditioner
JP2851696B2 (en) Thermal storage type air conditioner
JP3236345B2 (en) Thermal storage type air conditioner
JPH0849924A (en) Heat storage type air-conditioner
JP3260418B2 (en) Thermal storage type air conditioner
JPH05346244A (en) Heat accumulation type air conditioner
JPH0849938A (en) Regenerative air-conditioner
JPH05340636A (en) Heat storage type air conditioner
JP3056588B2 (en) Thermal storage type air conditioner
CN216924804U (en) Heat storage defrosting air conditioning system
CN117781754B (en) Phase change heat accumulator and ice cold-storage lithium battery pole piece coating solvent recovery system
JPH05340630A (en) Heat storage type air conditioner
JP2006084107A (en) Air conditioner
JP2003202135A (en) Regenerative air-conditioning device
JPH05340633A (en) Heat storage type air conditioner