JPH05340633A - Heat storage type air conditioner - Google Patents

Heat storage type air conditioner

Info

Publication number
JPH05340633A
JPH05340633A JP14534792A JP14534792A JPH05340633A JP H05340633 A JPH05340633 A JP H05340633A JP 14534792 A JP14534792 A JP 14534792A JP 14534792 A JP14534792 A JP 14534792A JP H05340633 A JPH05340633 A JP H05340633A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
heat storage
heat exchange
exchange section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14534792A
Other languages
Japanese (ja)
Inventor
Shigeo Aoyama
繁男 青山
Tetsuei Kuramoto
哲英 倉本
Kozo Suzuki
皓三 鈴木
Yoshihide Sugita
吉秀 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Matsushita Refrigeration Co
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Tokyo Electric Power Co Inc filed Critical Matsushita Refrigeration Co
Priority to JP14534792A priority Critical patent/JPH05340633A/en
Publication of JPH05340633A publication Critical patent/JPH05340633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To obtain a heat storage type air conditioner having a high efficiency and high safety while using heat storage utilizing night power in a multi- chamber type air conditioner. CONSTITUTION:A primary side refrigerating cycle has a primary side heat exchanger 14a of a refrigerant-to-refrigerant heat exchanger HEX and a primary side heat exchanger 13a of a heat reservoir STR connected in parallel. A secondary side refrigerating cycle has a secondary side heat exchanger 13b of the reservoir STR and a refrigerant conveying pump PM provided in parallel with indoor side heat exchangers 17 in such a manner that a heat transfer area of the exchanger 13b is larger than that of the exchanger 13a. Thus, a large quantity of heat is efficiently and rapidly removed from the reservoir STR, no accident of water loss occurs, and safety is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を熱源とする空気
調和機において、夜間等の余剰電力を利用するための蓄
熱機能、及びその制御機能を備えた蓄熱式空気調和機に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type air conditioner having a heat storage function for utilizing surplus electric power at night and the like and a control function thereof in an air conditioner using air as a heat source.

【0002】[0002]

【従来の技術】従来の蓄熱式空気調和機については、既
にさまざまな開発がなされており、例えば、冷凍・第6
2巻第714号(昭和62年4月号)P358に示され
ているような蓄熱式空気調和機がある。
2. Description of the Related Art Various conventional heat storage type air conditioners have already been developed, for example, refrigeration / sixth type.
There is a heat storage type air conditioner as shown in P358 of Volume 2, No. 714 (April, 1987).

【0003】その基本的な技術について述べると、図3
に示すように、空冷ヒ−トポンプ1は、圧縮機2,四方
弁3,室外側熱交換器4,室外側膨張弁5,フロン対ブ
ライン熱交換器6を環状に順次接続して冷凍サイクルA
を形成し、一方、フロン対ブライン熱交換器6,ブライ
ン対水熱交換器7,蓄熱槽8,ブラインポンプ9を環状
に順次接続してブライン循環サイクルBを形成してい
る。
The basic technique will be described with reference to FIG.
As shown in FIG. 1, the air-cooling heat pump 1 has a refrigeration cycle A in which a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an outdoor expansion valve 5, a Freon-to-brine heat exchanger 6 are sequentially connected in an annular shape.
On the other hand, a freon-to-brine heat exchanger 6, a brine-to-water heat exchanger 7, a heat storage tank 8, and a brine pump 9 are sequentially connected in an annular shape to form a brine circulation cycle B.

【0004】また、負荷側についてはブライン対水熱交
換器7,蓄熱槽8,冷温水ポンプ10,室内機12を環
状に順次接続して冷温水循環サイクルCを形成してい
る。
On the load side, the brine-to-water heat exchanger 7, the heat storage tank 8, the cold / hot water pump 10, and the indoor unit 12 are sequentially connected in an annular shape to form a cold / hot water circulation cycle C.

【0005】この蓄熱式空気調和機において夜間運転
は、冷凍サイクルAにおいて四方弁3によって製氷運
転,蓄熱運転が切り替えられ、製氷運転時は図中の実線
矢印の方向に冷媒が流れて冷房サイクルが形成され、フ
ロン対ブライン熱交換器6を介してブライン循環サイク
ルBにおける蓄熱槽8内の伝熱管の周囲に氷として蓄冷
される。
In this heat storage type air conditioner, during the nighttime operation, the four-way valve 3 switches the ice making operation and the heat storing operation in the refrigeration cycle A, and during the ice making operation, the refrigerant flows in the direction of the solid line arrow in the figure to perform the cooling cycle. It is formed and stored as ice around the heat transfer tube in the heat storage tank 8 in the brine circulation cycle B via the Freon-to-brine heat exchanger 6.

【0006】また、蓄熱運転時には図中の破線方向に冷
媒が流れて暖房サイクルが形成され、同じくフロン対ブ
ライン熱交換器6を介してブライン循環サイクルBにお
ける蓄熱槽8内に温水として蓄熱される。この場合、ブ
ライン対水熱交換器7は使用されない。
Further, during the heat storage operation, the refrigerant flows in the direction of the broken line in the drawing to form a heating cycle, and heat is stored as hot water in the heat storage tank 8 in the brine circulation cycle B through the CFC-to-brine heat exchanger 6 as well. .. In this case, the brine to water heat exchanger 7 is not used.

【0007】一方、昼間運転は、冷温水循環サイクルC
において蓄熱槽8内の冷温水を冷温水ポンプ10により
室内機12へ送り、冷暖房を行う。この際、冷温水循環
サイクルCでの効率を高めるべく、冷凍サイクルA、ブ
ライン循環サイクルBを冷房、あるいは暖房モ−ドで運
転して、ブライン対水熱交換器7を介して冷温水循環サ
イクルC内の冷温水の予冷、あるいは予熱を行う。
On the other hand, during the daytime operation, the cold / hot water circulation cycle C is used.
In, the cold / hot water in the heat storage tank 8 is sent to the indoor unit 12 by the cold / hot water pump 10 to perform cooling / heating. At this time, in order to improve the efficiency in the cold / hot water circulation cycle C, the refrigeration cycle A and the brine circulation cycle B are operated in the cooling or heating mode, and the cold / hot water circulation cycle C is operated through the brine / water heat exchanger 7. Pre-cool or pre-heat the cold / hot water.

【0008】以上のように、夜間の余剰電力エネルギー
を熱に変換して蓄熱しておき、昼間にその電力を利用す
ることにより、昼間の高負荷時刻における電力ピークを
抑え、電力利用の平準化が可能である。
As described above, surplus power energy at night is converted into heat and stored, and the power is used in the daytime to suppress the power peak at a high load time in the daytime and to level the power usage. Is possible.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前述の
従来例では、熱源側と負荷側との間に熱交換器2台を介
しているため効率が悪く、また負荷側へは冷温水を直接
搬送するため、水漏れ事故が生ずるおそれがあるという
欠点を有していた。
However, in the above-mentioned conventional example, since the two heat exchangers are interposed between the heat source side and the load side, the efficiency is low, and cold / hot water is directly conveyed to the load side. Therefore, there is a drawback that a water leakage accident may occur.

【0010】そこで、本発明は、高効率で、かつ安全性
の高い蓄熱式空気調和機を提供することを目的とするも
のである。
Therefore, an object of the present invention is to provide a heat storage type air conditioner having high efficiency and high safety.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に本発明の蓄熱式空気調和機は、蓄熱槽を介して1次側
冷凍サイクルと2次側冷凍サイクルとからなる蓄熱式空
気調和機において、蓄熱槽内に充填した蓄熱材と熱交換
する伝熱面積を1次側熱交換部よりも2次側熱交換部の
方を大きく構成したものである。
In order to achieve this object, a heat storage type air conditioner of the present invention is a heat storage type air conditioner comprising a primary side refrigeration cycle and a secondary side refrigeration cycle via a heat storage tank. In the second aspect, the heat transfer area for exchanging heat with the heat storage material filled in the heat storage tank is configured to be larger in the secondary side heat exchange section than in the primary side heat exchange section.

【0012】[0012]

【作用】この技術的手段による作用は次のようになる。The function of this technical means is as follows.

【0013】圧縮機、四方弁、室外側熱交換器、膨張
弁、切替弁、冷媒対冷媒熱交換器の1次側熱交換部、蓄
熱槽内の1次側熱交換部とを連通した1次側冷凍サイク
ルにおいて、夜間等の余剰電力を利用して冷媒対冷媒熱
交換器を使用しない状態で、切替弁、及び膨張弁の制御
により、蓄熱槽1次側熱交換部を介して蓄熱材に蓄冷、
または蓄熱しておく。
A compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, a switching valve, a primary side heat exchange section of a refrigerant-refrigerant heat exchanger, and a primary side heat exchange section in a heat storage tank are connected to each other. In the secondary refrigeration cycle, the heat storage material is passed through the heat storage tank primary side heat exchange section by controlling the switching valve and the expansion valve in a state where the refrigerant-to-refrigerant heat exchanger is not used by utilizing surplus power at night or the like. Cold storage,
Or store heat.

【0014】一方、昼間運転においては、1次側冷凍サ
イクルにおいて切替弁の制御により蓄熱槽の1次側熱交
換部を使用しない状態で運転し、蓄熱槽内の蓄冷熱に加
えて、冷媒対冷媒熱交換器を介して1次側冷凍サイクル
における冷房・暖房能力を2次側冷凍サイクル内の冷媒
へ熱交換する2次側冷凍サイクルの運転を行う。
On the other hand, in the daytime operation, in the primary side refrigeration cycle, the switching valve is controlled to operate without using the primary side heat exchange section of the thermal storage tank, and in addition to the cold storage heat in the thermal storage tank, the refrigerant pair The operation of the secondary refrigeration cycle is performed in which the cooling / heating capacity in the primary refrigeration cycle is exchanged with the refrigerant in the secondary refrigeration cycle via the refrigerant heat exchanger.

【0015】即ち、蓄熱槽内に冷熱を蓄えた蓄熱材と冷
媒が熱交換し、その冷媒を冷媒搬送ポンプにて室内側熱
交換器へ搬送して室内空気と熱交換(冷房、または暖
房)する。この時、蓄熱槽内の2次側熱交換部は1次側
熱交換部よりも大きい伝熱面積を有しているため、蓄冷
運転または蓄熱運転よりも伝熱面積の大きい分だけ高速
に熱交換すなわち冷房または暖房運転を行なうことがで
きる。
That is, the heat storage material storing cold heat in the heat storage tank exchanges heat with the refrigerant, and the refrigerant is transferred to the indoor heat exchanger by the refrigerant transfer pump to exchange heat with the indoor air (cooling or heating). To do. At this time, since the secondary side heat exchange section in the heat storage tank has a larger heat transfer area than the primary side heat exchange section, the heat transfer area is larger than that in the cold storage operation or the heat storage operation. Exchange or cooling or heating operation can be performed.

【0016】以上の作用により、夜間等の余剰電力を利
用した蓄冷熱により昼間に暖房、または冷房運転が行え
ることはいうまでもなく、蓄熱槽内の2次側熱交換部に
より、高負荷時などに大量の熱量を蓄熱槽から効率良く
高速に取り出せるすなわち負荷応答性が高まり、蓄熱槽
の熱量が最大限有効に活用できる。また、冷媒はフロン
冷媒等を用いるため、配管の腐蝕等による被空調室内へ
の漏れもなく、水損等の事故も皆無で安全性の高いもの
である。
It is needless to say that, due to the above-mentioned operation, heating or cooling operation can be performed in the daytime by cold storage heat using surplus electric power at night, etc. For example, a large amount of heat can be efficiently and rapidly taken out from the heat storage tank, that is, load responsiveness can be improved, and the heat quantity of the heat storage tank can be utilized to the maximum extent. Further, since the CFC refrigerant or the like is used as the refrigerant, there is no leakage into the air-conditioned room due to corrosion of the piping, and there is no accident such as water loss, which is highly safe.

【0017】[0017]

【実施例】以下、本発明の一実施例を添付図面に基づい
て説明を行うが、従来と同一構成については同一符号を
付し、その詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. The same components as those of the prior art will be designated by the same reference numerals and detailed description thereof will be omitted.

【0018】図1は本発明の一実施例の蓄熱式空気調和
機の冷凍サイクル図である。この実施例の蓄熱式空気調
和機は、室外ユニット21と室内ユニット12とからな
り、室外ユニット21は、圧縮機2、四方弁3、室外側
熱交換器4、膨張弁5、三方弁KV1、1次側熱交換部
14aと2次側熱交換部14bとからなる冷媒対冷媒熱
交換器HEX、蓄熱材16を充填した、1次側熱交換部
13aと2次側熱交換部13bとからなる蓄熱槽ST
R、及び冷媒搬送ポンプPMとから構成されており、室
内ユニット12は、室内側熱交換器17から構成されて
いる。
FIG. 1 is a refrigeration cycle diagram of a heat storage type air conditioner according to an embodiment of the present invention. The heat storage type air conditioner of this embodiment includes an outdoor unit 21 and an indoor unit 12, and the outdoor unit 21 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an expansion valve 5, and a three-way valve KV1. From the refrigerant-to-refrigerant heat exchanger HEX consisting of the primary side heat exchange section 14a and the secondary side heat exchange section 14b, and the primary side heat exchange section 13a and the secondary side heat exchange section 13b filled with the heat storage material 16. Heat storage tank ST
The indoor unit 12 is composed of an R and a refrigerant transfer pump PM, and the indoor unit 12 is composed of an indoor heat exchanger 17.

【0019】また、図2は図1中の蓄熱槽STRの断面
図である。蓄熱槽STRの1次側熱交換部13aと2次
側熱交換部13bは図2に示すように、1次側熱交換部
13aは伝熱管P1のみより構成され、2次側熱交換部
13bはフィンF、及び伝熱管P2より構成され、2次
側熱交換部13bの蓄熱材16に対する伝熱面積は1次
側熱交換部13aの伝熱面積より、フィンFを設けた
分、数段大きくなっている。
FIG. 2 is a sectional view of the heat storage tank STR shown in FIG. As shown in FIG. 2, the primary-side heat exchange section 13a and the secondary-side heat exchange section 13b of the heat storage tank STR are configured such that the primary-side heat exchange section 13a is composed of only the heat transfer pipe P1 and the secondary-side heat exchange section 13b. Is composed of a fin F and a heat transfer tube P2, and the heat transfer area of the secondary side heat exchange section 13b to the heat storage material 16 is several stages larger than the heat transfer area of the primary side heat exchange section 13a. It's getting bigger.

【0020】室外ユニット21において、圧縮機2と、
四方弁3と、室外側熱交換器4と、膨張弁5とを順次連
通し、さらに三方弁KV1を介して冷媒対冷媒熱交換器
HEXの1次側熱交換部14aと、蓄熱槽STR内の1
次側熱交換部13aとを並列に連通して1次側冷凍サイ
クルを形成している。
In the outdoor unit 21, the compressor 2 and
The four-way valve 3, the outdoor heat exchanger 4, and the expansion valve 5 are sequentially communicated with each other, and the three-way valve KV1 is further used to connect the primary side heat exchange section 14a of the refrigerant-refrigerant heat exchanger HEX and the heat storage tank STR. Of 1
The primary side refrigeration cycle is formed by communicating with the secondary side heat exchange section 13a in parallel.

【0021】一方、蓄熱槽内STRの2次側熱交換部1
3bと、冷媒対冷媒熱交換器HEXの2次側熱交換部1
4bと、可逆式冷媒搬送ポンプPMと、室内側熱交換器
17とを順次連通してなる2次側冷凍サイクルを形成し
ている。
On the other hand, the secondary side heat exchange section 1 of the STR in the heat storage tank
3b and the secondary heat exchanger 1 of the refrigerant-to-refrigerant heat exchanger HEX
4b, the reversible refrigerant transport pump PM, and the indoor heat exchanger 17 are sequentially connected to each other to form a secondary refrigeration cycle.

【0022】次に、この−実施例の構成における動作を
説明する。(表1)は本実施例における各場合の四方弁
3、膨張弁5、三方弁KV1の開閉状態、及び各熱交換
器の作用状態(蒸発器、あるいは凝縮器)を示す。以
下、(表1)を参照にして説明する。
Next, the operation of the structure of this embodiment will be described. Table 1 shows the open / closed states of the four-way valve 3, the expansion valve 5, and the three-way valve KV1 and the working state (evaporator or condenser) of each heat exchanger in each case in this embodiment. Hereinafter, description will be made with reference to (Table 1).

【0023】[0023]

【表1】 [Table 1]

【0024】まず、夜間の製氷・蓄熱運転(1次側冷凍
サイクル)について説明する。1次側冷凍サイクルにお
いて、蓄熱槽STRが作用し、冷媒対冷媒熱交換器HE
Xは作用しないように三方弁KV1を切替え、2次側冷
凍サイクル内の冷媒搬送ポンプPMは停止している。
First, the ice making / heat storage operation (primary refrigeration cycle) at night will be described. In the primary side refrigeration cycle, the heat storage tank STR operates to operate the refrigerant-refrigerant heat exchanger HE.
The three-way valve KV1 is switched so that X does not act, and the refrigerant transfer pump PM in the secondary side refrigeration cycle is stopped.

【0025】この場合の1次側冷凍サイクルの作用を以
下説明していく。尚、四方弁3のモ−ドについては、圧
縮機2吐出側と室外側熱交換器4とを、かつ、圧縮機2
吸入側と蓄熱槽STRとを連通する場合を冷房モ−ド、
圧縮機2吐出側と蓄熱槽STRとを、かつ、圧縮機2吸
入側と室外側熱交換器4とを連通する場合を暖房モ−ド
と定義する。
The operation of the primary side refrigeration cycle in this case will be described below. Regarding the mode of the four-way valve 3, the discharge side of the compressor 2 and the outdoor heat exchanger 4, and the compressor 2
When the suction side and the heat storage tank STR are connected to each other, the cooling mode is used.
A case where the discharge side of the compressor 2 and the heat storage tank STR, and the suction side of the compressor 2 and the outdoor heat exchanger 4 are connected to each other, is defined as a heating mode.

【0026】また、三方弁KV1については1次側冷凍
サイクル内にて蓄熱槽STRと膨張弁5とを連通する設
定を第1モ−ド,冷媒対冷媒熱交換器HEXと膨張弁5
とを連通する設定を第2モ−ドと定義する。
Regarding the three-way valve KV1, the first mode is set so that the heat storage tank STR and the expansion valve 5 communicate with each other in the primary side refrigeration cycle, and the refrigerant-refrigerant heat exchanger HEX and the expansion valve 5 are connected.
The setting communicating with and is defined as the second mode.

【0027】夜間製氷運転;四方弁3を冷房モ−ド,膨
張弁5を所定の開度,三方弁KV1を第1モ−ドとす
る。この時、圧縮機2から送られる高温高圧の冷媒は、
室外側熱交換器4にて凝縮し、膨張弁5で減圧されて液
あるいは二相状態となり、蓄熱槽STR内の1次側熱交
換部13aの管内にて蒸発して蓄熱材16から吸熱した
後、圧縮機2へ戻る。
Night-time ice making operation: The four-way valve 3 is set in the cooling mode, the expansion valve 5 is set at a predetermined opening, and the three-way valve KV1 is set in the first mode. At this time, the high temperature and high pressure refrigerant sent from the compressor 2 is
It is condensed in the outdoor heat exchanger 4, decompressed by the expansion valve 5 to be in a liquid or two-phase state, evaporated in the pipe of the primary side heat exchange section 13a in the heat storage tank STR, and absorbs heat from the heat storage material 16. Then, it returns to the compressor 2.

【0028】これにより、1次側熱交換部13aは伝熱
管P1のみであるので槽内の自然対流が阻害されること
なく、槽内の伝熱管全体に比較的均一に管外側に氷が生
成されていく。
As a result, since the primary side heat exchange section 13a is only the heat transfer tube P1, natural convection in the tank is not obstructed, and ice is relatively uniformly generated outside the tube in the entire heat transfer tube in the tank. Will be done.

【0029】夜間蓄熱運転;四方弁3を暖房モ−ド,膨
張弁5を所定の開度,三方弁KV1を第1モ−ドとす
る。この時、圧縮機2から送られる高温高圧の冷媒は、
蓄熱槽STR内の1次側熱交換部13aの管内にて凝縮
して蓄熱材16へ放熱した後、膨張弁5で減圧されて液
あるいは二相状態となり、室外側熱交換器4の管内にて
蒸発して室外から吸熱した後、圧縮機2へ戻る。
Night-time heat storage operation: The four-way valve 3 is a heating mode, the expansion valve 5 is a predetermined opening degree, and the three-way valve KV1 is a first mode. At this time, the high temperature and high pressure refrigerant sent from the compressor 2 is
After condensing in the pipe of the primary side heat exchange section 13a in the heat storage tank STR and radiating heat to the heat storage material 16, the pressure is reduced by the expansion valve 5 to become a liquid or two-phase state, and inside the pipe of the outdoor heat exchanger 4. After evaporating and absorbing heat from the outside, it returns to the compressor 2.

【0030】これにより、蓄熱槽STR内では夜間製氷
運転の場合と同様に、槽内の自然対流が阻害されること
なく、温水として蓄熱される。
As a result, in the heat storage tank STR, heat is stored as hot water without obstructing natural convection in the tank, as in the case of the night ice making operation.

【0031】次に、昼間運転(2次側冷凍サイクル)に
ついて説明する。この場合、蓄熱槽STRには蓄冷(蓄
熱)されているが、1次側冷凍サイクルにおいて三方弁
KV1を第1モ−ドとして冷媒対冷媒熱交換器HEXの
2次側熱交換部14aを蒸発器(凝縮器)として作用さ
せて運転を行う。
Next, the daytime operation (secondary refrigeration cycle) will be described. In this case, the heat is stored in the heat storage tank STR (heat storage), but in the primary side refrigeration cycle, the three-way valve KV1 is used as the first mode to evaporate the secondary side heat exchange section 14a of the refrigerant-refrigerant heat exchanger HEX. It operates as a condenser (condenser).

【0032】同時に、2次側冷凍サイクルにおいて、冷
媒対冷媒熱交換器HEXの2次側熱交換部14bを作用
させて運転を行う。
At the same time, in the secondary refrigeration cycle, the secondary heat exchange section 14b of the refrigerant-refrigerant heat exchanger HEX is operated to operate.

【0033】この状態で、2次側冷凍サイクル内の冷媒
は、冷媒搬送ポンプPMにて、蓄熱槽STR内の2次側
熱交換部13bに送られ、2次側熱交換部13bはフィ
ンF、及び伝熱管P2より構成されているため、伝熱面
積が大きくとれ、かつ高効率で蓄熱槽STR内の蓄熱材
16と高速で熱交換される。
In this state, the refrigerant in the secondary side refrigeration cycle is sent by the refrigerant transfer pump PM to the secondary side heat exchange section 13b in the heat storage tank STR, and the secondary side heat exchange section 13b has fins F. , And the heat transfer tube P2, a large heat transfer area can be obtained, and heat can be efficiently exchanged with the heat storage material 16 in the heat storage tank STR at high speed.

【0034】冷房時は図1中の矢印aのように冷媒は流
れ、蓄熱槽STR内の2次側熱交換部13bにおいて冷
却された冷媒は、更に、冷媒対冷媒熱交換器HEXの2
次側熱交換部14bへ送られ、1次側冷凍サイクル内の
冷媒対冷媒熱交換器HEXの2次側熱交換部14aとの
熱交換により冷却され液冷媒となる。
During cooling, the refrigerant flows as shown by arrow a in FIG. 1, and the refrigerant cooled in the secondary side heat exchange section 13b in the heat storage tank STR is further cooled by the refrigerant-refrigerant heat exchanger HEX 2.
It is sent to the secondary side heat exchange section 14b and cooled by heat exchange with the secondary side heat exchange section 14a of the refrigerant-refrigerant heat exchanger HEX in the primary side refrigeration cycle to become a liquid refrigerant.

【0035】その後、室内側熱交換器17に送られ、そ
こで室内空気と熱交換して室内空気を冷却すると共に、
冷媒自身は高温のガス冷媒となって蓄熱槽STR内の2
次側熱交換部13bに戻るという作用を繰り返す。
After that, it is sent to the indoor heat exchanger 17 where it exchanges heat with the indoor air to cool the indoor air and
The refrigerant itself becomes a high-temperature gas refrigerant, which is 2 in the heat storage tank STR.
The operation of returning to the next-side heat exchange section 13b is repeated.

【0036】また、暖房時は図1中の矢印bのように冷
媒は流れ、蓄熱槽STR内の2次側熱交換部13bにお
いて加熱された冷媒は、更に、冷媒対冷媒熱交換器HE
Xの2次側熱交換部14bへ送られ、1次側冷凍サイク
ル内の冷媒対冷媒熱交換器HEXの2次側熱交換部14
aとの熱交換により加熱されガス冷媒となる。
Further, during heating, the refrigerant flows as shown by the arrow b in FIG. 1, and the refrigerant heated in the secondary heat exchange section 13b in the heat storage tank STR is further cooled by the refrigerant-refrigerant heat exchanger HE.
It is sent to the secondary side heat exchange section 14b of X and is sent to the secondary side heat exchange section 14 of the refrigerant-refrigerant heat exchanger HEX in the primary side refrigeration cycle.
It is heated by heat exchange with a to become a gas refrigerant.

【0037】その後、可逆式冷媒搬送ポンプPMによ
り、室内側熱交換器17に送られ、そこで室内空気と熱
交換して室内空気を加熱すると共に、冷媒自身は低温の
液冷媒となって可逆式冷媒搬送ポンプPMに戻るという
作用を繰り返す。
After that, the reversible refrigerant transfer pump PM sends the heat to the indoor heat exchanger 17 where it exchanges heat with the indoor air to heat the indoor air, and the refrigerant itself becomes a low-temperature liquid refrigerant and is reversible. The action of returning to the refrigerant transport pump PM is repeated.

【0038】このようにして、昼間の室内負荷が十分大
きい場合も対応ができ、室内機での冷房・暖房運転が行
われる。
In this way, it is possible to deal with the case where the indoor load during the day is sufficiently large, and the cooling / heating operation is performed in the indoor unit.

【0039】なお、上記蓄熱槽内の2次側熱交換部の蓄
熱材に対する伝熱面積の拡張方法として上記実施例の如
くフィンを設置する代わりに、伝熱管の全長を1次側熱
交換部より長くしても、同様の効果が得られる。
As a method of expanding the heat transfer area for the heat storage material of the secondary side heat exchange section in the heat storage tank, instead of installing fins as in the above embodiment, the entire length of the heat transfer tube is changed to the primary side heat exchange section. The same effect can be obtained with a longer length.

【0040】以上のように、上記実施例では、蓄熱槽S
TRを介して1次側冷凍サイクルと2次側冷凍サイクル
とからなる蓄熱式空気調和機において、蓄熱槽STR
を、伝熱管P1のみから構成される1次側熱交換部13
aと、伝熱管P2とフィンFとから構成される2次側熱
交換部13bとより構成している。
As described above, in the above embodiment, the heat storage tank S
In the heat storage type air conditioner consisting of the primary side refrigeration cycle and the secondary side refrigeration cycle via TR, the heat storage tank STR
Is a primary-side heat exchange section 13 composed of only the heat transfer tube P1.
a and a secondary side heat exchange section 13b including a heat transfer tube P2 and fins F.

【0041】これにより、夜間等の余剰電力を利用した
蓄冷熱により昼間に、暖房または冷房運転が行えること
はいうまでもなく、蓄熱槽内の2次側熱交換部により、
高負荷時などに大量の熱量を蓄熱槽から効率良く高速に
取り出せるすなわち負荷応答性が高まり、蓄熱槽の熱量
が最大限有効に活用できる。
As a result, it goes without saying that the heating or cooling operation can be performed during the daytime by the cold storage heat using the surplus power at night, etc., and the secondary side heat exchange section in the heat storage tank
A large amount of heat can be efficiently and rapidly taken out from the heat storage tank at high load, that is, load responsiveness is improved, and the heat quantity of the heat storage tank can be utilized to the maximum extent.

【0042】また、冷媒はフロン冷媒等を用いるため、
配管の腐蝕等による被空調室内への漏れもなく、水損等
の事故も皆無で安全性の高いものである。
Further, since the Freon refrigerant or the like is used as the refrigerant,
There is no leakage into the air-conditioned room due to corrosion of the piping, and there is no accident such as water loss, which is highly safe.

【0043】[0043]

【発明の効果】以上のように本発明は、蓄熱槽を介して
1次側冷凍サイクルと2次側冷凍サイクルとからなる蓄
熱式空気調和機において、蓄熱槽内に充填した蓄熱材と
熱交換する伝熱面積を1次側熱交換部よりも2次側熱交
換部の方を大きく構成している。
As described above, the present invention is a heat storage type air conditioner comprising a primary side refrigeration cycle and a secondary side refrigeration cycle through a heat storage tank, and heat exchange with the heat storage material filled in the heat storage tank. The heat transfer area of the secondary side heat exchange section is larger than that of the primary side heat exchange section.

【0044】これにより、夜間等の余剰電力を利用した
蓄冷熱により昼間に、暖房または冷房運転が行えること
はいうまでもなく、蓄熱槽内の2次側熱交換部により、
高負荷時などに大量の熱量を蓄熱槽から効率良く高速に
取り出せるすなわち負荷応答性が高まり、蓄熱槽の熱量
が最大限有効に活用できる。
As a result, it goes without saying that heating or cooling operation can be performed in the daytime by the cold storage heat using the surplus power at night, etc., and the secondary side heat exchange section in the heat storage tank
A large amount of heat can be efficiently and rapidly taken out from the heat storage tank at high load, that is, load responsiveness is improved, and the heat quantity of the heat storage tank can be utilized to the maximum extent.

【0045】また、冷媒はフロン冷媒等を用いるため、
配管の腐蝕等による被空調室内への漏れもなく、水損等
の事故も皆無で安全性の高いものである。
Further, as the refrigerant uses CFC refrigerant or the like,
There is no leakage into the air-conditioned room due to corrosion of the piping, and there is no accident such as water loss, which is highly safe.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による蓄熱式空気調和機の冷
凍システム図
FIG. 1 is a refrigeration system diagram of a heat storage type air conditioner according to an embodiment of the present invention.

【図2】本発明の一実施例における蓄熱槽内の熱交換器
の断面図
FIG. 2 is a sectional view of a heat exchanger in a heat storage tank according to an embodiment of the present invention.

【図3】従来例を示すヒ−トポンプ式空気調和機の冷凍
システム図
FIG. 3 is a refrigeration system diagram of a heat pump type air conditioner showing a conventional example.

【符号の説明】[Explanation of symbols]

2 圧縮機 3 四方弁 4 室外側熱交換器 5 膨張弁 13a 蓄熱槽の1次側熱交換部 13b 蓄熱槽の2次側熱交換部 14a 冷媒対冷媒熱交換器の1次側熱交換部 14b 冷媒対冷媒熱交換器の2次側熱交換部 16 蓄熱材 17 室内側熱交換器 STR 蓄熱槽 P1,P2 伝熱管 F フィン HEX 冷媒対冷媒熱交換器 PM 冷媒搬送ポンプ KV1 三方弁 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Expansion valve 13a Primary heat exchange part of heat storage tank 13b Secondary heat exchange part of heat storage tank 14a Primary heat exchange part of refrigerant-refrigerant heat exchanger 14b Refrigerant-to-refrigerant heat exchanger secondary side heat exchange unit 16 Heat storage material 17 Indoor heat exchanger STR Heat storage tank P1, P2 Heat transfer pipe F Fin HEX Refrigerant to refrigerant heat exchanger PM Refrigerant transfer pump KV1 Three-way valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 皓三 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 杉田 吉秀 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kozo Suzuki 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Co., Inc. (72) Yoshihide Sugita 1-3-1, Uchisaiwai-cho, Chiyoda-ku, Tokyo Kyoden Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、四方弁と、室外側熱交換器
と、膨張弁と、切替弁とを直列に接続し、1次側熱交換
部と2次側熱交換部とを有した冷媒対冷媒熱交換器及び
1次側熱交換部と2次側熱交換部とを有した蓄熱槽の各
1次側熱交換部を並列に配置して前記切替弁により冷媒
の流路を切替え可能にした1次側冷凍サイクルと、前記
蓄熱槽内の2次側熱交換部と、冷媒対冷媒熱交換器の2
次側熱交換部と、冷媒搬送ポンプと、室内側熱交換器と
を環状に接続した2次側冷凍サイクルとからなり、前記
蓄熱槽内に充填した蓄熱材と熱交換する伝熱面積を1次
側熱交換部よりも2次側熱交換部の方を大きく構成した
蓄熱式空気調和機。
1. A compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and a switching valve are connected in series, and a primary side heat exchange section and a secondary side heat exchange section are provided. Refrigerant-to-refrigerant heat exchangers, primary heat exchange parts of a heat storage tank having a primary side heat exchange part and a secondary side heat exchange part are arranged in parallel, and the flow path of the refrigerant is switched by the switching valve. The primary side refrigeration cycle made possible, the secondary side heat exchange section in the heat storage tank, and the refrigerant-refrigerant heat exchanger 2
The secondary side heat exchange section, the refrigerant transfer pump, and the secondary side refrigeration cycle in which the indoor side heat exchanger is connected in an annular shape are formed, and the heat transfer area for exchanging heat with the heat storage material filled in the heat storage tank is 1 A heat storage type air conditioner in which the secondary heat exchange section is larger than the secondary heat exchange section.
JP14534792A 1992-06-05 1992-06-05 Heat storage type air conditioner Pending JPH05340633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14534792A JPH05340633A (en) 1992-06-05 1992-06-05 Heat storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14534792A JPH05340633A (en) 1992-06-05 1992-06-05 Heat storage type air conditioner

Publications (1)

Publication Number Publication Date
JPH05340633A true JPH05340633A (en) 1993-12-21

Family

ID=15383088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14534792A Pending JPH05340633A (en) 1992-06-05 1992-06-05 Heat storage type air conditioner

Country Status (1)

Country Link
JP (1) JPH05340633A (en)

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
CN216114369U (en) Air conditioner system
JP2013083439A5 (en)
JP3404133B2 (en) Thermal storage type air conditioner
JP2001263848A (en) Air conditioner
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP3297467B2 (en) Thermal storage type air conditioner
JP3502155B2 (en) Thermal storage type air conditioner
JPH05340633A (en) Heat storage type air conditioner
JP3814877B2 (en) Thermal storage air conditioner
JP3236345B2 (en) Thermal storage type air conditioner
JP2851696B2 (en) Thermal storage type air conditioner
JPS58124138A (en) Controlling method of driving auxiliary heat source in regenerative air conditioner
JP3164079B2 (en) Refrigeration equipment
JP3056588B2 (en) Thermal storage type air conditioner
JPH0849924A (en) Heat storage type air-conditioner
JP2006084107A (en) Air conditioner
JPH05340636A (en) Heat storage type air conditioner
JPH05340630A (en) Heat storage type air conditioner
JP2002061897A (en) Heat storage type air conditioner
JPH05340635A (en) Heat storage type air conditioner
JPH05346248A (en) Heat accumulation type air conditioner
JP2004116930A (en) Gas heat pump type air conditioner