JPH05340630A - Heat storage type air conditioner - Google Patents

Heat storage type air conditioner

Info

Publication number
JPH05340630A
JPH05340630A JP14534492A JP14534492A JPH05340630A JP H05340630 A JPH05340630 A JP H05340630A JP 14534492 A JP14534492 A JP 14534492A JP 14534492 A JP14534492 A JP 14534492A JP H05340630 A JPH05340630 A JP H05340630A
Authority
JP
Japan
Prior art keywords
heat
tube
refrigerant
heat storage
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14534492A
Other languages
Japanese (ja)
Inventor
Tetsuei Kuramoto
哲英 倉本
Shigeo Aoyama
繁男 青山
Kozo Suzuki
皓三 鈴木
Yoshihide Sugita
吉秀 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Matsushita Refrigeration Co
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Tokyo Electric Power Co Inc filed Critical Matsushita Refrigeration Co
Priority to JP14534492A priority Critical patent/JPH05340630A/en
Publication of JPH05340630A publication Critical patent/JPH05340630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To obtain an air conditioner having a heat reservoir which has a high efficiency and high load follow-up in a cycle having an ice storage tank of a heat storage type air conditioner. CONSTITUTION:A heat storage type air conditioner has a primary side refrigerating cycle and a secondary side refrigerating cycle connected through a heat reservoir STR. The reservoir has a primary side heat exchanger having a smooth inner heat transfer tube P1 and a secondary side heat exchanger having a heat transfer tube P2 in which thermal resistance is reduced inside a tube by increasing an inner heat transfer area thereof. The tube P2 of the secondary side exchanger in the reservoir is formed of an inner grooved tube or fins mounted therein thereby to reduce its thermal resistance inside the tube P2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を熱源とする空気
調和機において、夜間電力を利用するための蓄熱機能、
及びその制御機能を備えた蓄熱式空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using air as a heat source, and has a heat storage function for utilizing nighttime electric power.
And a heat storage type air conditioner having a control function thereof.

【0002】[0002]

【従来の技術】従来の蓄熱式空気調和機については、既
にさまざまな開発がなされており、例えば、冷凍・第6
2巻第714号(昭和62年4月号)P358に示され
ているような蓄熱式空気調和機がある。
2. Description of the Related Art Various conventional heat storage type air conditioners have already been developed, for example, refrigeration / sixth type.
There is a heat storage type air conditioner as shown in P358 of Volume 2, No. 714 (April, 1987).

【0003】その基本的な技術について述べると、図5
に示すように、空冷ヒ−トポンプ1は、圧縮機2,四方
弁3,室外側熱交換器4,室外側膨張弁5,フロン対ブ
ライン熱交換器6を環状に順次接続して冷凍サイクルA
を形成し、一方、フロン対ブライン熱交換器6,ブライ
ン対水熱交換器7,蓄熱槽8,ブラインポンプ9を環状
に順次接続してブライン循環サイクルBを形成してい
る。
The basic technique is shown in FIG.
As shown in FIG. 1, the air-cooling heat pump 1 has a refrigeration cycle A in which a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an outdoor expansion valve 5, a Freon-to-brine heat exchanger 6 are sequentially connected in an annular shape.
On the other hand, a freon-to-brine heat exchanger 6, a brine-to-water heat exchanger 7, a heat storage tank 8, and a brine pump 9 are sequentially connected in an annular shape to form a brine circulation cycle B.

【0004】また、負荷側についてはブライン対水熱交
換器7,蓄熱槽8,冷温水ポンプ10,室内機12を環
状に順次接続して冷温水循環サイクルCを形成してい
る。
On the load side, the brine-to-water heat exchanger 7, the heat storage tank 8, the cold / hot water pump 10, and the indoor unit 12 are sequentially connected in an annular shape to form a cold / hot water circulation cycle C.

【0005】この蓄熱式空気調和機において夜間運転
は、冷凍サイクルAにおいて四方弁3によって製氷運
転,蓄熱運転が切り替えられ、製氷運転時は図中の実線
矢印の方向に冷媒が流れて冷房サイクルが形成され、フ
ロン対ブライン熱交換器6を介してブライン循環サイク
ルBにおける蓄熱槽8内の伝熱管の周囲に氷として蓄冷
される。
In this heat storage type air conditioner, during the nighttime operation, the four-way valve 3 switches the ice making operation and the heat storing operation in the refrigeration cycle A, and during the ice making operation, the refrigerant flows in the direction of the solid line arrow in the figure to perform the cooling cycle. It is formed and stored as ice around the heat transfer tube in the heat storage tank 8 in the brine circulation cycle B via the Freon-to-brine heat exchanger 6.

【0006】また、蓄熱運転時には図中の破線方向に冷
媒が流れて暖房サイクルが形成され、同じくフロン対ブ
ライン熱交換器6を介してブライン循環サイクルBにお
ける蓄熱槽8内に温水として蓄熱される。この場合、ブ
ライン対水熱交換器7は使用されない。
Further, during the heat storage operation, the refrigerant flows in the direction of the broken line in the drawing to form a heating cycle, and heat is stored as hot water in the heat storage tank 8 in the brine circulation cycle B through the CFC-to-brine heat exchanger 6 as well. .. In this case, the brine to water heat exchanger 7 is not used.

【0007】一方、昼間運転は、冷温水循環サイクルC
において蓄熱槽8内の冷温水を冷温水ポンプ10により
室内機12へ送り、冷暖房を行う。
On the other hand, during the daytime operation, the cold / hot water circulation cycle C is used.
In, the cold / hot water in the heat storage tank 8 is sent to the indoor unit 12 by the cold / hot water pump 10 to perform cooling / heating.

【0008】この際、冷温水循環サイクルCでの効率を
高めるべく、冷凍サイクルA、ブライン循環サイクルB
を冷房、あるいは暖房モ−ドで運転して、ブライン対水
熱交換器7を介して冷温水循環サイクルC内の冷温水の
予冷、あるいは予熱を行う。
At this time, in order to increase the efficiency of the cold / hot water circulation cycle C, a refrigeration cycle A and a brine circulation cycle B
Is operated in the cooling or heating mode to precool or preheat the cold / hot water in the cold / hot water circulation cycle C via the brine-to-water heat exchanger 7.

【0009】以上のように、夜間の余剰電力エネルギー
を熱に変換して蓄熱しておき、昼間にその電力を利用す
ることにより、昼間の高負荷時刻における電力ピークを
抑え、電力利用の平準化が可能である。
As described above, the surplus power energy at night is converted into heat to store the heat and the power is used in the daytime to suppress the power peak at the time of high load in the daytime and level the power usage. Is possible.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前述の
従来例では、熱源側と負荷側との間に熱交換器2台を介
しているため熱交換効率が悪く、また負荷側へは冷温水
を直接搬送するため、水漏れ事故が生じた場合、近年O
A化が進歩したオフィス内のOA機器への水損は避けら
れないという欠点を有していた。
However, in the above-mentioned conventional example, since the two heat exchangers are provided between the heat source side and the load side, the heat exchange efficiency is poor, and cold / hot water is supplied to the load side. Since it is transported directly, if a water leakage accident occurs,
There was a drawback that water damage to OA equipment in offices with advanced A conversion was inevitable.

【0011】そこで、本発明は、高効率で、かつ安全性
の高い蓄熱式空気調和機を提供することを目的とするも
のである。
[0011] Therefore, an object of the present invention is to provide a heat storage type air conditioner having high efficiency and high safety.

【0012】[0012]

【課題を解決するための手段】上記課題を解決する本発
明の技術的手段は、蓄熱槽を介して1次側冷凍サイクル
と2次側冷凍サイクルとからなる蓄熱式空気調和機にお
いて、蓄熱槽を管内平滑伝熱管から構成される1次側熱
交換部と、管内側伝熱面積を増大させて管内側における
熱抵抗低減を図った伝熱管から構成される2次側熱交換
部とより構成したものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is to provide a heat storage tank in a heat storage type air conditioner comprising a primary side refrigeration cycle and a secondary side refrigeration cycle via a heat storage tank. Is composed of a primary-side heat exchange section composed of a smooth heat transfer tube in the tube and a secondary-side heat exchange section composed of a heat transfer tube in which the heat transfer area inside the tube is reduced to reduce the thermal resistance. It was done.

【0013】ここで、蓄熱槽内の2次側熱交換部の伝熱
管を管内溝付き管、または管内にフィンを設置すること
により、伝熱管の管内側における熱抵抗を低減すること
が可能となる。
Here, the heat resistance inside the heat transfer tube can be reduced by installing the heat transfer tube of the secondary side heat exchange section in the heat storage tank with an inner grooved tube or with fins inside the tube. Become.

【0014】[0014]

【作用】この技術的手段による作用は次のようになる。The function of this technical means is as follows.

【0015】夜間は、圧縮機、四方弁、室外側熱交換
器、膨張弁、切替弁、冷媒対冷媒熱交換器の1次側熱交
換部、蓄熱槽内の1次側熱交換部とを連通した1次側冷
凍サイクルにおいて、切替弁を切替えて冷媒対冷媒熱交
換器を使用しない状態にし、膨張弁を所定の開度に設定
して、夜間に安価な夜間電力を利用して、蓄熱槽内の伝
熱管を介して蓄熱材である水に蓄冷、または蓄熱してお
く。
At night, the compressor, the four-way valve, the outdoor heat exchanger, the expansion valve, the switching valve, the primary side heat exchange section of the refrigerant-refrigerant heat exchanger, and the primary side heat exchange section in the heat storage tank are connected. In the communicating primary side refrigeration cycle, the switching valve is switched to a state in which the refrigerant-refrigerant heat exchanger is not used, the expansion valve is set to a predetermined opening degree, and inexpensive night-time power is used at night to store heat. Cool or store heat in water, which is a heat storage material, through a heat transfer tube in the tank.

【0016】一方、昼間は1次側冷凍サイクルにおいて
切替弁を切替えて蓄熱槽の1次側熱交換部を使用しない
状態で運転し、蓄熱槽内の蓄冷熱に加えて、冷媒対冷媒
熱交換器を介して1次側冷凍サイクルにおける冷房・暖
房能力を2次側冷凍サイクル内の冷媒へ熱交換して、そ
の冷媒を冷媒搬送ポンプにて室内側熱交換器へ搬送して
室内空気と熱交換(冷房、または暖房)する2次側冷凍
サイクルの運転を行う。
On the other hand, during the daytime, the switching valve is switched in the primary side refrigeration cycle to operate without using the primary side heat exchange section of the heat storage tank, and in addition to the cold heat stored in the heat storage tank, refrigerant-refrigerant heat exchange is performed. The cooling / heating capacity in the primary side refrigeration cycle is exchanged with the refrigerant in the secondary side refrigeration cycle via the heat exchanger, and the refrigerant is transferred to the indoor heat exchanger by the refrigerant transfer pump to heat the indoor air and heat. The secondary refrigeration cycle to be replaced (cooling or heating) is operated.

【0017】即ち、蓄熱槽内に蓄冷熱として蓄えられた
蓄熱材と冷媒が、蓄熱槽内の、管内側伝熱面積を増大さ
せて管内側における熱抵抗低減を図った伝熱管からなる
2次側熱交換部を介して高速に熱交換して、その冷媒を
冷媒搬送ポンプにて室内側熱交換器へ搬送して室内空気
と熱交換(冷房、または暖房)する。
That is, the heat storage material and the refrigerant stored as cold storage heat in the heat storage tank increase the heat transfer area inside the pipe in the heat storage tank to form a secondary heat transfer tube that reduces the thermal resistance inside the pipe. High-speed heat exchange is performed via the side heat exchange section, and the refrigerant is transferred to the indoor heat exchanger by the refrigerant transfer pump and exchanges heat with the indoor air (cooling or heating).

【0018】従って、夜間電力を利用した蓄冷熱により
昼間に暖房、または冷房運転が行え、電力利用の平準化
が図れるだけでなく、負荷応答性が高まる。
Therefore, heating or cooling operation can be performed in the daytime by the stored cold heat using the nighttime electric power, and not only the use of the electric power can be leveled but also the load responsiveness is improved.

【0019】ここで、蓄熱槽内の1次側熱交換部につい
ても伝熱管の管内側伝熱面積を増大させることにより熱
抵抗は低減されるが、夜間蓄冷運転時においては蓄熱槽
内の1次側熱交換部周囲に着氷する氷層の熱抵抗が大き
く、製造コスト等を考慮した場合、蓄熱槽内の2次側熱
交換部の伝熱管の管内側伝熱面積を増大させることに比
べて熱抵抗低減の効果は小さいため、蓄熱槽内の1次側
熱交換部は管内平滑管より構成している。
Here, the thermal resistance of the primary side heat exchange section in the heat storage tank is also reduced by increasing the heat transfer area on the inner side of the heat transfer tube. The thermal resistance of the ice layer around the secondary heat exchange part is large, and considering the manufacturing cost, it is necessary to increase the heat transfer area inside the secondary side heat exchange part inside the heat storage tank. Since the effect of reducing the thermal resistance is small compared to the above, the primary-side heat exchange section in the heat storage tank is composed of an internal smooth tube.

【0020】以上の作用により、夜間電力を利用した蓄
冷熱により冷房・暖房運転が行なえるだけでなく、蓄熱
槽内の、管内側伝熱面積を増大させて管内側における熱
抵抗低減を図った伝熱管からなる2次側熱交換部により
高速で蓄冷熱を取出すことが可能になり、負荷応答性が
向上する。
With the above operation, not only cooling / heating operation can be performed by the cold storage heat using night power, but also the heat transfer area inside the heat storage tank is increased to reduce the thermal resistance inside the pipe. The secondary side heat exchange section including the heat transfer tube enables the cold heat to be taken out at high speed, and the load responsiveness is improved.

【0021】また、前記蓄熱槽内の2次側熱交換部の伝
熱管を管内溝付き管、または管内にフィンを設置するこ
とにより、伝熱管の管内側における熱抵抗を低減するこ
とが可能となる。
Further, the heat resistance inside the heat transfer tube can be reduced by disposing the heat transfer tube of the secondary side heat exchange section in the heat storage tank as a tube with a groove inside the tube or by providing fins inside the tube. Become.

【0022】[0022]

【実施例】以下、本発明の一実施例を添付図面に基づ
き、蓄熱槽内の2次側熱交換部の伝熱管に管内溝付き管
を用いた場合について説明を行うが、従来と同一構成に
ついては同一符号を付し、その詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below with reference to the accompanying drawings, in which a tube with an internal groove is used as a heat transfer tube of a secondary heat exchange section in a heat storage tank. Are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0023】図1は本発明の一実施例の蓄熱式空気調和
機の冷凍サイクル図である。この実施例の蓄熱式空気調
和機は、室外ユニット11と室内ユニット12とからな
る。
FIG. 1 is a refrigeration cycle diagram of a heat storage type air conditioner according to an embodiment of the present invention. The heat storage type air conditioner of this embodiment includes an outdoor unit 11 and an indoor unit 12.

【0024】室外ユニット11は、圧縮機2、四方弁
3、室外側熱交換器4、膨張弁5、三方弁KV1、1次
側熱交換部14aと2次側熱交換部14bとからなる冷
媒対冷媒熱交換器HEX、蓄熱材である水16を充填し
た、1次側熱交換部13aと2次側熱交換部13bとか
らなる蓄熱槽STR、及び冷媒搬送ポンプPMとから構
成されている。
The outdoor unit 11 is a refrigerant comprising a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an expansion valve 5, a three-way valve KV1, a primary side heat exchange section 14a and a secondary side heat exchange section 14b. It is composed of a heat exchanger for refrigerant HEX, a heat storage tank STR that is filled with water 16 as a heat storage material and is composed of a primary side heat exchange section 13a and a secondary side heat exchange section 13b, and a refrigerant transfer pump PM. ..

【0025】一方、室内ユニット12は、室内側熱交換
器17から構成されている。また、図2は図1中の蓄熱
槽内の縦方向の一断面図、図3は蓄熱槽STR内の2次
側熱交換器13bの横断面を示す。蓄熱槽STRの1次
側熱交換部13aと2次側熱交換部13bは図2、図3
に示すように、1次側熱交換部13aは伝熱管P1のみ
より構成され、2次側熱交換部13bは管内溝付き管P
2より構成されている室外ユニット11において、圧縮
機2と、四方弁3と、室外側熱交換器4と、膨張弁5と
を順次連通し、さらに三方弁KV1を介して冷媒対冷媒
熱交換器HEXの1次側熱交換部14aと、蓄熱槽ST
R内の1次側熱交換部13aとを並列に連通して1次側
冷凍サイクルを形成している。
On the other hand, the indoor unit 12 comprises an indoor heat exchanger 17. 2 is a vertical cross-sectional view of the heat storage tank in FIG. 1, and FIG. 3 is a cross-sectional view of the secondary heat exchanger 13b in the heat storage tank STR. The primary side heat exchange section 13a and the secondary side heat exchange section 13b of the heat storage tank STR are shown in FIGS.
As shown in FIG. 5, the primary side heat exchange section 13a is composed of only the heat transfer tube P1, and the secondary side heat exchange section 13b is formed with the tube grooved tube P.
In the outdoor unit 11 configured by 2, the compressor 2, the four-way valve 3, the outdoor heat exchanger 4, and the expansion valve 5 are sequentially communicated with each other, and the refrigerant-to-refrigerant heat exchange is further performed via the three-way valve KV1. Primary side heat exchange section 14a of the vessel HEX and the heat storage tank ST
The primary side heat exchange part 13a in R is connected in parallel and the primary side refrigeration cycle is formed.

【0026】一方、蓄熱槽内STRの2次側熱交換部1
3bと、冷媒対冷媒熱交換器HEXの2次側熱交換部1
4bと、可逆式冷媒搬送ポンプPMと、室内側熱交換器
17とを順次連通してなる2次側冷凍サイクルを形成し
ている。
On the other hand, the secondary side heat exchange section 1 of the STR in the heat storage tank
3b and the secondary heat exchanger 1 of the refrigerant-to-refrigerant heat exchanger HEX
4b, the reversible refrigerant transport pump PM, and the indoor heat exchanger 17 are sequentially connected to each other to form a secondary refrigeration cycle.

【0027】次に、この−実施例の構成における作用を
説明する。(表1)は本実施例における各場合の四方弁
3、膨張弁5、三方弁KV1の開閉状態、及び各熱交換
器の作用状態(蒸発器、あるいは凝縮器)を示す。以
下、(表1)を参照にして説明する。
Next, the operation of the structure of this embodiment will be described. Table 1 shows the open / closed states of the four-way valve 3, the expansion valve 5, and the three-way valve KV1 and the working state (evaporator or condenser) of each heat exchanger in each case in this embodiment. Hereinafter, description will be made with reference to (Table 1).

【0028】[0028]

【表1】 [Table 1]

【0029】まず、夜間の製氷・蓄熱運転(1次側冷凍
サイクル)について説明する。1次側冷凍サイクルにお
いて、蓄熱槽STRが作用し、冷媒対冷媒熱交換器HE
Xは作用しないように三方弁KV1を切替え、2次側冷
凍サイクル内の冷媒搬送ポンプPMは停止している。こ
の場合の1次側冷凍サイクルの作用を以下説明してい
く。
First, the nighttime ice making / heat storage operation (primary refrigeration cycle) will be described. In the primary side refrigeration cycle, the heat storage tank STR operates to operate the refrigerant-refrigerant heat exchanger HE.
The three-way valve KV1 is switched so that X does not act, and the refrigerant transfer pump PM in the secondary side refrigeration cycle is stopped. The operation of the primary side refrigeration cycle in this case will be described below.

【0030】尚、四方弁3のモ−ドについては、圧縮機
2吐出側と室外側熱交換器4とを、かつ、圧縮機2吸入
側と蓄熱槽STRとを連通する場合を冷房モ−ド、圧縮
機2吐出側と蓄熱槽STRとを、かつ、圧縮機2吸入側
と室外側熱交換器4とを連通する場合を暖房モ−ドと定
義する。
Regarding the mode of the four-way valve 3, a cooling mode is used when the discharge side of the compressor 2 and the outdoor heat exchanger 4 and the suction side of the compressor 2 and the heat storage tank STR are connected to each other. A mode in which the discharge side of the compressor 2 communicates with the heat storage tank STR and the suction side of the compressor 2 communicates with the outdoor heat exchanger 4 is defined as a heating mode.

【0031】三方弁KV1については1次側冷凍サイク
ル内にて蓄熱槽STRと膨張弁5とを連通する設定を第
1モ−ド,冷媒対冷媒熱交換器HEXと膨張弁5とを連
通する設定を第2モ−ドと定義する。
As for the three-way valve KV1, the first mode is set so that the heat storage tank STR and the expansion valve 5 are communicated with each other in the primary side refrigeration cycle, and the refrigerant-refrigerant heat exchanger HEX and the expansion valve 5 are communicated with each other. The setting is defined as the second mode.

【0032】夜間製氷運転;四方弁3を冷房モ−ド,膨
張弁5を所定の開度,三方弁KV1を第1モ−ドとす
る。この状態で圧縮機2から送られる高温高圧の冷媒
は、室外側熱交換器4にて凝縮し、膨張弁5で減圧され
て液あるいは二相状態となり、蓄熱槽STR内の1次側
熱交換部13aの管内にて蒸発して水16から吸熱した
後、圧縮機2へ戻る。
Night-time ice making operation: The four-way valve 3 is set to the cooling mode, the expansion valve 5 is set to a predetermined opening, and the three-way valve KV1 is set to the first mode. The high-temperature and high-pressure refrigerant sent from the compressor 2 in this state is condensed in the outdoor heat exchanger 4 and is decompressed by the expansion valve 5 to be in a liquid or two-phase state, and the primary side heat exchange in the heat storage tank STR. After evaporating in the pipe of the portion 13a and absorbing heat from the water 16, the water is returned to the compressor 2.

【0033】この時、1次側熱交換部13aは伝熱管P
1のみであるので槽内の自然対流が阻害されることな
く、槽内の伝熱管全体に比較的均一に管外側に氷が生成
されていく。
At this time, the primary side heat exchange section 13a is connected to the heat transfer tube P.
Since there is only 1, the natural convection in the tank is not obstructed, and ice is relatively uniformly generated on the outer side of the entire heat transfer tube in the tank.

【0034】夜間蓄熱運転;四方弁3を暖房モ−ド,膨
張弁5を所定の開度,三方弁KV1を第1モ−ドとす
る。この状態で圧縮機2から送られる高温高圧の冷媒
は、蓄熱槽STR内の1次側熱交換部13aの管内にて
凝縮して水16へ放熱した後、膨張弁5で減圧されて液
あるいは二相状態となり、室外側熱交換器4の管内にて
蒸発して室外から吸熱した後、圧縮機2へ戻る。
Night heat storage operation: The four-way valve 3 is in the heating mode, the expansion valve 5 is in a predetermined opening degree, and the three-way valve KV1 is in the first mode. The high-temperature and high-pressure refrigerant sent from the compressor 2 in this state is condensed in the pipe of the primary side heat exchange section 13a in the heat storage tank STR and radiates heat to the water 16, and then is decompressed by the expansion valve 5 to form liquid or liquid. It becomes a two-phase state, evaporates in the pipe of the outdoor heat exchanger 4, absorbs heat from the outside, and then returns to the compressor 2.

【0035】この時、蓄熱槽STR内では夜間蓄熱運転
の場合と同様に、槽内の自然対流が阻害されることな
く、温水として蓄熱される。
At this time, in the heat storage tank STR, as in the case of night heat storage operation, heat is stored as hot water without hindering natural convection in the tank.

【0036】次に、昼間運転(2次側冷凍サイクル)に
ついて説明する。この場合、蓄熱槽STRには蓄冷(蓄
熱)されているが、1次側冷凍サイクルにおいて三方弁
KV1を第1モ−ドとして冷媒対冷媒熱交換器HEXの
2次側熱交換部14aを蒸発器(凝縮器)として作用さ
せて運転を行う。
Next, the daytime operation (secondary refrigeration cycle) will be described. In this case, the heat is stored in the heat storage tank STR (heat storage), but in the primary side refrigeration cycle, the three-way valve KV1 is used as the first mode to evaporate the secondary side heat exchange section 14a of the refrigerant-refrigerant heat exchanger HEX. It operates as a condenser (condenser).

【0037】同時に、2次側冷凍サイクルにおいて、冷
媒対冷媒熱交換器HEXの2次側熱交換部14bを作用
させて運転を行う。
At the same time, in the secondary side refrigeration cycle, the secondary side heat exchange section 14b of the refrigerant-to-refrigerant heat exchanger HEX is operated to operate.

【0038】この状態で、2次側冷凍サイクル内の冷媒
は、冷媒搬送ポンプPMにて、蓄熱槽STR内の2次側
熱交換部13bに送られ、2次側熱交換部13bは管内
溝付き管P2より構成されているため、管内側の伝熱面
積が大きくとれ、かつ高効率で蓄熱槽STR内の水16
と高速で熱交換される。
In this state, the refrigerant in the secondary side refrigeration cycle is sent to the secondary side heat exchange section 13b in the heat storage tank STR by the refrigerant transfer pump PM, and the secondary side heat exchange section 13b is provided with a pipe groove. Since it is composed of the attached pipe P2, the heat transfer area inside the pipe can be made large, and the water 16 in the heat storage tank STR can be efficiently provided.
And heat is exchanged at high speed.

【0039】冷房時は図1中の矢印aのように冷媒は流
れ、蓄熱槽STR内の2次側熱交換部13bにおいて冷
却された冷媒は、更に、冷媒対冷媒熱交換器HEXの2
次側熱交換部14bへ送られ、1次側冷凍サイクル内の
冷媒対冷媒熱交換器HEXの2次側熱交換部14aとの
熱交換により冷却され液冷媒となる。
During cooling, the refrigerant flows as shown by the arrow a in FIG. 1, and the refrigerant cooled in the secondary heat exchange section 13b in the heat storage tank STR is further cooled by the refrigerant-refrigerant heat exchanger HEX 2.
It is sent to the secondary side heat exchange section 14b and cooled by heat exchange with the secondary side heat exchange section 14a of the refrigerant-refrigerant heat exchanger HEX in the primary side refrigeration cycle to become a liquid refrigerant.

【0040】その後、室内側熱交換器17に送られ、そ
こで室内空気と熱交換して室内空気を冷却すると共に、
冷媒自身は高温のガス冷媒となって蓄熱槽STR内の2
次側熱交換部13bに戻るという作用を繰り返す。
After that, it is sent to the indoor heat exchanger 17 where it exchanges heat with the indoor air to cool the indoor air and
The refrigerant itself becomes a high-temperature gas refrigerant, which is 2 in the heat storage tank STR.
The operation of returning to the next-side heat exchange section 13b is repeated.

【0041】また、暖房時は図1中の矢印bのように冷
媒は流れ、冷媒対冷媒熱交換器HEXの2次側熱交換部
14bにおいて加熱された冷媒は、更に、蓄熱槽STR
内の2次側熱交換部13bへ送られ、蓄熱槽内の水16
との熱交換により加熱されガス冷媒となる。
Further, during heating, the refrigerant flows as shown by an arrow b in FIG. 1, and the refrigerant heated in the secondary side heat exchange section 14b of the refrigerant-refrigerant heat exchanger HEX is further heated in the heat storage tank STR.
Water 16 sent to the secondary side heat exchange section 13b inside the heat storage tank
It is heated by heat exchange with and becomes a gas refrigerant.

【0042】その後、可逆式冷媒搬送ポンプPMによ
り、室内側熱交換器17に送られ、そこで室内空気と熱
交換して室内空気を加熱すると共に、冷媒自身は低温の
液冷媒となって可逆式冷媒搬送ポンプPMに戻るという
作用を繰り返す。
After that, the reversible refrigerant transfer pump PM sends the heat to the indoor heat exchanger 17 where it exchanges heat with the indoor air to heat the indoor air, and the refrigerant itself becomes a low temperature liquid refrigerant and is reversible. The action of returning to the refrigerant transport pump PM is repeated.

【0043】このようにして、昼間の室内負荷が大きい
場合も対応ができ、室内機での冷房・暖房運転が行われ
る。
In this way, even when the indoor load during the daytime is large, it is possible to cope with it, and the cooling / heating operation in the indoor unit is performed.

【0044】以上のように、上記実施例では蓄熱槽ST
Rを介して1次側冷凍サイクルと2次側冷凍サイクルと
からなる蓄熱式空気調和機において、蓄熱槽STRを管
内平滑伝熱管P1から構成される1次側熱交換部13a
と、管内溝付き管P2から構成される2次側熱交換部1
3bとより構成している。
As described above, in the above embodiment, the heat storage tank ST
In the heat storage type air conditioner composed of the primary side refrigeration cycle and the secondary side refrigeration cycle via R, the heat storage tank STR has a primary side heat exchange section 13a constituted by an in-tube smooth heat transfer tube P1.
And the secondary side heat exchange section 1 including the pipe P2 with the groove in the pipe.
It is composed of 3b.

【0045】これにより、夜間電力を利用した蓄冷(蓄
熱)により冷房(暖房)運転が行え、電力平準化が図れ
るだけでなく、蓄熱槽STR内の管内溝付き管P1から
なる2次側熱交換部13bにより高速で蓄冷(蓄熱)を
取出すことが可能になり、負荷応答性が向上する。
As a result, not only cooling (heating) operation can be performed by cold storage (heat storage) using nighttime power, power leveling can be achieved, but also secondary side heat exchange consisting of the pipe P1 with groove inside the heat storage tank STR. By the portion 13b, it becomes possible to take out cold storage (heat storage) at high speed, and load responsiveness is improved.

【0046】以上は蓄熱槽内の2次側熱交換部13bの
伝熱管に管内溝付き管P2を用いた場合について説明し
たが、図4に本発明の他の実施例を示すが、蓄熱槽内の
2次側熱交換部13bの伝熱管管内にフィンFを設置し
た場合にも管内溝付き管P2と同様の効果がある。
The case where the tube P2 with the internal groove is used as the heat transfer tube of the secondary side heat exchange section 13b in the heat storage tank has been described above, but FIG. 4 shows another embodiment of the present invention. Even when the fins F are installed in the heat transfer tube of the secondary side heat exchange section 13b inside, the same effect as the tube with groove P2 is provided.

【0047】[0047]

【発明の効果】以上のように本発明は、蓄熱槽を介して
1次側冷凍サイクルと2次側冷凍サイクルとからなる蓄
熱式空気調和機において、前記蓄熱槽を管内平滑伝熱管
から構成される1次側熱交換部と、管内側伝熱面積を増
大させて管内側における熱抵抗低減を図った伝熱管から
構成される2次側熱交換部とより構成している。
As described above, according to the present invention, in the heat storage type air conditioner including the primary side refrigeration cycle and the secondary side refrigeration cycle via the heat storage tank, the heat storage tank is constituted by an in-pipe smooth heat transfer tube. And a secondary-side heat exchange section that is composed of a heat-transfer tube that increases the heat transfer area inside the tube to reduce the thermal resistance inside the tube.

【0048】これにより、夜間電力を利用した蓄冷熱に
より冷房・暖房運転が行え、電力利用の平準化が図れる
だけでなく、蓄熱槽内の、管内側伝熱面積を増大させて
管内側における熱抵抗低減を図った伝熱管から構成され
る2次側熱交換部により高速で蓄冷熱を取出すことが可
能になり、負荷応答性が向上する。
As a result, the cooling / heating operation can be performed by the cold storage heat using the nighttime electric power, and not only the use of electric power can be leveled, but also the heat transfer area in the heat storage tank is increased to increase the heat transfer area inside the pipe. The secondary side heat exchanging unit composed of a heat transfer tube whose resistance is reduced makes it possible to take out the cold stored heat at a high speed, and the load response is improved.

【0049】また、前記蓄熱槽内の2次側熱交換部の伝
熱管を管内溝付き管、または管内にフィンを設置するこ
とにより、伝熱管の管内側における熱抵抗を低減するこ
とが可能となる。
Also, the heat resistance inside the heat transfer tube can be reduced by installing the heat transfer tube of the secondary side heat exchange section in the heat storage tank with an inner groove tube or a fin inside the tube. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による蓄熱式空気調和機の冷
凍システム図
FIG. 1 is a refrigeration system diagram of a heat storage type air conditioner according to an embodiment of the present invention.

【図2】図1中の蓄熱槽内の縦方向の断面図FIG. 2 is a vertical cross-sectional view of the heat storage tank in FIG.

【図3】図1中の蓄熱槽内の2次側熱交換器の横断面図FIG. 3 is a cross-sectional view of the secondary heat exchanger in the heat storage tank in FIG.

【図4】本発明の他の実施例による蓄熱槽内の2次側熱
交換器の伝熱管の断面図
FIG. 4 is a sectional view of a heat transfer tube of a secondary side heat exchanger in a heat storage tank according to another embodiment of the present invention.

【図5】従来例を示すヒ−トポンプ式空気調和機の冷凍
システム図
FIG. 5 is a refrigeration system diagram of a heat pump type air conditioner showing a conventional example.

【符号の説明】[Explanation of symbols]

2 圧縮機 3 四方弁 4 室外側熱交換器 5 膨張弁 13a 蓄熱槽の1次側熱交換部 13b 蓄熱槽の2次側熱交換部 14a 冷媒対冷媒熱交換器の1次側熱交換部 14b 冷媒対冷媒熱交換器の2次側熱交換部 17 室内側熱交換器 STR 蓄熱槽 F フィン P1 1次側伝熱管(管内平滑伝熱管) P2 2次側伝熱管(管内溝付き管) P3 2次側伝熱管(管内フィン付き管) HEX 冷媒対冷媒熱交換器 PM 冷媒搬送ポンプ KV1 三方弁 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Expansion valve 13a Primary heat exchange part of heat storage tank 13b Secondary heat exchange part of heat storage tank 14a Primary heat exchange part of refrigerant-refrigerant heat exchanger 14b Refrigerant-to-refrigerant heat exchanger secondary side heat exchange section 17 Indoor side heat exchanger STR Heat storage tank F Fin P1 Primary side heat transfer tube (smooth tube heat transfer tube) P2 Secondary side heat transfer tube (tube with groove in tube) P3 2 Secondary heat transfer tube (tube with fin in tube) HEX Refrigerant-to-refrigerant heat exchanger PM Refrigerant transfer pump KV1 Three-way valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 皓三 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 杉田 吉秀 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kozo Suzuki 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Co., Inc. (72) Yoshihide Sugita 1-3-1, Uchisaiwai-cho, Chiyoda-ku, Tokyo Kyoden Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、四方弁と、室外側熱交換器
と、膨張弁と、切替弁とを直列に接続し、1次側熱交換
部と2次側熱交換部とを有した冷媒対冷媒熱交換器及び
1次側熱交換部と2次側熱交換部とを有した蓄熱槽の各
1次側熱交換部を並列に配置して、前記切替弁により冷
媒の流路を切替え可能にした1次側冷凍サイクルと、前
記蓄熱槽内の2次側熱交換部と、冷媒対冷媒熱交換器の
2次側熱交換部と、冷媒搬送ポンプと、室内側熱交換器
とを環状に接続した2次側冷凍サイクルとからなり、前
記蓄熱槽を管内平滑伝熱管から構成される1次側熱交換
部と、管内側伝熱面積を増大させて管内側における熱抵
抗低減を図った伝熱管から構成される2次側熱交換部と
から構成した蓄熱式空気調和機。
1. A compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and a switching valve are connected in series, and a primary side heat exchange section and a secondary side heat exchange section are provided. Refrigerant-to-refrigerant heat exchangers, primary side heat exchange parts of a heat storage tank having a primary side heat exchange part and a secondary side heat exchange part are arranged in parallel, and a refrigerant flow path is formed by the switching valve. A switchable primary side refrigeration cycle, a secondary side heat exchange section in the heat storage tank, a secondary side heat exchange section of a refrigerant-refrigerant heat exchanger, a refrigerant transfer pump, and an indoor side heat exchanger. A secondary side refrigeration cycle in which the heat storage tanks are connected to each other in an annular shape, and the heat storage tank has a primary side heat exchange section composed of a smooth heat transfer tube in the tube, and a heat transfer area inside the tube is increased to reduce thermal resistance inside the tube. A heat storage type air conditioner composed of a secondary side heat exchange section composed of the illustrated heat transfer tubes.
【請求項2】 蓄熱槽の2次側熱交換部において、伝熱
管を管内溝付き管とする請求項1記載の蓄熱式空気調和
機。
2. The heat storage type air conditioner according to claim 1, wherein in the secondary side heat exchange section of the heat storage tank, the heat transfer tube is a tube with a groove in the tube.
【請求項3】 蓄熱槽の2次側熱交換部において、管内
にフィンを設置した伝熱管より構成した請求項1記載の
蓄熱式空気調和機。
3. The heat storage type air conditioner according to claim 1, wherein the secondary side heat exchange section of the heat storage tank comprises a heat transfer tube having fins installed inside the tube.
JP14534492A 1992-06-05 1992-06-05 Heat storage type air conditioner Pending JPH05340630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14534492A JPH05340630A (en) 1992-06-05 1992-06-05 Heat storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14534492A JPH05340630A (en) 1992-06-05 1992-06-05 Heat storage type air conditioner

Publications (1)

Publication Number Publication Date
JPH05340630A true JPH05340630A (en) 1993-12-21

Family

ID=15383016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14534492A Pending JPH05340630A (en) 1992-06-05 1992-06-05 Heat storage type air conditioner

Country Status (1)

Country Link
JP (1) JPH05340630A (en)

Similar Documents

Publication Publication Date Title
KR100619444B1 (en) Chilled water storage type hybrid heating and cooling system using a solar heat system
JP3404133B2 (en) Thermal storage type air conditioner
JPH10300265A (en) Refrigerating equipment
KR20040008302A (en) Versatile air conditioner and method for controlling thereof
JPS5829397Y2 (en) Air conditioning equipment
CN109869942B (en) Flat pipe sleeve type heat recovery heat pump air conditioning system and working method thereof
CN210425678U (en) Air source heat pump capable of storing energy and defrosting step by step
CN113531967A (en) Compressor waste heat recovery defrosting system based on phase change energy storage and working method
JP3502155B2 (en) Thermal storage type air conditioner
JP3297467B2 (en) Thermal storage type air conditioner
JPH05340630A (en) Heat storage type air conditioner
JP2851696B2 (en) Thermal storage type air conditioner
JP3056588B2 (en) Thermal storage type air conditioner
JP2006084107A (en) Air conditioner
JPH05340636A (en) Heat storage type air conditioner
JPH0849924A (en) Heat storage type air-conditioner
CN221036260U (en) Heat exchange system and air conditioner with same
JP3236345B2 (en) Thermal storage type air conditioner
JP3260418B2 (en) Thermal storage type air conditioner
CN216924603U (en) Heat storage air conditioning system
JPH05340633A (en) Heat storage type air conditioner
JPS58124138A (en) Controlling method of driving auxiliary heat source in regenerative air conditioner
WO2023185664A1 (en) Air conditioning system
JPH0849938A (en) Regenerative air-conditioner
JPH05340634A (en) Heat storage type air conditioner