JPH0533900B2 - - Google Patents

Info

Publication number
JPH0533900B2
JPH0533900B2 JP63205078A JP20507888A JPH0533900B2 JP H0533900 B2 JPH0533900 B2 JP H0533900B2 JP 63205078 A JP63205078 A JP 63205078A JP 20507888 A JP20507888 A JP 20507888A JP H0533900 B2 JPH0533900 B2 JP H0533900B2
Authority
JP
Japan
Prior art keywords
solid
light
shape
base plate
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63205078A
Other languages
Japanese (ja)
Other versions
JPH0252725A (en
Inventor
Yoji Marutani
Takashi Nakai
Seiji Hayano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Original Assignee
Mitsubishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp filed Critical Mitsubishi Corp
Priority to JP63205078A priority Critical patent/JPH0252725A/en
Publication of JPH0252725A publication Critical patent/JPH0252725A/en
Publication of JPH0533900B2 publication Critical patent/JPH0533900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光及び光硬化性流動物質を用いて所
望形状の固体を形成する光学的造形法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical modeling method for forming a solid body of a desired shape using light and a photocurable fluid material.

従来の技術及びその問題点 従来、鋳型製作時に必要とされる製品形状に対
応する模型、或いは切削加工の倣い制御用又は形
彫放電加工電極用の模型の製作は、手加工によ
り、或いはNCフライス盤等を用いたNC切削加
工により行なわれていた。しかしながら、手加工
による場合は多くの手間と熟練とを要するという
問題が存し、NC切削加工による場合は、刃物の
刃先形状変更のための交換や摩耗等を考慮した複
雑な工作プロクラムを作る必要があると共に、加
工面に生じた段を除くために更に仕上げ加工を必
要とする場合があるという問題が存していた。
Conventional technology and its problems Conventionally, models corresponding to the product shape required during mold production, models for tracing control in cutting machining, or models for die-sinking electric discharge machining electrodes have been produced by hand processing or by using an NC milling machine. This was done by NC cutting using tools such as. However, when using manual machining, there is a problem in that it requires a lot of time and skill, and when using NC machining, it is necessary to create a complicated machining program that takes into account replacement and wear to change the shape of the cutting edge. In addition, there is a problem in that additional finishing machining may be required to remove steps formed on the machined surface.

このような問題に対処すべく、光硬化性樹脂を
選択的に硬化させて所望形状の固体を得る方法が
種々提案されている。
In order to deal with such problems, various methods have been proposed for selectively curing photocurable resins to obtain solids with desired shapes.

例えば、上記光硬化性樹脂を用いた固体形成の
一方法として、該光硬化性樹脂に対するマスキン
グに基づく選択的光照射を繰返し行ない、所望の
立体を得る方法が提案されている。これは、まず
極めて浅い光硬化性樹脂に上方又は下方から光照
射をするにあたり、得ようとする立体物の断面形
状に相当する光透過部分を有したマスキングフイ
ルムを光硬化性樹脂の手前に配置し、この照射に
より所望断面形状の薄層硬化部分を得、これに連
続する断面形状について、光硬化性樹脂の深さを
僅かづつ増しマスキングフイルムを順次取替えて
は光照射を繰返すことにより、所望の立体を得る
方法である。
For example, as one method for forming a solid using the photocurable resin, a method has been proposed in which the photocurable resin is repeatedly selectively irradiated with light based on masking to obtain a desired three-dimensional shape. This involves first irradiating a very shallow photocurable resin with light from above or below, and then placing a masking film in front of the photocurable resin with a light-transmitting part corresponding to the cross-sectional shape of the three-dimensional object to be obtained. Then, by this irradiation, a thin layer cured part with the desired cross-sectional shape is obtained, and for the continuous cross-sectional shape, the depth of the photocurable resin is increased little by little, the masking film is sequentially replaced, and the light irradiation is repeated to obtain the desired shape. This is a method to obtain a solid.

また、他の方法としては、連続した硬化部分が
得られる厚みの光硬化性流動物質層に対し、所望
形状の固体の断面形状に従つて光エネルギ集中照
射を行ない、所定の硬化部分を形成した後に該硬
化部分表面に新たな光硬化性流動物質層を付加
し、該硬化部分に連続する断面形状について再び
エネルギ集中照射を行ない新たな硬化部分を形成
する、という操作を繰返し行なつて所望の立体を
得る方法が提案されている。
Another method is to irradiate a photocurable fluid material layer with a thickness such that a continuous hardened part is formed by concentrated light energy in accordance with the cross-sectional shape of a solid having a desired shape to form a predetermined hardened part. Afterwards, a new layer of photocurable fluid material is added to the surface of the cured portion, and concentrated energy is irradiated again on the cross-sectional shape continuous to the cured portion to form a new cured portion.This operation is repeated to form a new cured portion. A method to obtain a solid object has been proposed.

上記の各種方法においては、所望形状の固体を
保持する基盤面、例えば容器の底壁又は該固体を
支持するベースプレート等と前記固体とが強固に
固着している場合があり、これにより基盤面と固
体との分離に手間取り、固体を破損することもあ
つた。
In the various methods described above, the solid may be firmly attached to the base surface that holds the solid in the desired shape, for example, the bottom wall of a container or the base plate that supports the solid, and this causes the base surface to Separation from the solids took time and sometimes resulted in damage to the solids.

更に、基盤面に対し極めて僅かな面積で接する
球体の如き形状の固体を製作する途上において、
硬化部分が、基盤面から剥離し、又は基盤面に対
し傾斜して、前記固体の造形を継続し得ないとい
う問題があつた。
Furthermore, in the process of manufacturing a solid body shaped like a sphere that touches the base surface with an extremely small area,
There was a problem in that the hardened portion peeled off from the base surface or was tilted with respect to the base surface, making it impossible to continue modeling the solid.

本発明の目的は、上記問題点を解決し、所望形
状の固体形成を確実に行なうことができ、しかも
固体形成後における該固体と基盤面との分離を、
該固体の破損を伴うことなく容易に行ない得る光
学的造形法を提供することにある。
An object of the present invention is to solve the above-mentioned problems, to be able to reliably form a solid in a desired shape, and to prevent separation of the solid from the base surface after the solid has been formed.
The object of the present invention is to provide an optical modeling method that can be easily performed without causing damage to the solid.

問題点を解決するための手段 本発明の上記目的は、光により硬化する光硬化
性流動物質を容器内に収容し、該流動物質中に光
照射を行ないつつ、該照射箇所を前記容器に対し
水平及び垂直方向に造形対象の形状に応じて相対
移動させ、所望形状の固体を基盤面上に形成する
にあたり、前記基盤面と所望形状固体との間に、
前記固体形成後に除去可能な形状の支持部が介在
するように、該支持部を前記光照射に基づき形成
して前記固体形成を行ない、該形成後に前記支持
部を除去することを特徴とする光学的造形法によ
り達成される。
Means for Solving the Problems The above-mentioned object of the present invention is to house a photocurable fluid material that hardens with light in a container, and while irradiating the fluid material with light, the irradiated area is directed against the container. When forming a solid body of a desired shape on a base surface by relative movement in the horizontal and vertical directions according to the shape of the object to be modeled, between the base surface and the solid body of the desired shape,
The solid state is formed by forming the support part based on the light irradiation so that the support part has a shape that can be removed after the formation of the solid body, and the support part is removed after the formation of the solid body. Achieved by a special modeling method.

前記固体形成後に除去可能な形状の支持部は、
前記所望形状固体に対し小さい接触面積を有し、
該固体を支持し得るように1箇所又は複数個所に
設けられたものとすることができる。
The support portion has a shape that is removable after the solid formation,
having a small contact area with the desired shape solid;
It can be provided at one location or at multiple locations so as to be able to support the solid.

前記光硬化性流動物質としては、光照射により
硬化する種々の物質を用いることができ、例えば
変性ポリウレタンメタクリレート、オリゴエステ
ルアクリレート、ウレタンアクリレート、エポキ
シアクリレート、感光性ポリイミド、アミノアル
キドを挙げることができる。
As the photocurable fluid substance, various substances that are cured by light irradiation can be used, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd.

該光硬化性流動物質に、予め顔料、セラミツク
ス粉、金属粉等の改質用材料を混入したものを使
用してもよい。
The photocurable fluid substance may be mixed with a modifying material such as pigment, ceramic powder, metal powder, etc. in advance.

前記光としては、使用する光硬化性物質に応
じ、可視光、紫外線等種々の光を用いることがで
きる。該光は通常の光としてもよいが、レーザ光
とすることにより、エネルギレベルを高めて造形
時間を短縮し、良好な集光性を利用して造形精度
を向上させ得るという利点を得ることができる。
As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable material used. Although the light may be ordinary light, using laser light has the advantages of increasing the energy level, shortening the modeling time, and improving the modeling accuracy by utilizing good light focusing. can.

実施例 以下に、本発明の実施例を、添付図面を参照し
つつ説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明の1実施例にかかる光学的造
形法を実施するための装置を用いて、所望形状の
固体を製作する工程を段階的に示す。該装置は、
光硬化性流動物質Aを収容する容器(図示せず)
と、上下方向に延びる支持棒1の下端部に支持さ
れたベースプレート2と、前記容器上方の光源か
ら発せられた光を該容器中の流動物質A上面近傍
で点状に収束させる光収束器4とを備え、流動物
質Aに対し光照射位置を相対的に移動させるよう
になつている。光源及び光収束器4は、容器外に
固定されており、該容器に対し、主に水平方向に
移動する。光収束器4は、上記凸レンズに換え
て、例えば凹面鏡とすることもできる。また、ベ
ースプレート2を支持する支持棒1の上端部も容
器外に固定され、該容器に対し垂直方向に移動す
る。
FIG. 1 shows a step-by-step process of manufacturing a solid body of a desired shape using an apparatus for carrying out an optical modeling method according to an embodiment of the present invention. The device is
Container containing photocurable fluid material A (not shown)
, a base plate 2 supported by the lower end of the support rod 1 extending in the vertical direction, and a light concentrator 4 for converging the light emitted from the light source above the container into a point near the upper surface of the fluid substance A in the container. The light irradiation position is moved relative to the fluid material A. The light source and the light concentrator 4 are fixed outside the container and move mainly in the horizontal direction with respect to the container. The light converging device 4 may be, for example, a concave mirror instead of the convex lens. Further, the upper end of the support rod 1 that supports the base plate 2 is also fixed outside the container and moves in a direction perpendicular to the container.

上記光源及び光収束器4の移動制御、又は支持
棒1の移動制御は、NC等の自動制御や人手によ
る制御等、適宜に行なうことができる。
The movement control of the light source and light converging device 4 or the movement control of the support rod 1 can be performed as appropriate, such as automatic control such as NC, manual control, or the like.

本装置を用いて、例えば球に近似した形状の固
体の造形を行なうには、まず、光硬化性流動物質
Aを容器内に収容し、ベースプレート2を、上方
からの光照射により流動物質A上面からベースプ
レート2上面に及ぶ連続した硬化部分が得られる
深さとなるように流動物質A中に沈め、位置決め
する。そののち、流動物質の硬化に必要なエネル
ギレベルの光を光源から発し、光収束器4でもつ
て該光を点状に収束させつつベースプレート2と
上述の球状固体との間に、該固体を支持する支持
部3に対応する硬化部分を得る(第1図a参照)。
In order to model a solid object having a shape similar to a sphere using this device, first, the photocurable fluid material A is placed in a container, and the base plate 2 is irradiated with light from above so that the upper surface of the fluid material A is shaped. It is immersed in the fluid material A and positioned so that a continuous hardened portion extending from the base plate 2 to the upper surface of the base plate 2 is obtained. After that, a light source emits light with an energy level necessary for hardening the fluid substance, and the light is focused into a point by the light concentrator 4 while supporting the solid between the base plate 2 and the above-mentioned spherical solid. A hardened portion corresponding to the supporting portion 3 is obtained (see FIG. 1a).

前記硬化部分が得られたのち、流動物質A上面
から該硬化部分上面までの深さが、これら両面間
に及ぶ連続した硬化部分が光照射により得られる
深さ、即ち前記硬化部分を形成したと同じ深さと
なるようベースプレート2を沈降させ、前述と同
様の光収束器4を介する集中光照射を選択的に行
なうことにより、前記硬化部分上に新たにこれに
連続する硬化部分を得る。この操作を繰り返して
得られる支持部3は、垂直に延びる径の細い複数
本の柱体により構成されている。更に、これらベ
ースプレート2の沈降と、光照射による硬化部分
の形成を繰り返し行ない(第1図b参照)、支持
部3の上に球状固体5を形成する(第1図c参
照)。このように、支持部3が固体5とベースプ
レート2との間に介在するように固体形成を行な
うため、丸い底面を有する硬化部分がベースプレ
ート2から剥離したり、該ベースプレート2に対
し傾斜したりすることがなく、球状固体5の形成
を円滑且つ確実に行なうことができる。
After the hardened portion is obtained, the depth from the upper surface of the fluid substance A to the upper surface of the hardened portion is the depth that a continuous hardened portion extending between these two surfaces is obtained by light irradiation, that is, the hardened portion has been formed. By lowering the base plate 2 to the same depth and selectively irradiating the base plate 2 with concentrated light through the light converging device 4 similar to that described above, a new hardened portion continuous to the hardened portion is obtained on top of the hardened portion. The support portion 3 obtained by repeating this operation is constituted by a plurality of vertically extending columns with a narrow diameter. Further, the settling of the base plate 2 and the formation of a hardened portion by light irradiation are repeated (see FIG. 1b), and a spherical solid 5 is formed on the support portion 3 (see FIG. 1c). In this way, since the solid is formed so that the support part 3 is interposed between the solid 5 and the base plate 2, the hardened part with the rounded bottom surface may peel off from the base plate 2 or be inclined with respect to the base plate 2. Therefore, the spherical solid 5 can be formed smoothly and reliably.

該固体5の形成後、支持部3の部分を破断して
ベースプレート2から固体5を分離する(第1図
d参照)。支持部3は、上述の如き細い柱体によ
り構成されているため、ベースプレート2に対す
る接触面積が小さく、容易に該ベースプレート2
上で破断することができる。また、支持部3をベ
ースプレート2との接触面から剥がしてもよい。
いずれにしても、手間を要せず固体5をベースプ
レート2から分離することができ、該固体5の破
損を伴うこともない。次に、ベースプレート2か
ら分離した支持部3を、第1図eに示すように、
固体5から適当な手段で除去する。これにより、
破損等の全くない所望の球状固体5を得ることが
できる。
After the solid body 5 is formed, the support part 3 is broken to separate the solid body 5 from the base plate 2 (see FIG. 1d). Since the support part 3 is constituted by the thin columnar body as described above, the contact area with the base plate 2 is small, and the support part 3 is easily attached to the base plate 2.
Can be broken at the top. Further, the support portion 3 may be peeled off from the contact surface with the base plate 2.
In any case, the solid 5 can be separated from the base plate 2 without any effort, and the solid 5 is not damaged. Next, as shown in FIG. 1e, the support part 3 separated from the base plate 2 is
Remove from solid 5 by suitable means. This results in
A desired spherical solid 5 without any damage or the like can be obtained.

上記支持部は、上記形状に限るものではなく、
例えば所望形状固体の下面中心部を支持する1本
の柱体であつてもよい。
The above support part is not limited to the above shape,
For example, it may be a single column supporting the center of the lower surface of a solid having a desired shape.

なお、本発明方法は、上述のように、基盤面と
所望形状固体との間に支持部を介在させて造形を
行なうことを特徴とするものであり、この特徴を
備える限りにおいて、光照射に基づく種々の造形
法に適用されるものである。例えば、容器内の光
硬化流動物質の上面を上昇させつつ光照射により
固体を形成する方法、容器内光硬化性流動物質中
に透明板を有する箱体を浸漬させ該透明板を上昇
させつつ該透明板を介する光照射に基づき固体を
形成する方法、容器の側壁又は底壁の一部を透明
板とし硬化部分を支持する基盤面を該透明板から
遠ざけつつ該透明板を介する光照射に基づき基盤
面に固体を形成する方法などに適用され得る。ま
た、これら方法における光照射は、例えば導光体
を用いた光照射、複数の光源から発せられる光を
一点に交差させる光照射、光軸に垂直な断面が環
状の光量分布を有する光の照射などを採用でき
る。
As mentioned above, the method of the present invention is characterized in that modeling is performed by interposing a support between the base surface and the desired shape solid, and as long as this feature is provided, light irradiation is not required. It is applied to various modeling methods based on For example, a method of forming a solid by light irradiation while raising the upper surface of a photocurable fluid material in a container, and a method of immersing a box body having a transparent plate in a photocurable fluid material in a container and raising the transparent plate while forming a solid. A method of forming a solid based on light irradiation through a transparent plate, based on light irradiation through the transparent plate while using a part of the side wall or bottom wall of the container as a transparent plate and keeping the base surface supporting the cured portion away from the transparent plate. It can be applied to methods of forming a solid on a base surface. In addition, light irradiation in these methods includes, for example, light irradiation using a light guide, light irradiation in which light emitted from multiple light sources intersect at one point, and light irradiation in which the cross section perpendicular to the optical axis has an annular light intensity distribution. etc. can be adopted.

発明の効果 以上から明らかなように、本発明方法によれ
ば、つぎの効果を得ることができる。即ち、基盤
面と所望形状固体との間に、該固体形成後に除去
可能な形状の支持部が介在するように該支持部を
光照射に基づき形成して固体形成を行ない、該支
持部を除去するので、上記所望形状の固体形成を
確実に行なうことができ、しかも固体形成後にお
ける該固体と基盤面との分離を、該固体の破損を
伴うことなく容易に行ない得る。
Effects of the Invention As is clear from the above, according to the method of the present invention, the following effects can be obtained. That is, solid formation is performed by forming a supporting part based on light irradiation so that a supporting part with a shape that can be removed after the solid is formed is interposed between the base surface and the desired-shaped solid, and the supporting part is removed. Therefore, it is possible to reliably form the solid in the desired shape, and furthermore, after the solid has been formed, the solid can be easily separated from the base surface without damaging the solid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜eは本発明の1実施例にかかる光学
的造形法を段階的に示す説明図である。 1……支持棒、2……ベースプレート(基盤
面)、3……支持部、4……光収束器、5……所
望形状固体、A……光硬化性流動物質。
FIGS. 1a to 1e are explanatory diagrams showing step-by-step an optical modeling method according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Support rod, 2...Base plate (base surface), 3...Support part, 4...Light concentrator, 5...Solid in desired shape, A...Photocurable fluid material.

Claims (1)

【特許請求の範囲】[Claims] 1 光により硬化する光硬化性流動物質を容器内
に収容し、該流動物質中に光照射を行ないつつ、
該光照射箇所を前記容器に対し水平及び垂直方向
に造形対象の形状に応じて相対移動させ、所望形
状の固体を基盤面上に形成するにあたり、前記基
盤面と所望形状固体との間に、前記固体形成後に
除去可能な形状の支持部が介在するように、該支
持部を前記光照射に基づき形成して前記固体形成
を行ない、該形成後に前記支持部を除去すること
を特徴とする光学的造形法。
1. A photocurable fluid material that is hardened by light is placed in a container, and while irradiating light into the fluid material,
When the light irradiation point is moved horizontally and vertically relative to the container according to the shape of the object to be modeled to form a solid of the desired shape on the base surface, between the base surface and the solid of the desired shape, The solid state is formed by forming the support part based on the light irradiation so that the support part has a shape that can be removed after the formation of the solid body, and the support part is removed after the formation of the solid body. Modeling method.
JP63205078A 1988-08-18 1988-08-18 Optical shaping method Granted JPH0252725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63205078A JPH0252725A (en) 1988-08-18 1988-08-18 Optical shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63205078A JPH0252725A (en) 1988-08-18 1988-08-18 Optical shaping method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP4313744A Division JP2600047B2 (en) 1992-11-24 1992-11-24 Optical modeling
JP4313743A Division JPH0832433B2 (en) 1992-11-24 1992-11-24 Optical modeling method

Publications (2)

Publication Number Publication Date
JPH0252725A JPH0252725A (en) 1990-02-22
JPH0533900B2 true JPH0533900B2 (en) 1993-05-20

Family

ID=16501059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63205078A Granted JPH0252725A (en) 1988-08-18 1988-08-18 Optical shaping method

Country Status (1)

Country Link
JP (1) JPH0252725A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251419A (en) * 1989-03-27 1990-10-09 Sony Corp Three-dimensional shape formation
BE1008128A3 (en) * 1994-03-10 1996-01-23 Materialise Nv Method for supporting an object manufactured by stereo lithography or any rapid prototype manufacturing and method for manufacturing the taking used steunkonstruktie.
US6712856B1 (en) 2000-03-17 2004-03-30 Kinamed, Inc. Custom replacement device for resurfacing a femur and method of making the same
JP2016064963A (en) * 2014-09-26 2016-04-28 Toto株式会社 Ceramic molding and method for producing the same
CN104827666B (en) * 2015-04-30 2018-06-19 北京敏速自动控制设备有限公司 3D printing method for supporting and system
JP6876915B2 (en) * 2016-07-07 2021-05-26 富士フイルムビジネスイノベーション株式会社 Modeling equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method
JPH0222035A (en) * 1988-03-08 1990-01-24 Osaka Prefecture Optical shaping

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method
JPH0222035A (en) * 1988-03-08 1990-01-24 Osaka Prefecture Optical shaping

Also Published As

Publication number Publication date
JPH0252725A (en) 1990-02-22

Similar Documents

Publication Publication Date Title
JPS6340650B2 (en)
JPH054898B2 (en)
JPS62275734A (en) Method for forming solid
JPH0533901B2 (en)
JPH02153722A (en) Optical molding method
JPH0533900B2 (en)
JPH0479828B2 (en)
JPH01228828A (en) Optical shaping method
JPH0994883A (en) Method and apparatus for optically shaping three-dimensional shaped article
JP3782049B2 (en) Stereolithography method and apparatus therefor
JP3306470B2 (en) Optical modeling
JP2600047B2 (en) Optical modeling
JPH0493228A (en) Method for forming three-dimensional matter
JPH04168036A (en) Automatic shaping device
JPH06114946A (en) Optically molding method
JPH0562579B2 (en)
JPH0479827B2 (en)
JPH02188228A (en) Optical shaping method
JPH01237123A (en) Light flux scanning method in optical shaping method
JPH03136834A (en) Three-dimensional structure and preparation thereof
JPH02103127A (en) Method and apparatus for forming three-dimensional configuration
KR100236566B1 (en) Multi photosolidification method and apparatus
JPH068341A (en) Optical shaping method
JPH01237122A (en) Optical shaping method for thick wall section
JPH0224120A (en) Optical shaping method