JPH02153722A - Optical molding method - Google Patents

Optical molding method

Info

Publication number
JPH02153722A
JPH02153722A JP1249626A JP24962689A JPH02153722A JP H02153722 A JPH02153722 A JP H02153722A JP 1249626 A JP1249626 A JP 1249626A JP 24962689 A JP24962689 A JP 24962689A JP H02153722 A JPH02153722 A JP H02153722A
Authority
JP
Japan
Prior art keywords
light
photocurable
substance
container
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1249626A
Other languages
Japanese (ja)
Inventor
Yoji Marutani
洋二 丸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Original Assignee
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture filed Critical Osaka Prefecture
Priority to JP1249626A priority Critical patent/JPH02153722A/en
Publication of JPH02153722A publication Critical patent/JPH02153722A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To easily manufacture even if it is in a complex configuration by conducting light irradiation to an optical curing fluid substance via an optical conductor or converging lens or the like such that the optical energy required in curing is centered thereat in the form of spots, and making it relative movement to an accommodation vessel for the substance of the converged part. CONSTITUTION:At first, an optical curing fluidized substance 4 is put in a proper quantity into a vessel 1, and the light from a light source device 2 is allowed to emit in a state wherein the tip 3a of an optical conductor 3 is in the vicinity of the bottom of the vessel 1. Since the light is converged in the form of spots in front of the emittance end, the cure of the substance 4 can be performed at only the light converged part by adjusting the incident light strength. In this state, the cured part being put into contact with the bottom of the vessel 1 is formed in shifting the vessel 1 by a position control device 5. Subsequently, after the vessel 1 is descended slightly, or being descended gradually in order to be shifted in a horizontal direction, a successive cured part is formed in a curing part. In this manner, the vessel 1 is being shifted appropriately so as to form a cured part successively, thereby obtaining the solid 6 of a desired configuration.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光及び光硬化性流動物質を用いて行なう光学
的造形法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to optical modeling methods using light and photocurable fluid materials.

従来の技術及びその問題点 従来、鋳型製作時に必要とされる製品形状に対応する模
型、或いは切削加工の倣い制御用又は形彫放電加工電極
用の模型の製作は、手加工により、或いはNCフライス
盤等を用いたNC切削加工により行なわれていた。しか
しながら、手加工による場合は多くの手間と熟練とを要
するという問題が存し、NC切削加工による場合は、刃
物の刃先形状変更のための交換や磨耗等を考慮した複雑
な工作プログラムを作る必要があると共に、加工面に生
じた段を除くために更に仕上げ加工を必要とする場合が
あるという問題が存していた。
Conventional technology and its problems Traditionally, models corresponding to the product shape required during mold production, or models for tracing control in cutting or die-sinking electrical discharge machining electrodes, have been produced by hand processing or using an NC milling machine. This was done by NC cutting using, etc. However, when using manual machining, there is a problem in that it requires a lot of time and skill, and when using NC machining, it is necessary to create a complex machining program that takes into account replacement and wear to change the shape of the cutting edge of the blade. In addition, there is a problem in that additional finishing machining may be required to remove steps formed on the machined surface.

このような問題の解決を図るべく光硬化性樹脂薄層をマ
スキングにより選択的に繰返し光照射することにより所
望の立体を得る方法が提案されている。これは、先ず極
めて浅い光硬化性樹脂に上方又は下方から光照射をする
にあたり、得ようとする立体物の水平断面形状に相当す
る光透過部分を有したマスキングフィルムを光硬化性樹
脂の手前に配置し、この照射により所望断面形状の薄層
硬化部分を得、これに連続する水平断面形状について、
光硬化性樹脂の深さを僅かづつ増しマスキングフィルム
を順次取替えては光照射を繰返すことにより、所望の立
体を得るものである。しかしながら、この方法において
は、次の難点がある。
In order to solve this problem, a method has been proposed in which a thin photocurable resin layer is selectively and repeatedly irradiated with light by masking to obtain a desired three-dimensional shape. First, when light is irradiated onto a very shallow photocurable resin from above or below, a masking film with a light-transmitting part corresponding to the horizontal cross-sectional shape of the three-dimensional object to be obtained is placed in front of the photocurable resin. A thin layer hardened portion with a desired cross-sectional shape is obtained by this irradiation, and a horizontal cross-sectional shape that continues with this is
A desired three-dimensional shape is obtained by increasing the depth of the photocurable resin little by little, replacing the masking film one by one, and repeating light irradiation. However, this method has the following difficulties.

■)得ようとする立体の水平断面形状毎のマスキングフ
ィルムを製作しなければならず、これに手間と時間とを
特徴とする特に曲面の平滑さを得るには、立体の分割数
を増す必要があり、これに連れてマスキングフィルムが
多数必要となり、製作時間及び費用が膨大となる。
■) It is necessary to produce a masking film for each horizontal cross-sectional shape of the 3D to be obtained, which is characterized by time and effort.In particular, in order to obtain smooth curved surfaces, it is necessary to increase the number of divisions of the 3D. As a result, a large number of masking films are required, which increases production time and costs.

■)高い寸法精度の立体を得るには、マスキング形状を
正確に反映する平行光の照射が必要であり、これに伴っ
て、大型立体の造形の困難性、使用光の種類の限定とい
う制約が生じる。
■) To obtain a three-dimensional object with high dimensional accuracy, it is necessary to irradiate parallel light that accurately reflects the masking shape, which makes it difficult to create a large three-dimensional object and limits the type of light that can be used. arise.

■)照射が平行光で行なわれるので、樹脂の硬化の制御
は、水平方向についてはマスキングで行ない得るが、鉛
直方向においては樹脂による光エネルギーの吸収、すな
わち光エネルギーの到達深度に委ねざるを得ず精度の点
で劣ることとなる。
■) Since irradiation is performed with parallel light, the curing of the resin can be controlled in the horizontal direction by masking, but in the vertical direction, it must be left to the absorption of light energy by the resin, that is, the depth at which the light energy reaches. Therefore, the accuracy will be inferior.

■)マスキングにより照射光の一部を遮るので、光の利
用効率が低い。
■) Light usage efficiency is low because masking blocks part of the irradiated light.

■)目的形状の水平断面全体を同時に光照射し硬化させ
るので、収縮歪が全体的に一斉に生じ、割れや変形を発
生させるおそれがある。
(2) Since the entire horizontal section of the target shape is irradiated with light and cured at the same time, shrinkage strain occurs all at once, which may cause cracking or deformation.

本発明は、これら従来技術の問題点を解消し、鋳型製作
用、倣い加工用、形彫放電加工用の模型を、たとえ複雑
な形状であっても刃物等工具の交換を必要とすることな
く容易に且つ精度よく製作することができるのみならず
、他の種々の定形物の製造にも適用することができ、し
かも製作に要する時間及び費用が少なくて済む造形法を
提供することを目的とする。
The present invention solves the problems of these conventional techniques, and allows models for mold making, copying machining, and die-sinking electric discharge machining to be made without the need to replace tools such as cutters, even if the shape is complex. The purpose is to provide a modeling method that not only can be manufactured easily and accurately, but also can be applied to the manufacturing of various other shaped objects, and which requires less time and cost for manufacturing. do.

問題点を解決するための手段 本発明の前記目的は、光により硬化する光硬化性流動物
質を容器内に収容し、光エネルギーが前記物質の硬化に
必要なエネルギーレベルをもって点状に集中するように
光照射を行ないつつ、該光エネルギー集中箇所を前記容
器に対し水平及び垂直方向に造形対象の形状に応じて相
対移動させ所望形状の固体を得ることを特徴とする光学
的造形法により達成される。
Means for Solving the Problems The object of the present invention is to accommodate a photocurable fluid material that is cured by light in a container, so that the light energy is concentrated in a dot shape with an energy level necessary for curing the material. This is achieved by an optical modeling method characterized in that while irradiating light with light, the light energy concentration area is moved relative to the container in horizontal and vertical directions according to the shape of the object to be modeled to obtain a solid with a desired shape. Ru.

前記光硬化性物質に対し、硬化に必要なエネルギーレベ
ルをもって点状に集中して光照射を行なうには、前記光
硬化性流動物質中に光出射端を実質上半球状とした導光
体を挿入し、該導光体を通じて光照射を行なうことによ
り前記光出射端前方に光エネルギーの集中箇所を得るこ
とができ、前記容器と該光出射端とを相対的に移動しつ
つ該導光体から光照射をなすことにより所望形状の固体
を得ることができる。
In order to irradiate the photocurable material with concentrated light in a point-like manner at an energy level necessary for curing, a light guide having a substantially hemispherical light emitting end is provided in the photocurable fluid material. By inserting the light guide and irradiating light through the light guide, it is possible to obtain a concentrated area of light energy in front of the light output end, and while relatively moving the container and the light output end, the light guide A solid having a desired shape can be obtained by irradiating light from the solid material.

前記導光体は、石英、ガラス又は合成樹脂のファイバ若
しくはロッドとすることができる。紫外光を用いる場合
は、石英製のものとするのが望ましい。
The light guide may be a fiber or rod made of quartz, glass, or synthetic resin. When using ultraviolet light, it is preferable to use quartz.

前記所望形状の固体の形成は、前記光硬化性流動物質を
、上方からの光照射により該物質上下面に及ぶ連続した
硬化部分が得られる深さとなるように容器に収容し、該
光硬化性物質の上方から光学レンズを介して光を照射す
ることにより光エネルギーの集中箇所を前記物質中に位
置せしめて該物質上下面に及ぶ硬化部分を形成し、更に
前記光硬化性物質を、前記硬化部分上に前記深さに相当
する深さをなすように付加し、該光硬化性物質の上方か
ら前記物質の付加された深さ部分へ前記光エネルギーの
集中箇所を移動させて前記硬化部分から連続して延びた
硬化部分を形成し、これら光硬化性物質の付加及び硬化
部分の形成を繰り返すことにより行なうことができる。
The formation of the solid in the desired shape is achieved by placing the photocurable fluid material in a container at a depth that allows a continuous hardened portion covering the upper and lower surfaces of the material to be obtained by irradiating light from above; By irradiating light from above the substance through an optical lens, a point where light energy is concentrated is located in the substance to form a cured portion extending over the upper and lower surfaces of the substance, and the photocurable substance is further cured. The photocurable material is applied to the part to a depth corresponding to the depth, and the concentrated part of the light energy is moved from above the photocurable material to the added depth part of the material to remove the light from the cured part. This can be achieved by forming a continuously extending cured portion and repeating the addition of the photocurable substance and the formation of the cured portion.

このような繰返しによる固体の形成は、例えば、上下方
向に透光性を有する中空又は中実の有底体を容器内の前
記光硬化性流動物質中に浸漬することにより該有底体の
底面と前記容器底の上面との間に、上方からの光照射(
例えばレーザ光照射)により前記物質上下面に及ぶ連続
した硬化部分が得られる深さとなるように前記物質を収
容し、前記有底体の上方から光学レンズを介して光を照
射することにより光エネルギーの集中箇所を前記物質中
に位置せしめて前記底面及び上面間の前記物質上下面に
及ぶ硬化部分を形成し、その後前記有底体を若干引き上
げることにより前記硬化部分上面と前記有底体底面との
間に、前記深さに相当する深さをなすように前記有底体
周囲の前記物質を付加し、前記有底体の上方から前記物
質の付加された部分へ前記光エネルギーの集中箇所を移
動させて前記硬化部分から連続して延びた硬化部分を形
成し、これら光硬化物質の付加及び硬化部分の形成を繰
返して所望形状の固体を形成するというように行なうこ
とができる。
Formation of a solid through such repetition can be achieved, for example, by immersing a hollow or solid bottomed body that is translucent in the vertical direction into the photocurable fluid material in a container, so that the bottom surface of the bottomed body is immersed. and the upper surface of the bottom of the container, from above (
The material is housed at a depth that allows a continuous hardened portion to be obtained over the upper and lower surfaces of the material by laser beam irradiation, and light is irradiated from above the bottomed body through an optical lens to generate optical energy. by locating a concentrated point in the substance to form a hardened part extending over the upper and lower surfaces of the substance between the bottom and top surfaces, and then by slightly pulling up the bottomed body, the upper surface of the hardened part and the bottom face of the bottomed body are separated. During the process, the substance is added around the bottomed body to a depth corresponding to the depth, and the light energy is concentrated from above the bottomed body to the added part of the substance. It is possible to form a cured portion extending continuously from the cured portion by moving the photocurable material, and repeat the addition of the photocurable material and the formation of the cured portion to form a solid having a desired shape.

前記光硬化性流動物質としては、光照射により硬化する
種々の物質を用いることができ、例えば変性ポリウレタ
ンメタクリレート、オリゴエステルアクリレート、ウレ
タンアクリレート、エポキシアクリレート、感光性ポリ
イミド、アミノアルキドを挙げることができる。
As the photocurable fluid substance, various substances that are cured by light irradiation can be used, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd.

前記光としては、使用する光硬化性物質に応じ、可視光
、紫外光等種々の光を用いることができる。
As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable material used.

照光は通常の光としてもよいが、レーザ光とすることに
より、エネルギーレベルを高めて造形時間を短縮し、良
好な集光性を利用して造形精度を向上させ得るという利
点を得ることができる。
The illumination may be regular light, but laser light has the advantage of increasing the energy level, shortening the molding time, and improving the molding accuracy by utilizing good light focusing. .

また、前記光硬化性流動物質に、予め顔料、セラミック
ス粉、金属粉等の改質用材料を混入したものを使用して
もよい。
Alternatively, the photocurable fluid substance may be mixed with a modifying material such as pigment, ceramic powder, metal powder, etc. in advance.

実施例 以下に、本発明の実施例を添付図面と共に説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明方法を実施するための装置の1例を示し
ている。該装置は、光硬化性流動物質(4)を収容する
容器(1)と、光源装置(2)と、該光源装置から発せ
られる光を容器(1)中の光硬化性物質(4)に導く導
光体(3)と、容器(1)及び導光体(3)を相対的に
移動させる位置制御装置(5)とを備えている。容器(
1)は、得ようとする造形体を収容しうる寸法形状を有
した適宜のものとすることができる。光源装置(2)及
び導光体(3)は、容器(1)外に固定されている。導
光体(3)は石英ファイバであり、光の入射効率向上及
び出射時の点状集光のため、両端は酸水素炎によって溶
融され半球状となっている。位置制御装置(5)は容器
(1)を支持しており、容器(1)を水平及び垂直方向
に制御しつつ移動するようにされている。この制御は、
NC等の自動制御や入手による制御、或いは定速化等、
適宜に行なうことができる。
FIG. 1 shows an example of an apparatus for carrying out the method of the invention. The device includes a container (1) containing a photocurable fluid material (4), a light source device (2), and a light source device that directs light emitted from the light source device to the photocurable material (4) in the container (1). It includes a light guide (3) that guides the light guide, and a position control device (5) that relatively moves the container (1) and the light guide (3). container(
1) may be any suitable size and shape that can accommodate the object to be obtained. The light source device (2) and the light guide (3) are fixed outside the container (1). The light guide (3) is a quartz fiber, and both ends thereof are fused by an oxyhydrogen flame to form a hemispherical shape in order to improve the efficiency of light incidence and to collect light into a point shape when emitted. The position control device (5) supports the container (1) and is configured to control and move the container (1) in horizontal and vertical directions. This control is
Automatic control such as NC, control by acquisition, or constant speed, etc.
This can be done as appropriate.

本装置を用いて造形を行なうには、先ず容器(1)に光
硬化性物質(4)を適当量入れ、導光体(3)の先端(
3a)を容器(1)底面に接近させた状態で光源装置(
2)からの光を出射させる。光は出射端前方に点状に集
中するので入射光強度を調節することにより該光集中個
所のみで物質(4)の硬化を行なわせることができる。
To perform modeling using this device, first put an appropriate amount of the photocurable material (4) into the container (1), and then put the tip of the light guide (3) into the container (1).
3a) close to the bottom of the container (1), place the light source device (
2) to emit light from. Since the light is concentrated in a dotted manner in front of the output end, by adjusting the intensity of the incident light, the material (4) can be cured only at the point where the light is concentrated.

この状態で位置制御装置(5)により容器(1)を移動
させて容器(1)底面に接した硬化部分を形成する。続
いて容器(1)を若干下降させた後、或いは漸次下降さ
せつつ、水平方向に移動させて前記硬化部分に連続する
硬化部分を形成する。このようにして容器(1)を適切
に移動させつつ硬化部分を連続的に形成していくことに
より、所望形状の固体(6)を得ることができる。また
得ようとする造形体の形状によっては、第1図に示すよ
うに、適切な台(7)を容器(1)中に配置しておき、
容器底面からの造形とは別個に台(7)上からも造形を
行ない、2つの硬化部分を連続せしめてもよい。
In this state, the container (1) is moved by the position control device (5) to form a hardened portion in contact with the bottom surface of the container (1). Subsequently, the container (1) is lowered slightly or gradually while being moved in the horizontal direction to form a hardened portion that is continuous with the hardened portion. In this way, by appropriately moving the container (1) and continuously forming hardened portions, it is possible to obtain a solid (6) having a desired shape. Depending on the shape of the object to be obtained, an appropriate stand (7) may be placed in the container (1) as shown in Figure 1.
Separately from the modeling from the bottom of the container, modeling may also be performed from the top of the table (7), so that the two hardened portions are made to be continuous.

位置制御装置は容器(1)と導光体(3)とを相対的に
水平及び垂直に移動させうるようにされていればよく、
前記実施例のものに代えて、導光体(3)を移動させる
もの、容器(1)、導光体(3)を水平方向、垂直方向
のいずれか一方に分担させて移動させるもの等任意に構
成することができる。
The position control device only needs to be able to move the container (1) and the light guide (3) relatively horizontally and vertically,
In place of the above embodiments, it is possible to use a device that moves the light guide (3), a device that moves the container (1) and the light guide (3) in either the horizontal direction or the vertical direction, etc. It can be configured as follows.

次に本発明方法の他の実施例を第2図に沿って説明する
。先ず第2図(a)に示すように光硬化流動物質(4)
を適当な深さとなるように容器(1)に入れ、第2図(
b)に示すように該物質(4)上方から光学レンズ(2
0)を介して光を照射することにより光を物質(4)中
に集中させる。この状態で光の集中箇所を容器に対して
移動し、得ようとする造形体の形状に対応して選択的に
光照射を行なう。このとき物質(4)の深さは、該光照
射により物質(4)上下面に及ぶ連続した硬化部分(6
0)が得られる深さとする。、これ以上の深さとなると
、容器(1)底面から遊離して形成された硬化部分の沈
降等を生じ、正確な造形体が得られなくなる。次に第2
図(C)に示すように、光硬化性物質(4)を更に付加
し、第2図(d)に示すように該物質(4)上方から選
択的に光照射を行なう。このとき物質(4)は、前記硬
化部分(60)上に前述と同様の深さをなすように付加
される。また光照射は、新たに形成される硬化部分(6
1)が、前に形成された硬化部分(60)に連続するよ
うに行なわれる。更に、これら光硬化性物質(4)の付
加及び光照射による硬化部分の形成を繰返すことにより
、所望形状の固体を形成するることができる。光源装置
は複数用いてもよく、光照射をよ光ファイバ等の導光体
を用いて行なってもよいのは勿論である。また選択的に
光照射は、前の例の如く、光源装置と容器とを相対的に
移動させる位置制御装置により行なうことができる。
Next, another embodiment of the method of the present invention will be described with reference to FIG. First, as shown in Fig. 2(a), a photocurable fluid material (4) is applied.
Place it in the container (1) to an appropriate depth, and as shown in Figure 2 (
As shown in b), the optical lens (2) is inserted from above the substance (4).
The light is focused into the substance (4) by irradiating it through the substance (4). In this state, the light concentration point is moved relative to the container, and light is selectively irradiated in accordance with the shape of the object to be obtained. At this time, the depth of the substance (4) is determined by the continuous hardening portion (6
0) is obtained. If the depth exceeds this, the hardened portion formed loosely from the bottom of the container (1) will settle, making it impossible to obtain an accurate shaped object. Then the second
As shown in FIG. 2(C), a photocurable material (4) is further added, and as shown in FIG. 2(d), light is selectively irradiated from above the material (4). At this time, the substance (4) is added onto the hardened portion (60) to the same depth as described above. In addition, the light irradiation is applied to the newly formed hardened portion (6
1) is carried out in succession to the previously formed hardened portion (60). Furthermore, by repeating the addition of the photocurable substance (4) and the formation of a cured portion by light irradiation, a solid having a desired shape can be formed. Of course, a plurality of light source devices may be used, and light irradiation may be performed using a light guide such as an optical fiber. Alternatively, light irradiation can be performed by a position control device that relatively moves the light source device and the container, as in the previous example.

なお、第2図に示した例の変形として、次の例を挙げる
ことができる。先ず、第3図(a)に示すように容器(
1)内の光硬化性流動物質(4)中に、液密な底壁及び
側壁を備えた箱状の有底体(9)を浸漬し、有底体(9
)の底面(90)と容器底の上面(10)との間に一定
深さの光硬化性流動物質(4)が収容された状態とする
。この深さは、前述の如く、上方からの光照射により物
質(4)上下面に及ぶ連続した硬化部分が得られる深さ
である。この状態で、第3図(b)に示すように、有底
体(9)の上方から光学レンズ(20)を介して光を照
射することにより光を物質(4)中に集中させて選択的
に光照射を行ない、硬化部分(60)を得る。このため
、有底体(9)の底壁は照射光に対する透過性を有した
ものとされる。次に第3図(c)に示すように、有底体
(9)を若干上方に引き上げる。これにより、有底体(
9)周囲の物質(4)が、有底体(9)下方に流入し付
加される。該引き上げ量は、既にある硬化部分(60)
上面と有底体底面(90)との間に付加される物質(4
)の深さが、前述と同様の深さとなるように決められる
。また、光源を構成するレンズ(20)と有底体底面(
90)との距離を一定に保つために。光源装置(2)は
有底体(9)と同じ距離上昇せしめられる。その後、第
3図(d)に示すように、有底体(4)上方から硬化部
分(60)に連続した硬化部分(61)が得られるよう
に、前述の如く集光して選択的に光照射を行なう。更に
、このような有底体(9)の引上げによる底面(90)
下方への光硬化性物質(4)の付加及び光照射による硬
化部分の形成を繰返すことにより、所望形状の固体が得
られる。
Note that the following example can be cited as a modification of the example shown in FIG. First, as shown in Figure 3(a), a container (
A box-shaped bottomed body (9) equipped with a liquid-tight bottom wall and side walls is immersed in the photocurable fluid material (4) in 1).
) and the upper surface (10) of the bottom of the container. As described above, this depth is such that a continuous hardened portion covering the upper and lower surfaces of the material (4) can be obtained by irradiating light from above. In this state, as shown in FIG. 3(b), light is irradiated from above the bottomed body (9) through the optical lens (20) to concentrate the light into the substance (4) and select it. Light irradiation is performed to obtain a cured portion (60). Therefore, the bottom wall of the bottomed body (9) is made transparent to the irradiation light. Next, as shown in FIG. 3(c), the bottomed body (9) is pulled up slightly. This results in a bottomed body (
9) The surrounding substance (4) flows below the bottomed body (9) and is added thereto. The amount of lifting is the already hardened portion (60)
A substance (4) added between the top surface and the bottom surface (90) of the bottomed body
) is determined to be the same depth as described above. In addition, the lens (20) constituting the light source and the bottom surface of the bottom body (
90) to maintain a constant distance. The light source device (2) is raised the same distance as the bottomed body (9). Thereafter, as shown in FIG. 3(d), the light is focused selectively as described above so as to obtain a hardened part (61) that is continuous with the hardened part (60) from above the bottomed body (4). Perform light irradiation. Furthermore, the bottom surface (90) by pulling up such a bottomed body (9)
By repeating the addition of the photocurable substance (4) downward and the formation of a cured portion by light irradiation, a solid having a desired shape can be obtained.

この例では、有底体(9)及び光源装置(2)を上昇さ
せるものを示したが、これに代えて、容器(1)を下降
させるようにしてもよいのは勿論である。いずれにして
も、これらの相対位置の変化は適宜の位置決め機構によ
り制御することができる。
In this example, the bottomed body (9) and the light source device (2) are raised, but it goes without saying that the container (1) may be lowered instead. In any case, changes in these relative positions can be controlled by an appropriate positioning mechanism.

第3図の例によれば、硬化すべき光硬化性物質(4)の
液面は有底体底面(90)により覆われるので、空気中
の成分や埃等、容器中の雰囲気による影響を防止しうる
という利点が得られる。
According to the example in FIG. 3, the liquid surface of the photocurable substance (4) to be cured is covered by the bottom surface (90) of the bottomed body, so that it is not affected by the atmosphere in the container such as components in the air or dust. This has the advantage of being preventable.

以下に本発明方法の実験例を示す。Experimental examples of the method of the present invention are shown below.

[実験例1] 出力20mWの光源から発せられた波長3250 のヘ
リウムφカドミウムレーザ光を、焦点距離20mmの石
英レンズで集光し、第2図に示した方法に基づいて、直
径111IIII11高さ14mm、厚さ0、 2ma
+の円筒を造形した。この場合には、光硬化性物質を収
容した容器を垂直軸線まわりに等遠回線させつつ、光源
装置を垂直に上昇させるという簡単な操作で、精度良好
な円筒が得られた。なお、使用した光硬化性物質及び造
形に要した時間を表1に示す。
[Experimental Example 1] A helium φ cadmium laser beam with a wavelength of 3250 nm emitted from a light source with an output of 20 mW was focused using a quartz lens with a focal length of 20 mm, and based on the method shown in Fig. 2, a diameter of 111III11 and a height of 14 mm was obtained. , thickness 0, 2ma
A + cylinder was created. In this case, a highly accurate cylinder was obtained by a simple operation of vertically raising the light source device while making the container containing the photocurable material equidistant around the vertical axis. Note that Table 1 shows the photocurable materials used and the time required for modeling.

[実験例2] 光源として実験例1と同じものを用い、導光体として直
径0.125mmの藤倉電線(株)製石英ファイバ5M
l0O−8Yを使用して、実験例1と同じ寸法形状の円
筒を造形した。石英ファイバは、両端を酸水素炎によっ
て溶融し直径0. 2mm程度の半球状としたものを用
いた。これにより、光硬化性物質を収容した容器を垂直
軸線まわりに回転させつつ、導光体先端を垂直に上昇さ
せるという簡単な操作で、精度良好な円筒が得られた。
[Experiment Example 2] The same light source as in Experiment Example 1 was used, and a 5M quartz fiber manufactured by Fujikura Electric Wire Co., Ltd. with a diameter of 0.125 mm was used as the light guide.
A cylinder having the same dimensions and shape as in Experimental Example 1 was modeled using 10O-8Y. Both ends of the quartz fiber are melted using an oxyhydrogen flame to create a diameter of 0. A hemispherical material with a diameter of about 2 mm was used. As a result, a highly accurate cylinder was obtained by a simple operation of vertically raising the tip of the light guide while rotating the container containing the photocurable material around the vertical axis.

使用した光硬化性物質は実験例1と同じものであり、造
形に要した時間も略同じであった。
The photocurable material used was the same as in Experimental Example 1, and the time required for modeling was also approximately the same.

発明の効果 以上から明らかな如く、本発明によれば、導光体や集光
レンズ等を介して光硬化性流動物質に、硬化に必要な光
エネルギーが点状に集中するように光照射を行ない該集
中箇所を前記物質の収容容器に対して相対移動させるこ
とにより、所望形状の固体を形成することができるので
、たとえ複雑な形状のものであっても、工具の交換や摩
耗を考慮することなく容易に製作することができ、また
、複雑な内孔構造をもった部材をも1回のプロセスで製
造できる。従って製作を数値制御等にiり自動化する場
合にプログラムの簡易化を図ることができる。
Effects of the Invention As is clear from the above, according to the present invention, light irradiation is applied to the photocurable fluid material via a light guide, a condensing lens, etc. so that the light energy necessary for curing is concentrated in a dotted manner. By moving the concentration point relative to the container containing the substance, it is possible to form a solid with a desired shape, so even if the shape is complex, tool replacement and wear are taken into account. It can be easily manufactured without any problems, and even members with complicated internal hole structures can be manufactured in a single process. Therefore, when automating production using numerical control or the like, the program can be simplified.

本発明では特に、照射光を点状に集中するので、該集中
箇所で高エネルギーが得られ硬化の迅速化が可能となる
。また該集中箇所で硬化が行なわれるので、水平方向の
みならず鉛直方向にも硬化領域の正確な制御が可能とな
り造形精度が良好となる。
In particular, in the present invention, since the irradiation light is concentrated in a dotted manner, high energy can be obtained at the concentrated point, making it possible to speed up curing. Further, since the curing is performed at the concentrated areas, it is possible to accurately control the curing area not only in the horizontal direction but also in the vertical direction, resulting in good modeling accuracy.

従って、前述の従来の例の如きマスキングフィルムを必
要とせず、造形に必要な時間及び費用が少なくて済む。
Therefore, there is no need for a masking film as in the conventional example described above, and the time and cost required for modeling can be reduced.

しかもマスキングによる遮光がないので光の利用効率が
良い。また硬化反応は常に狭い一点で生じるので、光硬
化硬化質が硬化に伴う収縮をしても、収縮による体積減
少分は周囲の未硬化物質の供給で補われ、従って広範囲
を同時に硬化させる場合の如き硬化歪や割れ等の不都合
を生じない。
Moreover, since there is no light blocking due to masking, the efficiency of light utilization is high. Furthermore, since the curing reaction always occurs at one narrow point, even if the photocurable material shrinks during curing, the volume loss due to shrinkage is compensated for by the supply of surrounding uncured materials. It does not cause problems such as hardening distortion and cracking.

本発明方法は、以上の説明から理解されるように鋳型製
作用、倣い加工用、形彫放電加工電極用の模型の製作の
みならず、他の種々の定形物の製造にも適用しうるちの
である。更に、光硬化性物質中に顔料、金属粉、セラミ
ック粉等を分散させて造形を行なえば、装飾効果、導電
性、耐摩耗性など種々の特徴を備えた製品を製造するこ
とも可能である。この場合には、造形された物体は、模
型や母型としては勿論、種々の用途に応じて使用するこ
とができる。
As can be understood from the above description, the method of the present invention can be applied not only to the production of molds, copying machining, and die-sinking electrical discharge machining electrode models, but also to the production of various other shaped products. It is. Furthermore, by dispersing pigments, metal powders, ceramic powders, etc. in photocurable materials and modeling them, it is possible to manufacture products with various characteristics such as decorative effects, conductivity, and wear resistance. . In this case, the shaped object can be used not only as a model or a matrix, but also for various purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の詳細な説明するためのもので、第1図は、
1例を実施するための装置を概略的に示す縦断正面図、
第2図は他の例の実施状況を順番に示す説明図、第3図
は更に他の例の実施状況を順番に示す説明図である。(
1)・・・・・・容器(2)・・・・・・光源装置 (3)・・・・・・導光体 (4)・・・・・・光硬化性流動物質 (6)・・・・・・所望形状の固体 (9)・・・・・・有底体 (60)、(61)・・・・・・硬化部分(90)・・
・・・・有底体底面 (以 上)
The figures are for detailed explanation of the present invention, and FIG.
A longitudinal sectional front view schematically showing an apparatus for carrying out one example,
FIG. 2 is an explanatory diagram sequentially showing the implementation status of another example, and FIG. 3 is an explanatory diagram sequentially showing the implementation status of still another example. (
1) Container (2) Light source device (3) Light guide (4) Photocurable fluid material (6) ...Solid with desired shape (9) ...Bottomed body (60), (61) ...Hardened portion (90) ...
・・・Bottom surface of bottomed body (and above)

Claims (5)

【特許請求の範囲】[Claims] (1)光により硬化する光硬化性流動物質を容器内に収
容し、光エネルギーが前記物質の硬化に必要なエネルギ
ーレベルをもって点状に集中するように光照射を行ない
つつ、該光エネルギー集中箇所を前記容器に対し水平及
び垂直方向に造形対象の形状に応じて相対移動させ所望
形状の固体を得ることを特徴とする光学的造形法。
(1) A photocurable fluid substance that is cured by light is housed in a container, and while irradiating light so that the light energy is concentrated in a dot shape with an energy level necessary for curing the substance, the light energy is concentrated at the point where the light energy is concentrated. An optical modeling method characterized in that a solid body having a desired shape is obtained by moving the solid body relative to the container in horizontal and vertical directions according to the shape of the object to be modeled.
(2)前記光硬化性流動物質中に、光出射端を実質上半
球状とした導光体を挿入し、該導光体を通じて光照射を
行なうことにより前記出射端前方に光エネルギーの集中
個所を形成し、該出射端を前記容器に対し相対移動させ
ることを特徴とする特許請求の範囲第1項に記載の光学
的造形法。
(2) A light guide whose light emitting end is substantially hemispherical is inserted into the photocurable fluid material, and light is irradiated through the light guide to create a point where light energy is concentrated in front of the emitting end. 2. The optical modeling method according to claim 1, wherein the output end is moved relative to the container.
(3)前記光硬化性流動物質を、上方からの光照射によ
り該物質上下面に及ぶ連続した硬化部分が得られる深さ
となるように容器に収容し、該光硬化性物質の上方から
光学レンズを介して光を照射することにより光エネルギ
ーの集中箇所を前記物質中に位置せしめて該物質上下面
に及ぶ硬化部分を形成し、更に前記光硬化性物質を、前
記硬化部分上に前記深さに相当する深さをなすように付
加し、該光硬化性物質の上方から前記物質の付加された
深さ部分へ前記光エネルギーの集中箇所を移動させて前
記硬化部分から連続して延びた硬化部分を形成し、これ
ら光硬化性物質の付加及び硬化部分の形成を繰り返して
所望形状の固体を形成することを特徴とする特許請求の
範囲第1項に記載の光学的造形法。
(3) The photocurable fluid material is placed in a container at a depth such that a continuous hardened portion covering the upper and lower surfaces of the material is obtained by irradiation with light from above, and an optical lens is placed from above the photocurable material. By irradiating light through the material, a concentrated point of light energy is located in the material to form a hardened portion extending over the upper and lower surfaces of the material, and the photocurable material is further applied to the hardened portion to the depth. The photocurable material is applied to a depth corresponding to the depth of the photocurable material, and the point of concentration of the light energy is moved from above the photocurable material to the added depth portion of the material, so that the curing material extends continuously from the cured portion. 2. The optical modeling method according to claim 1, wherein a solid portion having a desired shape is formed by repeating the addition of the photocurable substance and the formation of the cured portion.
(4)上下方向に透光性を有する中空又は中実の有底体
を容器内の前記光硬化性流動物質中に浸漬することによ
り該有底体の底面と前記容器底の上面との間に、上方か
らの光照射により前記物質上下面に及ぶ連続した硬化部
分が得られる深さとなるように前記物質を収容し、前記
有底体の上方から光学レンズを介して光を照射すること
により光エネルギーの集中箇所を前記物質中に位置せし
めて前記底面及び上面間の前記物質上下面に及ぶ硬化部
分を形成し、その後前記有底体を若干引き上げることに
より前記硬化部分上面と前記有底体底面との間に、前記
深さに相当する深さをなすように前記有底体周囲の前記
物質を付加し、前記有底体の上方から前記物質の付加さ
れた部分へ前記光エネルギーの集中箇所を移動させて前
記硬化部分から連続して延びた硬化部分を形成し、これ
ら光硬化性物質の付加及び硬化部分の形成を繰り返して
所望形状の固体を形成することを特徴とする特許請求の
範囲第3項に記載の光学的造形法。
(4) By immersing a hollow or solid bottomed body having translucency in the vertical direction into the photocurable fluid material in the container, the gap between the bottom surface of the bottomed body and the upper surface of the container bottom is created. By irradiating light from above through an optical lens, the substance is housed at a depth such that a continuous hardened portion covering the upper and lower surfaces of the substance is obtained by irradiating light from above, and light is irradiated from above the bottomed body through an optical lens. A point where light energy is concentrated is located in the material to form a hardened portion that extends to the upper and lower surfaces of the material between the bottom surface and the top surface, and then the bottomed body is slightly pulled up to separate the upper surface of the hardened portion and the bottomed body. Adding the material around the bottomed body so as to form a depth corresponding to the depth between the material and the bottom surface, and concentrating the light energy from above the bottomed body to the added part of the substance. A cured portion extending continuously from the cured portion is formed by moving the portion, and the addition of the photocurable substance and the formation of the cured portion are repeated to form a solid having a desired shape. The optical modeling method according to scope 3.
(5)前記光硬化性流動物質に、予め顔料、セラミック
粉、金属粉等の改質用材料を混入したものを使用するこ
とを特徴とする特許請求の範囲第1項から第4項のいず
れかに記載の光学的造形法。
(5) Any one of claims 1 to 4, characterized in that the photocurable fluid substance is mixed with a modifying material such as a pigment, ceramic powder, or metal powder in advance. An optical modeling method described in Crab.
JP1249626A 1989-09-25 1989-09-25 Optical molding method Pending JPH02153722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1249626A JPH02153722A (en) 1989-09-25 1989-09-25 Optical molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1249626A JPH02153722A (en) 1989-09-25 1989-09-25 Optical molding method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59105355A Division JPS60247515A (en) 1984-05-23 1984-05-23 Optical shaping method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP3134127A Division JPH0679832B2 (en) 1991-06-05 1991-06-05 Optical modeling method
JP3134126A Division JPH068341A (en) 1991-06-05 1991-06-05 Optical shaping method

Publications (1)

Publication Number Publication Date
JPH02153722A true JPH02153722A (en) 1990-06-13

Family

ID=17195826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1249626A Pending JPH02153722A (en) 1989-09-25 1989-09-25 Optical molding method

Country Status (1)

Country Link
JP (1) JPH02153722A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849459A (en) * 1994-11-29 1998-12-15 Teijin Seiki Co., Ltd. Resin composition for stereolithography
US6017973A (en) * 1996-05-16 2000-01-25 Teijin Seiki Company, Ltd. Photocurable resin composition, method of producing photo-cured shaped object, vacuum casting mold, vacuum casting method and novel urethane acrylate
US6036910A (en) * 1996-09-25 2000-03-14 Teijin Seiki Co., Ltd. Three-dimensional object by optical stereography and resin composition containing colorant for producing the same
US6200732B1 (en) 1996-04-15 2001-03-13 Teijin Seikei Co., Ltd. Photocurable resin composition
US6203966B1 (en) 1997-02-05 2001-03-20 Teijin Seiki Co., Ltd. Stereolithographic resin composition
US6432607B1 (en) 1998-11-10 2002-08-13 Teijin Seiki Co., Ltd. Photocurable resin composition and method of optically forming three-dimensional shape
EP1757979A1 (en) 2005-08-26 2007-02-28 Cmet Inc. Rapid prototyping resin compositions
US7354643B2 (en) 2003-06-24 2008-04-08 Cmet Inc. Three-dimensional object and method of producing the same
US8293810B2 (en) 2005-08-29 2012-10-23 Cmet Inc. Rapid prototyping resin compositions
US8338074B2 (en) 2003-06-25 2012-12-25 Cmet Inc. Actinic radiation-curable stereolithographic resin composition having improved stability
CN106042389A (en) * 2016-07-27 2016-10-26 耿得力 Stereo lithography apparatus and prototyping method thereof
JP2017533837A (en) * 2014-09-09 2017-11-16 スリーディー システムズ インコーポレーテッド Construction material with metal-like appearance for 3D printing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041476A (en) * 1971-07-23 1977-08-09 Wyn Kelly Swainson Method, medium and apparatus for producing three-dimensional figure product
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041476A (en) * 1971-07-23 1977-08-09 Wyn Kelly Swainson Method, medium and apparatus for producing three-dimensional figure product
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849459A (en) * 1994-11-29 1998-12-15 Teijin Seiki Co., Ltd. Resin composition for stereolithography
US6162576A (en) * 1994-11-29 2000-12-19 Teijin Seiki Co., Ltd. Resin composition for stereolithography
US6200732B1 (en) 1996-04-15 2001-03-13 Teijin Seikei Co., Ltd. Photocurable resin composition
US6017973A (en) * 1996-05-16 2000-01-25 Teijin Seiki Company, Ltd. Photocurable resin composition, method of producing photo-cured shaped object, vacuum casting mold, vacuum casting method and novel urethane acrylate
US6036910A (en) * 1996-09-25 2000-03-14 Teijin Seiki Co., Ltd. Three-dimensional object by optical stereography and resin composition containing colorant for producing the same
US6203966B1 (en) 1997-02-05 2001-03-20 Teijin Seiki Co., Ltd. Stereolithographic resin composition
US6432607B1 (en) 1998-11-10 2002-08-13 Teijin Seiki Co., Ltd. Photocurable resin composition and method of optically forming three-dimensional shape
US7354643B2 (en) 2003-06-24 2008-04-08 Cmet Inc. Three-dimensional object and method of producing the same
DE112004001151B4 (en) * 2003-06-24 2021-06-02 Cmet Inc. Three-dimensional object and method for its manufacture
US8338074B2 (en) 2003-06-25 2012-12-25 Cmet Inc. Actinic radiation-curable stereolithographic resin composition having improved stability
EP1757979A1 (en) 2005-08-26 2007-02-28 Cmet Inc. Rapid prototyping resin compositions
US8293810B2 (en) 2005-08-29 2012-10-23 Cmet Inc. Rapid prototyping resin compositions
JP2017533837A (en) * 2014-09-09 2017-11-16 スリーディー システムズ インコーポレーテッド Construction material with metal-like appearance for 3D printing
CN106042389A (en) * 2016-07-27 2016-10-26 耿得力 Stereo lithography apparatus and prototyping method thereof

Similar Documents

Publication Publication Date Title
JPS6340650B2 (en)
JPH02153722A (en) Optical molding method
JP2001145956A (en) Apparatus and method for laminate shaping of photosetting resin three-dimensional shaped article
JPH054898B2 (en)
JPS6235966A (en) Method and apparatus for generating 3-d object
JPS61114818A (en) Apparatus for forming solid configuration
CN110170652B (en) Variable area forming surface printing device and printing method thereof
JPH04366617A (en) Optical shaping method
JPH0222035A (en) Optical shaping
JPH01228828A (en) Optical shaping method
JPH0533900B2 (en)
AU2016368935A1 (en) Device and method for producing a three-dimensional, shaped metal body
KR20040102531A (en) Micro-stereolithography method and apparatus
JP3306470B2 (en) Optical modeling
JPH0499618A (en) Formation of object having three-dimensional configuration
JP2600047B2 (en) Optical modeling
JPH02103127A (en) Method and apparatus for forming three-dimensional configuration
JPH01228827A (en) Optical shaping method
JPH0679832B2 (en) Optical modeling method
CN1306898A (en) Fast prototype method
JPH06114946A (en) Optically molding method
JPH03136834A (en) Three-dimensional structure and preparation thereof
JP2000006252A (en) Manufacture of stereo-lithographed matter
JPH0985836A (en) Light exposure apparatus
KR100573927B1 (en) Direct fabrication method of three-dimensional micro-scaled surfaces