JPS6340650B2 - - Google Patents

Info

Publication number
JPS6340650B2
JPS6340650B2 JP59105355A JP10535584A JPS6340650B2 JP S6340650 B2 JPS6340650 B2 JP S6340650B2 JP 59105355 A JP59105355 A JP 59105355A JP 10535584 A JP10535584 A JP 10535584A JP S6340650 B2 JPS6340650 B2 JP S6340650B2
Authority
JP
Japan
Prior art keywords
light
photocurable
substance
container
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59105355A
Other languages
Japanese (ja)
Other versions
JPS60247515A (en
Inventor
Yoji Marutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKAFU
Original Assignee
OOSAKAFU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKAFU filed Critical OOSAKAFU
Priority to JP59105355A priority Critical patent/JPS60247515A/en
Publication of JPS60247515A publication Critical patent/JPS60247515A/en
Publication of JPS6340650B2 publication Critical patent/JPS6340650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、光及び光硬化性流動物質を用いて行
なう光学的造形法に関する。 従来の技術及びその問題点 従来、鋳型製作時に必要とされる製品形状に対
応する模型、或いは切削加工の倣い制御用又は形
彫放電加工電極用の模型の製作は、手加工によ
り、或いはNCフライス盤等を用いたNC切削加
工により行なわれていた。しかしながら、手加工
による場合は多くの手間と熟練とを要するという
問題が存し、NC切削加工による場合は、刃物の
刃先形状変更のための交換や磨耗等を考慮した複
雑な工作プログラムを作る必要があると共に、加
工面に生じた段を除くために更に仕上げ加工を必
要とする場合があるという問題が存していた。 このような問題の解決を図るべく光硬化性樹脂
薄層をマスキングにより選択的に繰返し光照射す
ることにより所望の立体を得る方法が提案されて
いる。これは、先ず極めて浅い光硬化性樹脂に上
方又は下方から光照射をするにあたり、得ようと
する立体物の水平断面形状に相当する光透過部分
を有したマスキングフイルムを光硬化性樹脂の手
前に配置し、この照射により所望断面形状の薄層
硬化部分を得、これに連続する水平断面形状につ
いて、光硬化性樹脂の深さを僅かづつ増しマスキ
ングフイルムを順次取替えては光照射を繰返すこ
とにより、所望の立体を得るものである。しかし
ながら、この方法においては、次の難点がある。 (i) 得ようとする立体の水平断面形状毎のマスキ
ングフイルムを製作しなければならず、これに
手間と時間とを必要とする。特に曲面の平滑さ
を得るには、立体の分割数を増す必要があり、
これに連れてマスキングフイルムが多数必要と
なり、製作時間及び費用が膨大となる。 (ii) 高い寸法精度の立体を得るには、マスキング
形状を正確に反映する平行光の照射が必要であ
り、これに伴つて、大型立体の造形の困難性、
使用光の種類の限定という制約が生じる。 (iii) 照射が平行光で行なわれるので、樹脂の硬化
の制御は、水平方向についてはマスキングで行
ない得るが、鉛直方向においては樹脂による光
エネルギーの吸収、すなわち光エネルギーの到
達深度に委ねざるを得ず精度の点で劣ることと
なる。 (iv) マスキングにより照射光の一部を遮るので、
光の利用効率が低い。 (v) 目的形状の水平断面全体を同時に光照射し硬
化させるので、収縮歪が全体的に一斉に生じ、
割れや変形を発生させるおそれがある。 本発明は、これら従来技術の問題点を解消し、
鋳型製作用、倣い加工用、形彫放電加工用の模型
を、たとえ複雑な形状であつても刃物等工具の交
換を必要とすることなく容易に且つ精度よく製作
することができるのみならず、他の種々の定形物
の製造にも適用することができ、しかも製作に要
する時間及び費用が少なくて済む造形法を提供す
ることを目的とする。 問題点を解決するための手段 本発明の前記目的は、光により硬化する光硬化
性流動物質を容器内に収容し、光エネルギーが前
記物質の硬化に必要なエネルギーレベルをもつて
点状に集中するように光照射を行ないつつ、該光
エネルギー集中箇所を前記容器に対し水平及び垂
直方向に造形対象の形状に応じて相対移動させ所
望形状の固体を得ることを特徴とする光学的造形
法により達成される。 前記光硬化性物質に対し、硬化に必要なエネル
ギーレベルをもつて点状に集中して光照射を行な
うには、前記光硬化性流動物質中に光出射端を実
質上半球状とした導光体を挿入し、該導光体を通
じて光照射を行なうことにより前記光出射端前方
に光エネルギーの集中箇所を得ることができ、前
記容器と該光出射端とを相対的に移動しつつ該導
光体から光照射をなすことにより所望形状の固体
を得ることができる。 前記導光体は、石遠、ガラス又は合成樹脂のフ
アイバ若しくはロツドとすることができる。紫外
光を用いる場合は、石英製のものとするのが望ま
しい。 前記所望形状の固体の形成は、前記光硬化性流
動物質を、上方からの光照射により該物質上下面
に及ぶ連続した硬化部分が得られる深さとなるよ
うに容器に収容し、該光硬化性物質の上方から光
学レンズを介して光を照射することにより光エネ
ルギーの集中箇所を前記物質中に位置せしめて該
物質上下面に及ぶ硬化部分を形成し、更に前記光
硬化性物質を、前記硬化部分上に前記深さに相当
する深さをなすように付加し、該光硬化性物質の
上方から前記物質の付加された深さ部分へ前記光
エネルギーの集中箇所を移動させて前記硬化部分
から連続して延びた硬化部分を形成し、これら光
硬化性物質の付加及び硬化部分の形成を繰り返す
ことにより行なうことができる。 このような繰返しによる固体の形成は、例え
ば、上下方向に透光性を有する中空又は中実の有
底体を容器内の前記光硬化性流動物質中に浸漬す
ることにより該有底体の底面と前記容器底の上面
との間に、上方からの光照射(例えばレーザ光照
射)により前記物質上下面に及ぶ連続した硬化部
分が得られる深さとなるように前記物質を収容
し、前記有底体の上方から光学レンズを介して光
を照射することにより光エネルギーの集中箇所を
前記物質中に位置せしめて前記底面及び上面間の
前記物質上下面に及ぶ硬化部分を形成し、その後
前記有底体を若干引き上げることにより前記硬化
部分上面と前記有底体底面との間に、前記深さに
相当する深さをなすように前記有底体周囲の前記
物質を付加し、前記有底体の上方から前記物質の
付加された部分へ前記光エネルギーの集中箇所を
移動させて前記硬化部分から連続して延びた硬化
部分を形成し、これら光硬化物質の付加及び硬化
部分の形成を繰り返して所望形状の固体を形成す
るというように行なうことができる。 前記光硬化性流動物質としては、光照射により
硬化する種々の物質を用いることができ、例えば
変性ポリウレタンメタクリレート、オリゴエステ
ルアクリレート、ウレタンアクリレート、エポキ
シアクリレート、感光性ポリイミド、アミノアル
キドを挙げることができる。 前記光としては、使用する光硬化性物質に応
じ、可視光、紫外光等種々の光を用いることがで
きる。該光は通常の光としてもよいが、レーザ光
とすることにより、エネルギーレベルを高めて造
形時間を短縮し、良好な集光性を利用して造形精
度を向上させ得るという利点を得ることができ
る。 前記光硬化性流動物質の硬化に必要なエネルギ
ーレベルをもつて点状に集中して光照射を行なう
には、また、前記光硬化性流動物質の硬化に適し
た波長の2倍の相等しい波長を有し且つ位相の揃
つた2以上の光束を、該光硬化性物質中において
相互に点状に交叉するように照射して該交叉個所
において2光子吸収により該光硬化性物質の硬化
に必要なレベルの光エネルギーを得ることがで
き、該光束の交叉個所を移動することにより所望
形状の固体を得ることができる。前記位相の揃つ
た光束は、例えばレーザ光により得ることができ
る。 また、前記光硬化性流動物質に、予め顔料、セ
ラミツクス粉、金属粉等の改質用材料を混入した
ものを使用してもよい。 実施例 以下に、本発明の実施例を添付図面と共に説明
する。 第1図は本発明方法を実施するための装置の1
例を示している。該装置は、光硬化性流動物質4
を収容する容器1と、光源装置2と、該光源装置
から発せられる光を容器1中の光硬化性物質4に
導く導光体3と、容器1及び導光体3を相対的に
移動させる位置制御装置5とを備えている。容器
1は、得ようとする造形体を収容しうる寸法形状
を有した適宜のものとすることができる。光源装
置2及び導光体3は、容器1外に固定されてい
る。導光体3は石英フアイバであり、光の入射効
率向上及び出射時の点状集光のため、両端は酸水
素炎によつて溶融され半径状となつている。位置
制御装置5は容器1を支持しており、容器1を水
平及び垂直方向に制御しつつ移動するようにされ
ている。この制御は、NC等の自動制御や入手に
よる制御、或いは定速化等、適宜に行なうことが
できる。 本装置を用いて造形を行なうには、先ず容器1
に光硬化性物質4を適当量入れ、導光体3の先端
3aを容器1底面に接近させた状態で光源装置2
からの光を出射させる。光は出射端前方に点状に
集中するので入射光強度を調節することにより該
光集中個所のみで物質4の硬化を行なわせること
ができる。この状態で位置制御装置5により容器
1を移動させて容器1底面に接した硬化部分を形
成する。続いて容器1を若干下降させた後、或い
は漸次下降させつつ、水平方向に移動させて前記
硬化部分に連続する硬化部分を形成する。このよ
うにして容器1を適切に移動させつつ硬化部分を
連続的に形成していくことにより、所望形状の固
体6を得ることができる。また得ようとする造形
体の形状によつては、第1図に示すように、適切
な台7を容器1中に配置しておき、容器底面から
の造形とは別個に台7からも造形を行ない、2つ
の硬化部分を連続せしめてもよい。 位置制御装置は容器1と導光体3とを相対的に
水平及び垂直に移動させうるようにされていれば
よく、前記実施例のものに代えて、導光体3を移
動させるもの、容器1、導光体3を水平方向、垂
直方向のいずれか一方に分担させて移動させるも
の等任意に構成することができる。 次に本発明方法の他の実施例を第2図に沿つて
説明する。先ず第2図aに示すように光硬化流動
物質4を適当な深さとなるように容器1に入れ、
第2図bに示すように該物質4上方から光学レン
ズ20を介して光を照射することにより光を物質
4中に集中させる。この状態で光の集中箇所を容
器に対して移動し、得ようとする造形体の形状に
対応して選択的に光照射を行なう。このとき物質
4の深さは、該光照射により物質4上下面に及ぶ
連続した硬化部分60が得られる深さとする。こ
れ以上の深さとなると、容器1底面から遊離して
形成された硬化部分の沈降等を生じ、正確な造形
体が得られなくなる。次に第2図cに示すよう
に、光硬化性物質4を更に付加し、第2図dに示
すように該物質4上方から選択的に光照射を行な
う。このとき物質4は、前記硬化部分60上に前
述と同様の深さをなすように付加される。また光
照射は、新たに形成される硬化部分61が、前に
形成された硬化部分60に連続するように行なわ
れる。更に、これら光硬化性物質4の付加及び光
照射による硬化部分の形成を繰返すことにより、
所望形状の固体を形成するることができる。光源
装置は複数用いてもよく、光照射をよ光フアイバ
等の導光体を用いて行なつてもよいのは勿論であ
る。また選択的に光照射は、前の例の如く、光源
装置と容器とを相対的に移動させる位置制御装置
により行なうことができる。 第3図は本発明方法の更に他の例に係るもので
ある。この例では、光硬化性流動物質4に、光源
装置2a,2bから2つのレーザ光束8a,8b
を物質4中で相互に交叉するように照射する。照
射レーザ光の波長は相等しく、物質4の硬化に適
した波長の2倍の波長である。このように、レー
ザ光の如く光干渉性が善く位相の等しい光束を交
叉させ、その波長を等しくすると交叉箇所におい
て光エネルギーが非線形的に増加し、いわゆる2
光子吸収による高エネルギーが得られる。したが
つて、各々のレーザ光強度を適切にすることによ
り、レーザ光束8a,8bの交叉箇所80によ
り、レーザ光束8a,8bの交叉箇所80におい
て物質4を硬化させることができる。そして、光
源装置2a,2b及び容器1を前述の例の如き位
置制御装置により相対的にに移動することによ
り、所望形状の固体を形成することができる。容
器1は光照射を容器壁を通しても行なえるように
透明なものとするのが望ましい。また光叉箇所に
おいて、より大きな光エネルギーを得るために
は、光束の数を多くするのが有利である。 なお、第2図に示した例の変形として、次の例
を挙げることができる。先ず、第4図aに示すよ
うに容器1内の光硬化性流動物質4中に、液密な
底壁及び側壁を備えた箱状の有底体9を浸漬し、
有底体9の底面90と容器底の上面10との間に
一定深さの光硬化性流動物質4が収容された状態
とする。この深さは、前述の如く、上方からの光
照射により物質4上下面に及ぶ連続した硬化部分
が得られる深さである。この状態で、第4図bに
示すように、有底体9の上方から光学レンズ20
を介して光を照射することにより光を物質4中に
集中させて選択的に光照射を行ない、硬化部分6
0を得る。このため、有底体9の底壁は照射光に
対する透過性を有したものとされる。次に第4図
cに示すように、有底体9を若干上方に引き上げ
る。これにより、有底体9周囲の物質4が、有底
体9下方に流入し付加される。該引き上げ量は、
既にある硬化部分60上面と有底体底面90との
間に付加される物質4の深さが、前述と同様の深
さとなるように決められる。また、光源を構成す
るレンズ20と有底体底面90との距離を一定に
保つために。光源装置2は有底体9と同じ距離上
昇せしめられる。その後、第4図dに示すよう
に、有底体4上方から硬化部分60に連続した硬
化部分61が得られるように、前述の如く集光し
て選択的に光照射を行なう。更に、このような有
底体9の引上げによる底面90下方への光硬化性
物質4の付加及び光照射による硬化部分の形成を
繰返すことにより、所望形状の固体が得られる。
この例では、有底体9及び光源装置2を上昇させ
るものを示したが、これに代えて、容器1を下降
させるようにしてもよいのは勿論である。いずれ
にしても、これらの相対位置の変化は適宜の位置
決め機構によつ制御することができる。 第4図の例によれば、硬化すべき光硬化性物質
4の液面は有底体底面90により覆われるので、
空気中の成分や埃等、容器中の雰囲気による影響
を防止しうるという利点が得られる。 以下に本発明方法の実験例を示す。 実験例 1 出力20mWの光源から発せられた波長3250Åの
ヘリウム・カドミウムレーザ光を、焦点距離20mm
の石英レンズで集光し、第2図に示した方法に基
づいて、直径11mm、高さ14mm、厚さ0.2mmの円筒
を造形した。この場合には、光硬化性物質を収容
した容器を垂直軸線まわりに等速回線させつつ、
光源装置を垂直に上昇させるという簡単な操作
で、精度良好な円筒が得られた。なお、使用した
光硬化性物質及び造形に要した時間を表1に示
す。
FIELD OF THE INVENTION The present invention relates to an optical modeling method using light and a photocurable fluid material. Conventional technology and its problems Conventionally, models corresponding to the product shape required during mold production, models for tracing control in cutting machining, or models for die-sinking electric discharge machining electrodes have been produced by hand processing or by using an NC milling machine. This was done by NC cutting using tools such as. However, when using manual machining, there is a problem in that it requires a lot of time and skill, and when using NC machining, it is necessary to create a complicated machining program that takes into account replacement and wear to change the shape of the cutting edge. In addition, there is a problem in that additional finishing machining may be required to remove steps formed on the machined surface. In order to solve this problem, a method has been proposed in which a thin photocurable resin layer is selectively and repeatedly irradiated with light by masking to obtain a desired three-dimensional shape. First, when light is irradiated onto a very shallow photocurable resin from above or below, a masking film with a light-transmitting part corresponding to the horizontal cross-sectional shape of the three-dimensional object to be obtained is placed in front of the photocurable resin. This irradiation obtains a thin-layer cured part with the desired cross-sectional shape, and for the continuous horizontal cross-sectional shape, the depth of the photocurable resin is increased little by little, the masking film is sequentially replaced, and the light irradiation is repeated. , to obtain the desired solid. However, this method has the following difficulties. (i) It is necessary to produce a masking film for each horizontal cross-sectional shape of the three-dimensional object to be obtained, which requires time and effort. In particular, in order to obtain a smooth curved surface, it is necessary to increase the number of solid divisions.
As a result, a large number of masking films are required, which increases production time and costs. (ii) In order to obtain a three-dimensional object with high dimensional accuracy, it is necessary to irradiate parallel light that accurately reflects the masking shape.
A restriction arises in that the type of light used is limited. (iii) Since irradiation is performed with parallel light, the curing of the resin can be controlled in the horizontal direction by masking, but in the vertical direction, it must be left to the absorption of light energy by the resin, that is, the depth at which the light energy reaches. This results in a disadvantage in terms of accuracy. (iv) Since part of the irradiated light is blocked by masking,
Light usage efficiency is low. (v) Since the entire horizontal section of the target shape is irradiated with light and cured at the same time, shrinkage distortion occurs all at once,
There is a risk of cracking or deformation. The present invention solves the problems of these conventional techniques,
Not only can you easily and accurately produce models for mold making, copying machining, and die-sinking electrical discharge machining, even if they have complex shapes, without having to change tools such as blades, It is an object of the present invention to provide a modeling method that can be applied to the production of various other shaped objects and requires less time and cost for production. Means for Solving the Problems The object of the present invention is to house a photocurable fluid material that is cured by light in a container, and to concentrate light energy in a point shape with an energy level necessary for curing the material. By an optical modeling method, the light energy concentration point is moved relative to the container in horizontal and vertical directions according to the shape of the object to be modeled, while irradiating light so as to obtain a solid having a desired shape. achieved. In order to irradiate the photocurable material with concentrated light in a point-like manner at an energy level necessary for curing, a light guide having a substantially hemispherical light emitting end is provided in the photocurable fluid material. By inserting the container and irradiating light through the light guide, a concentrated area of light energy can be obtained in front of the light emitting end, and while the container and the light emitting end are relatively moved, the light guide A solid having a desired shape can be obtained by irradiating light from a light body. The light guide may be a fiber or rod made of crystal, glass or synthetic resin. When using ultraviolet light, it is preferable to use quartz. The formation of the solid in the desired shape is achieved by placing the photocurable fluid material in a container at a depth that allows a continuous hardened portion covering the upper and lower surfaces of the material to be obtained by irradiating light from above; By irradiating light from above the substance through an optical lens, a point where light energy is concentrated is located in the substance to form a cured portion extending over the upper and lower surfaces of the substance, and the photocurable substance is further cured. The photocurable material is applied to the part to a depth corresponding to the depth, and the concentrated part of the light energy is moved from above the photocurable material to the added depth part of the material to remove the light from the cured part. This can be achieved by forming a continuously extending cured portion and repeating the addition of the photocurable substance and the formation of the cured portion. Formation of a solid through such repetition can be achieved, for example, by immersing a hollow or solid bottomed body that is translucent in the vertical direction into the photocurable fluid material in a container, so that the bottom surface of the bottomed body is immersed. and the upper surface of the bottom of the container, the material is stored at a depth such that a continuous hardened portion extending over the upper and lower surfaces of the material is obtained by light irradiation from above (for example, laser light irradiation), By irradiating light from above the body through an optical lens, a concentrated point of light energy is located in the substance to form a hardened portion that extends to the upper and lower surfaces of the substance between the bottom and top surfaces, and then the bottomed By slightly pulling up the body, the substance is added around the bottomed body so that a depth corresponding to the depth is formed between the upper surface of the hardened part and the bottom surface of the bottomed body, and The concentration point of the light energy is moved from above to the part to which the substance has been added to form a cured part that extends continuously from the cured part, and the addition of the photocurable substance and the formation of the cured part are repeated to obtain the desired effect. This can be done by forming a shaped solid. As the photocurable fluid substance, various substances that are cured by light irradiation can be used, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd. As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable material used. Although the light may be ordinary light, using laser light has the advantages of increasing the energy level, shortening the modeling time, and improving the modeling accuracy by utilizing good light focusing. can. In order to perform concentrated light irradiation in a point-like manner with an energy level necessary for curing the photocurable fluid material, it is also necessary to use a wavelength equal to twice the wavelength suitable for curing the photocurable fluid material. irradiating two or more light beams having the same phase and intersecting each other in the photocurable material in a dotted manner, and absorbing two photons at the crossing point, which is necessary for curing the photocurable material. A desired level of light energy can be obtained, and by moving the point where the light beams intersect, a solid of a desired shape can be obtained. The phase-aligned light beam can be obtained by, for example, a laser beam. Alternatively, the photocurable fluid substance may be mixed with a modifying material such as pigment, ceramic powder, metal powder, etc. in advance. Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows one of the apparatuses for carrying out the method of the present invention.
An example is shown. The device includes a photocurable fluid material 4
A container 1 containing a container 1, a light source device 2, a light guide 3 that guides light emitted from the light source device to a photocurable material 4 in the container 1, and a container 1 and a light guide 3 are moved relatively. and a position control device 5. The container 1 can be of any suitable size and shape that can accommodate the shaped object to be obtained. The light source device 2 and the light guide 3 are fixed outside the container 1. The light guide 3 is a quartz fiber, and both ends are melted by an oxyhydrogen flame to form a radial shape in order to improve the efficiency of light incidence and to focus the light into a point shape when emitted. The position control device 5 supports the container 1 and is configured to control and move the container 1 in horizontal and vertical directions. This control can be performed as appropriate, such as automatic control such as NC, control by acquisition, or constant speed control. To perform modeling using this device, first the container 1
Put an appropriate amount of photocurable substance 4 into the container, and place the light source device 2 with the tip 3a of the light guide 3 close to the bottom of the container 1.
emit light from. Since the light is concentrated in a point in front of the output end, by adjusting the intensity of the incident light, the material 4 can be cured only at the point where the light is concentrated. In this state, the container 1 is moved by the position control device 5 to form a hardened portion in contact with the bottom surface of the container 1. Subsequently, after lowering the container 1 slightly or while lowering it gradually, it is moved in the horizontal direction to form a hardened part that is continuous with the hardened part. In this way, by appropriately moving the container 1 and continuously forming the hardened portion, it is possible to obtain the solid 6 in the desired shape. Also, depending on the shape of the object to be obtained, as shown in Fig. 1, an appropriate stand 7 may be placed inside the container 1, and the object may be shaped from the stand 7 separately from the bottom of the container. The two cured portions may be made to be continuous. The position control device only needs to be able to move the container 1 and the light guide 3 relatively horizontally and vertically. 1. The light guide 3 can be arbitrarily configured to be moved either horizontally or vertically. Next, another embodiment of the method of the present invention will be described with reference to FIG. First, as shown in FIG. 2a, a photocurable fluid material 4 is placed in a container 1 to an appropriate depth.
As shown in FIG. 2b, light is irradiated from above the substance 4 through an optical lens 20, thereby concentrating the light in the substance 4. In this state, the light concentration point is moved relative to the container, and light is selectively irradiated in accordance with the shape of the object to be obtained. At this time, the depth of the substance 4 is set to such a depth that a continuous hardened portion 60 extending over the upper and lower surfaces of the substance 4 is obtained by the light irradiation. If the depth is greater than this, the hardened portion formed loosely from the bottom of the container 1 will settle, making it impossible to obtain an accurate shaped object. Next, as shown in FIG. 2c, a photocurable material 4 is further added, and as shown in FIG. 2d, light is selectively irradiated from above the material 4. At this time, the substance 4 is added onto the hardened portion 60 to the same depth as described above. Further, the light irradiation is performed so that the newly formed hardened portion 61 is continuous with the previously formed hardened portion 60. Furthermore, by repeating the addition of the photocurable substance 4 and the formation of a cured portion by light irradiation,
Solids of desired shapes can be formed. Of course, a plurality of light source devices may be used, and light irradiation may be performed using a light guide such as a light fiber. Alternatively, light irradiation can be performed by a position control device that relatively moves the light source device and the container, as in the previous example. FIG. 3 shows still another example of the method of the present invention. In this example, two laser beams 8a and 8b are applied to the photocurable fluid material 4 from the light source devices 2a and 2b.
are irradiated in the substance 4 so as to cross each other. The wavelengths of the irradiated laser beams are the same and twice the wavelength suitable for curing the substance 4. In this way, when light beams with good optical coherence and the same phase, such as laser beams, are crossed and their wavelengths are made equal, the light energy increases nonlinearly at the crossing point, resulting in the so-called 2
High energy can be obtained by photon absorption. Therefore, by adjusting the intensity of each laser beam appropriately, the substance 4 can be cured at the intersection point 80 of the laser beams 8a, 8b by the intersection point 80 of the laser beams 8a, 8b. By relatively moving the light source devices 2a, 2b and the container 1 using a position control device such as the one described above, a solid body having a desired shape can be formed. Preferably, the container 1 is transparent so that light can be irradiated through the walls of the container. Furthermore, in order to obtain greater light energy at the optical fork, it is advantageous to increase the number of light beams. Note that the following example can be cited as a modification of the example shown in FIG. First, as shown in FIG. 4a, a box-shaped bottomed body 9 having a liquid-tight bottom wall and side walls is immersed in the photocurable fluid material 4 in the container 1.
The photocurable fluid material 4 is accommodated at a certain depth between the bottom surface 90 of the bottomed body 9 and the top surface 10 of the bottom of the container. As described above, this depth is such that a continuous hardened portion covering the upper and lower surfaces of the material 4 can be obtained by irradiating light from above. In this state, as shown in FIG. 4b, the optical lens 20 is inserted from above the bottomed body 9.
By irradiating light through the substance 4, the light is concentrated in the substance 4 and selectively irradiated, and the hardened portion 6
Get 0. Therefore, the bottom wall of the bottomed body 9 is made transparent to the irradiation light. Next, as shown in FIG. 4c, the bottomed body 9 is pulled up slightly. As a result, the substance 4 around the bottomed body 9 flows into the bottom of the bottomed body 9 and is added thereto. The lifting amount is
The depth of the substance 4 added between the upper surface of the already existing hardened portion 60 and the bottom surface 90 of the bottomed body is determined to be the same depth as described above. Also, in order to maintain a constant distance between the lens 20 constituting the light source and the bottom surface 90 of the bottomed body. The light source device 2 is raised by the same distance as the bottomed body 9. Thereafter, as shown in FIG. 4d, light is selectively irradiated by condensing light as described above so as to obtain a cured portion 61 continuous to the cured portion 60 from above the bottomed body 4. Furthermore, by repeating the addition of the photocurable substance 4 below the bottom surface 90 by pulling up the bottomed body 9 and the formation of a cured portion by light irradiation, a solid having a desired shape can be obtained.
In this example, the bottomed body 9 and the light source device 2 are raised, but it goes without saying that the container 1 may be lowered instead. In any case, changes in these relative positions can be controlled by a suitable positioning mechanism. According to the example shown in FIG. 4, the liquid surface of the photocurable material 4 to be cured is covered by the bottom surface 90 of the bottomed body, so that
This has the advantage of preventing the influence of the atmosphere inside the container, such as components in the air and dust. Experimental examples of the method of the present invention are shown below. Experimental example 1 A helium-cadmium laser beam with a wavelength of 3250 Å emitted from a light source with an output of 20 mW is focused at a focal length of 20 mm.
The light was focused using a quartz lens, and a cylinder with a diameter of 11 mm, height of 14 mm, and thickness of 0.2 mm was formed based on the method shown in Figure 2. In this case, while the container containing the photocurable material is circulated at a constant velocity around the vertical axis,
A cylinder with good accuracy was obtained by a simple operation of vertically raising the light source device. Note that Table 1 shows the photocurable materials used and the time required for modeling.

【表】 実験例 2 光源として実験例1と同じものを用い、導光体
として直径0.125mmの藤倉電線(株)製石英フアイバ
SM100−SYを使用して、実験例1と同じ寸法形
状の円筒を造形した。石英フアイバは、両端を酸
水素炎によつて溶融し直径0.2mm程度の半球状と
したものを用いた。これにより、光硬化性物質を
収容した容器を垂直軸線まわりに回転させつつ、
導光体先端を垂直に上昇させるという簡単な操作
で、精度良好な円筒が得られた。使用した光硬化
性物質は実施例1と同じものであり、造形に要し
た時間も略同じであつた。 発明の効果 以上から明らかな如く、本発明によれば、導光
体や集光レンズ等を介して光硬化性流動物質に、
硬化に必要な光エネルギーが点状に集中するよう
に光照射を行ない該集中箇所を前記物質の収容容
器に対して相対移動させることにより、所望形状
の固体を形成することができるので、たとえ複雑
な形状のものであつても、工具の交換や摩耗を考
慮することなく容易に製作することができ、ま
た、複雑な内孔構造をもつた部材をも1回のプロ
セスで製造できる。従つて製作を数値制御等によ
り自動化する場合にプログラムの簡易化を図るこ
とができる。 本発明では特に、照射光を点状に集中するの
で、該集中箇所で高エネルギーが得られ硬化の迅
速化が可能となる。また該集中箇所で硬化が行な
われるので、水平方向のみならず鉛直方向にも硬
化領域の正確な制御が可能となり造形精度が良好
となる。 従つて、前述の従来の例の如きマスキングフイ
ルムを必要とせず、造形に必要な時間及び費用が
少なくて済む。しかもマスキングによる遮光がな
いので光の利用効率が良い。また高か反応は常に
狭い一点で生じるので、光硬化硬化質が硬化に伴
う収縮をしても、収縮による体積減少分は周囲の
未硬化物質の供給で補われ、従つて広範囲を同時
に硬化させる場合の如き硬化歪や割れ等の不都合
を生じない。 本発明方法は、以上の説明から理解されるよう
に鋳型製作用、倣い加工用、形彫放電加工電極用
の模型の製作のみならず、他の種々の定形物の製
造にも適用しうるものである。更に、光硬化性物
質中に顔料、金属粉、セラミツク粉等を分散させ
て造形を行なえば、装飾効果、導電性、耐摩耗性
など種々の特徴を備えた製品を製造することも可
能である。この場合には、造形された物体は、模
型や母型としては勿論、種々の用途に応じて使用
することができる。
[Table] Experimental Example 2 The same light source as in Experimental Example 1 was used, and a quartz fiber manufactured by Fujikura Electric Wire Co., Ltd. with a diameter of 0.125 mm was used as the light guide.
A cylinder having the same dimensions and shape as Experimental Example 1 was manufactured using SM100-SY. The quartz fiber used had both ends melted using an oxyhydrogen flame to form a hemispherical shape with a diameter of about 0.2 mm. This allows the container containing the photocurable material to be rotated around the vertical axis.
A cylinder with good accuracy was obtained by a simple operation of vertically raising the tip of the light guide. The photocurable material used was the same as in Example 1, and the time required for modeling was also approximately the same. Effects of the Invention As is clear from the above, according to the present invention, the photocurable fluid material is
By irradiating light so that the light energy necessary for curing is concentrated in a point shape and moving the concentrated point relative to the container containing the substance, a solid with a desired shape can be formed. Even if it has a similar shape, it can be easily manufactured without considering tool replacement or wear, and even members with complicated internal hole structures can be manufactured in a single process. Therefore, the program can be simplified when manufacturing is automated by numerical control or the like. In particular, in the present invention, since the irradiation light is concentrated in a dotted manner, high energy can be obtained at the concentrated point, making it possible to speed up curing. Further, since the curing is performed at the concentrated areas, it is possible to accurately control the curing area not only in the horizontal direction but also in the vertical direction, resulting in good modeling accuracy. Therefore, there is no need for a masking film as in the conventional example described above, and the time and cost required for modeling can be reduced. Moreover, since there is no light blocking due to masking, the efficiency of light utilization is high. In addition, since the reaction always occurs at one narrow point, even if the photocurable material shrinks during curing, the volume loss due to shrinkage is compensated for by the supply of surrounding uncured material, thus curing a wide area at the same time. There are no problems such as hardening distortion or cracking as in the case of hardening. As can be understood from the above description, the method of the present invention can be applied not only to the production of molds, copying machining, and die-sinking electrical discharge machining electrode models, but also to the production of various other shaped products. It is. Furthermore, by dispersing pigments, metal powders, ceramic powders, etc. in photocurable materials and modeling them, it is possible to manufacture products with various characteristics such as decorative effects, conductivity, and wear resistance. . In this case, the shaped object can be used not only as a model or a matrix, but also for various purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を説明するためのもので、
第1図は、1例を実施するための装置を概略的に
示す縦断正面図、第2図は他の例の実施状況を順
番に示す説明図、第3図は更に他の例を実施する
ための装置を概略的に示す縦断正面図、第4図は
更に他の例の実施状況を順番に示す説明図であ
る。 1……容器、2……光源装置、3……導光体、
4……光硬化性流動物質、6……所望形状の固
体、9……有底体、60,61……硬化部分、9
0……有底体底面。
The figures are for explaining embodiments of the invention.
Fig. 1 is a longitudinal sectional front view schematically showing a device for carrying out one example, Fig. 2 is an explanatory diagram sequentially showing the implementation status of another example, and Fig. 3 is a diagram for carrying out still another example. FIG. 4 is a longitudinal sectional front view schematically showing an apparatus for the purpose of the present invention, and FIG. 4 is an explanatory diagram sequentially showing the implementation status of another example. 1... Container, 2... Light source device, 3... Light guide,
4... Photocurable fluid substance, 6... Solid with desired shape, 9... Bottomed body, 60, 61... Cured portion, 9
0...bottom surface of a bottomed body.

Claims (1)

【特許請求の範囲】 1 光により硬化する光硬化性流動物質を容器内
に収容し、光エネルギーが前記物質の硬化に必要
なエネルギーレベルをもつて点状に集中するよう
に光照射を行ないつつ、該光エネルギー集中箇所
を前記容器に対し水平及び垂直方向に造形対象の
形状に応じて相対移動させ所望形状の固体を得る
ことを特徴とする光学的造形法。 2 前記光硬化性流動物質中に、光出射端を実質
上半球状とした導光体を挿入し、該導光体を通じ
て光照射を行なうことにより前記出射端前方に光
エネルギーの集中個所を形成し、該出射端を前記
容器に対し相対移動させることを特徴とする特許
請求の範囲第1項に記載の光学的造形法。 3 前記光硬化性流動物質を、上方からの光照射
により該物質上下面に及ぶ連続した硬化部分が得
られる深さとなるように容器に収容し、該光硬化
性物質の上方から光学レンズを介して光を照射す
ることにより光エネルギーの集中箇所を前記物質
中に位置せしめて該物質上下面に及ぶ硬化部分を
形成し、更に前記光硬化性物質を、前記硬化部分
上に前記深さに相当する深さをなすように付加
し、該光硬化性物質の上方から前記物質の付加さ
れた深さ部分へ前記光エネルギーの集中箇所を移
動させて前記硬化部分から連続して延びた硬化部
分を形成し、これら光硬化性物質の付加及び硬化
部分の形成を繰り返して所望形状の固体を形成す
ることを特徴とする特許請求の範囲第1項に記載
の光学的造形法。 4 上下方向に透光性を有する中空又は中実の有
底体を容器内の前記光硬化性流動物質中に浸漬す
ることにより該有底体の底面と前記容器底の上面
との間に、上方からの光照射により前記物質上下
面に及ぶ連続した硬化部分が得られる深さとなる
ように前記物質を収容し、前記有底体の上方から
光学レンズを介して光を照射することにより光エ
ネルギーの集中箇所を前記物質中に位置せしめて
前記底面及び上面間の前記物質上下面に及ぶ硬化
部分を形成し、その後前記有底体を若干引き上げ
ることにより前記硬化部分上面と前記有底体底面
との間に、前記深さに相当する深さをなすように
前記有底体周囲の前記物質を付加し、前記有底体
の上方から前記物質の付加された部分へ前記光エ
ネルギーの集中箇所を移動させて前記硬化部分か
ら連続して延びた硬化部分を形成し、これら光硬
化性物質の付加及び硬化部分の形成を繰り返して
所望形状の固体を形成することを特徴とする特許
請求の範囲第3項に記載の光学的造形法。 5 前記光硬化性流動物質の硬化に適した波長の
2倍の相等しい波長を有し且つ位相の揃つた2以
上の光束を、該光硬化性物質中において相互に点
状に交叉するように照射して該交叉箇所において
2光子吸収により該光硬化性物質の硬化に必要な
レベルの光エネルギーを得、該光束の交叉箇所を
前記容器に対して移動することにより、該光硬化
性物質に選択的に、硬化に必要な光エネルギー供
給を行なうことを特徴とする特許請求の範囲第1
項に記載の光学的造形法。 6 前記光硬化性流動物質に、予め顔料、セラミ
ツク粉、金属粉等の改質用材料を混入したものを
使用することを特徴とする特許請求の範囲第1項
から第5項のいずれかに記載の光学的造形法。
[Scope of Claims] 1. A photocurable fluid material that is cured by light is placed in a container, and light is irradiated so that the light energy is concentrated in a dot shape with an energy level necessary for curing the material. , an optical modeling method characterized in that a solid body having a desired shape is obtained by moving the light energy concentration point relative to the container in horizontal and vertical directions according to the shape of the object to be modeled. 2. A light guide whose light emitting end is substantially hemispherical is inserted into the photocurable fluid material, and light is irradiated through the light guide to form a concentration point of light energy in front of the emitting end. 2. The optical modeling method according to claim 1, wherein the output end is moved relative to the container. 3. The photocurable fluid material is placed in a container at a depth such that a continuous hardened portion covering the upper and lower surfaces of the material is obtained by irradiating light from above, and the photocurable material is irradiated with light from above through an optical lens. By irradiating the light with light, a point where light energy is concentrated is located in the material to form a hardened portion extending over the upper and lower surfaces of the material, and the photocurable material is further applied to the hardened portion to a depth corresponding to the depth. The photocurable material is applied to a depth such that the light energy is concentrated from above the photocurable material to the added depth portion of the material to form a cured portion that extends continuously from the cured portion. 2. The optical modeling method according to claim 1, wherein a solid having a desired shape is formed by repeating the addition of the photocurable substance and the formation of the cured portion. 4. By immersing a hollow or solid bottomed body having translucency in the vertical direction into the photocurable fluid material in the container, a gap is formed between the bottom surface of the bottomed body and the upper surface of the container bottom, The substance is housed at a depth such that a continuous hardened portion extending over the upper and lower surfaces of the substance is obtained by irradiating light from above, and light is irradiated from above the bottomed body through an optical lens to generate optical energy. by locating a concentrated point in the substance to form a hardened part extending over the upper and lower surfaces of the substance between the bottom and top surfaces, and then by slightly pulling up the bottomed body, the upper surface of the hardened part and the bottom face of the bottomed body are separated. During the process, the substance is added around the bottomed body to a depth corresponding to the depth, and the light energy is concentrated from above the bottomed body to the added part of the substance. The method of claim 1 is characterized in that a cured portion is formed that extends continuously from the cured portion by moving the photocurable material, and the addition of the photocurable substance and the formation of the cured portion are repeated to form a solid having a desired shape. The optical modeling method described in Section 3. 5. Two or more beams of light having equal wavelengths twice as long as the wavelength suitable for curing the photocurable fluid material and having the same phase are arranged so as to intersect each other in a dotted manner in the photocurable material. By irradiating and obtaining a level of light energy necessary for curing the photocurable material through two-photon absorption at the intersection point, and moving the intersection point of the light beam relative to the container, the photocurable material is cured. Claim 1, characterized in that the light energy necessary for curing is selectively supplied.
Optical modeling method described in section. 6. According to any one of claims 1 to 5, wherein the photocurable fluid substance is mixed with a modifying material such as a pigment, ceramic powder, or metal powder in advance. The optical lithography method described.
JP59105355A 1984-05-23 1984-05-23 Optical shaping method Granted JPS60247515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59105355A JPS60247515A (en) 1984-05-23 1984-05-23 Optical shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59105355A JPS60247515A (en) 1984-05-23 1984-05-23 Optical shaping method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1249626A Division JPH02153722A (en) 1989-09-25 1989-09-25 Optical molding method

Publications (2)

Publication Number Publication Date
JPS60247515A JPS60247515A (en) 1985-12-07
JPS6340650B2 true JPS6340650B2 (en) 1988-08-12

Family

ID=14405416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59105355A Granted JPS60247515A (en) 1984-05-23 1984-05-23 Optical shaping method

Country Status (1)

Country Link
JP (1) JPS60247515A (en)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554336A (en) * 1984-08-08 1996-09-10 3D Systems, Inc. Method and apparatus for production of three-dimensional objects by stereolithography
JPS61120712A (en) * 1984-11-16 1986-06-07 Katanori Arai Forming process of three dimensional figure
JPS61202845A (en) * 1985-03-06 1986-09-08 沖田 良成 Method of molding solid
JPS62275734A (en) * 1986-05-26 1987-11-30 Tokieda Naomitsu Method for forming solid
JPS6431625A (en) * 1987-07-29 1989-02-01 Tokieda Naomitsu Solid forming method
JPS6440531A (en) * 1987-08-07 1989-02-10 Nippon Sheet Glass Co Ltd Production of transparent polymer substance
JP2590215B2 (en) * 1988-07-15 1997-03-12 旭電化工業株式会社 Optical molding resin composition
JP2604438B2 (en) * 1988-09-19 1997-04-30 旭電化工業株式会社 Optical molding method of resin
JPH01228828A (en) * 1988-03-08 1989-09-12 Osaka Prefecture Optical shaping method
JPH0222035A (en) * 1988-03-08 1990-01-24 Osaka Prefecture Optical shaping
JPH0698686B2 (en) * 1988-03-14 1994-12-07 三井造船株式会社 Optical modeling method
ATE209562T1 (en) * 1988-04-18 2001-12-15 3D Systems Inc STEREOLITHOGRAPHIC SUPPORTS
JPH0224122A (en) * 1988-07-13 1990-01-26 Mitsui Eng & Shipbuild Co Ltd Treatment for making optical shaped body transparent
JPH0252724A (en) * 1988-08-18 1990-02-22 Osaka Prefecture Optical shaping method
JPH0252725A (en) * 1988-08-18 1990-02-22 Osaka Prefecture Optical shaping method
US5258146A (en) * 1988-09-26 1993-11-02 3D Systems, Inc. Method of and apparatus for measuring and controlling fluid level in stereolithography
JP2612484B2 (en) * 1988-11-18 1997-05-21 ディーエスエム・エヌヴィ Optical three-dimensional molding resin composition
US5089184A (en) * 1989-01-18 1992-02-18 Mitsui Engineering And Shipbuilding Co., Ltd. Optical molding method
US5002855A (en) * 1989-04-21 1991-03-26 E. I. Du Pont De Nemours And Company Solid imaging method using multiphasic photohardenable compositions
JPH0236926A (en) * 1989-05-01 1990-02-06 Uvp Inc Method and device for preparing three-dimensional body
JPH0236929A (en) * 1989-05-01 1990-02-06 Uvp Inc Method and device for preparing three-dimensional body
JPH0236931A (en) * 1989-05-01 1990-02-06 Uvp Inc Method and device for preparing three-dimensional body
JPH0624773B2 (en) * 1989-07-07 1994-04-06 三井造船株式会社 Optical modeling method
US5006364A (en) * 1989-08-24 1991-04-09 E. I. Du Pont De Nemours And Company Solid imaging method utilizing compositions comprising thermally coalescible materials
US5009585A (en) * 1989-12-18 1991-04-23 Mitsui Engineering & Shipbuilding Co., Ltd. Optical molding apparatus and movable base device therefor
US5358673A (en) * 1990-02-15 1994-10-25 3D Systems, Inc. Applicator device and method for dispensing a liquid medium in a laser modeling machine
JPH0773884B2 (en) * 1990-05-02 1995-08-09 三菱商事株式会社 Light solidification modeling device
DE4110903A1 (en) * 1991-04-04 1992-11-26 Eos Electro Optical Syst METHOD AND DEVICE FOR PRODUCING A THREE-DIMENSIONAL OBJECT
JP2920329B2 (en) * 1991-04-04 1999-07-19 山梨県 Modeling equipment using laser lithography
JPH068341A (en) * 1991-06-05 1994-01-18 Osaka Prefecture Optical shaping method
JP2600047B2 (en) * 1992-11-24 1997-04-16 大阪府 Optical modeling
JPH0798364B2 (en) * 1993-06-18 1995-10-25 スリーデイー、システムズ、インコーポレーテッド Method and apparatus for creating three-dimensional objects
JP2554443B2 (en) * 1993-07-15 1996-11-13 帝人製機株式会社 Resin composition for optical three-dimensional modeling
JP3117394B2 (en) * 1994-11-29 2000-12-11 帝人製機株式会社 Optical three-dimensional molding resin composition
DE69621001T2 (en) * 1995-02-01 2003-04-03 3D Systems Inc FAST SMOOTHING PROCESS FOR THREE-DIMENSIONAL OBJECTS PRODUCED IN LAYERS
KR100464869B1 (en) * 1995-12-22 2005-04-06 반티코 아게 Process for the stereolithographic preparation of three-dimensional ojbects using a radiation-curable liquid formulation which contains fillers
DE69716332T2 (en) 1996-04-15 2003-02-20 Teijin Seiki Co Ltd Use of a photo-curable resin composition for producing an object by means of stereolithography
DE69725380T2 (en) * 1996-05-16 2004-08-26 Teijin Seiki Co. Ltd. Light curable composition, process for producing a light cured molded article, mold and process for vacuum die casting and urethane acrylate
JP3650216B2 (en) * 1996-05-30 2005-05-18 Jsr株式会社 Manufacturing method of resin mold used for molding method
JP3724893B2 (en) * 1996-09-25 2005-12-07 ナブテスコ株式会社 Optical three-dimensional molding resin composition
JP3786480B2 (en) * 1996-10-14 2006-06-14 Jsr株式会社 Photocurable resin composition
JP3626302B2 (en) * 1996-12-10 2005-03-09 Jsr株式会社 Photocurable resin composition
JP3765896B2 (en) 1996-12-13 2006-04-12 Jsr株式会社 Photocurable resin composition for optical three-dimensional modeling
US6203966B1 (en) 1997-02-05 2001-03-20 Teijin Seiki Co., Ltd. Stereolithographic resin composition
US5932625A (en) * 1997-05-30 1999-08-03 Dsm N.V. Photo-curable resin composition and process for preparing resin-basedmold
KR100236566B1 (en) * 1997-06-23 2000-01-15 구자홍 Multi photosolidification method and apparatus
US6703188B1 (en) * 1999-03-29 2004-03-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of fabricating optical waveguide structure
US6627376B1 (en) 1999-04-27 2003-09-30 Teijin Seiki Co., Ltd. Stereolithographic apparatus and method for manufacturing three-dimensional object with photohardenable resin
JP3815652B2 (en) * 1999-12-02 2006-08-30 独立行政法人科学技術振興機構 Two-photon micro-stereolithography method and apparatus thereof, parts formed by two-photon micro-stereolithography and movable mechanism
JP4786858B2 (en) * 2000-06-15 2011-10-05 スリーエム イノベイティブ プロパティズ カンパニー Multiphoton curing to provide encapsulated optics
JP2003025454A (en) * 2001-07-13 2003-01-29 Fuji Photo Film Co Ltd Method and apparatus for photo-fabrication
JP4824221B2 (en) * 2001-08-21 2011-11-30 セイコーインスツル株式会社 Manufacturing method of 3D structure
EP1532487A1 (en) 2002-08-30 2005-05-25 Toyo Gosei Co., Ltd. Radiation-sensitive negative-type resist composition for pattern formation and pattern formation method
US7354643B2 (en) 2003-06-24 2008-04-08 Cmet Inc. Three-dimensional object and method of producing the same
JP5280610B2 (en) 2003-06-25 2013-09-04 シーメット株式会社 Active energy ray-curable resin composition for optical three-dimensional modeling with improved stability
US20050006047A1 (en) 2003-07-10 2005-01-13 General Electric Company Investment casting method and cores and dies used therein
CA2511154C (en) * 2004-07-06 2012-09-18 General Electric Company Synthetic model casting
WO2006135054A1 (en) 2005-06-16 2006-12-21 Dsm Ip Assets B.V. Radioactive ray-curable liquid resin composition for use in optical stereolithography, and optically shaped article produced by curing the composition
JP4744200B2 (en) 2005-06-20 2011-08-10 シーメット株式会社 Solid modeling object with smoothed modeling end face
EP1757979B1 (en) 2005-08-26 2012-12-12 Cmet Inc. Rapid prototyping resin compositions
US8293810B2 (en) 2005-08-29 2012-10-23 Cmet Inc. Rapid prototyping resin compositions
KR100928389B1 (en) * 2005-10-25 2009-11-23 메사추세츠 인스티튜트 오브 테크놀로지 Microstructure Synthesis by Flow Lithography and Polymerization
JP2008201913A (en) 2007-02-20 2008-09-04 Fujifilm Corp Photopolymerizable composition
JPWO2012111655A1 (en) * 2011-02-17 2014-07-07 サンアロー株式会社 Stereolithography method and stereolithography apparatus
JP2014196453A (en) 2013-03-29 2014-10-16 Jsr株式会社 Radiation-curable liquid resin composition for optical three-dimensional molding, and optically molded product obtained by photocuring the same
US9555582B2 (en) 2013-05-07 2017-01-31 Google Technology Holdings LLC Method and assembly for additive manufacturing
JP5971266B2 (en) 2014-01-22 2016-08-17 トヨタ自動車株式会社 Stereolithography apparatus and stereolithography method
US9650526B2 (en) * 2014-09-09 2017-05-16 3D Systems, Inc. Method of printing a three-dimensional article
KR101931042B1 (en) 2014-11-04 2018-12-19 디더블유에스 에스.알.엘. Stereolithographic method and composition
JP2017109393A (en) * 2015-12-16 2017-06-22 国立大学法人横浜国立大学 Production method of resin molded article
CA3041461A1 (en) 2016-10-21 2018-04-26 Kuraray Noritake Dental Inc. Composition for optical three-dimensional modeling
EP3640009B1 (en) 2017-06-14 2023-04-26 Kuraray Noritake Dental Inc. Container for optical stereoscopic shaping device
EP3696198A4 (en) 2017-10-10 2021-08-11 Kuraray Noritake Dental Inc. Resin composition for stereolithography
JP7227695B2 (en) 2017-12-22 2023-02-22 キヤノン株式会社 Photocurable resin composition
US11613661B2 (en) 2018-04-16 2023-03-28 Canon Kabushiki Kaisha Curable resin composition and manufacturing method of three-dimensional object using the same
WO2020071552A1 (en) 2018-10-05 2020-04-09 クラレノリタケデンタル株式会社 Resin composition for optical shaping
CN113226247A (en) 2018-12-21 2021-08-06 可乐丽则武齿科株式会社 Resin composition for stereolithography
JP7455822B2 (en) 2019-05-21 2024-03-26 クラレノリタケデンタル株式会社 Resin composition for optical stereolithography
FI20195467A1 (en) * 2019-06-03 2020-12-04 Raimo Rajala Method and device for computer-aided production of a product
JP7352627B2 (en) 2019-06-07 2023-09-28 クラレノリタケデンタル株式会社 Resin composition for stereolithography
KR20220029592A (en) 2019-06-28 2022-03-08 주식회사 쿠라레 Curable composition and resin composition for stereolithography comprising same
WO2020262564A1 (en) 2019-06-28 2020-12-30 株式会社クラレ Curable composition and stereolithographic resin composition comprising same
CN114430750A (en) 2019-10-02 2022-05-03 可乐丽则武齿科株式会社 Resin composition for stereolithography
US20230091071A1 (en) 2020-02-10 2023-03-23 Kuraray Noritake Dental Inc. Resin composition for stereolithography
IT202000026621A1 (en) 2020-11-09 2022-05-09 Idea & Sviluppo Srl COMPOSITE MATERIALS BASED ON LIGHT-CURING EPOXY RESIN WITH GRAPHENE OXIDE DERIVATIVES AND RELATED PRODUCTION METHOD.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041476A (en) * 1971-07-23 1977-08-09 Wyn Kelly Swainson Method, medium and apparatus for producing three-dimensional figure product
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041476A (en) * 1971-07-23 1977-08-09 Wyn Kelly Swainson Method, medium and apparatus for producing three-dimensional figure product
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device

Also Published As

Publication number Publication date
JPS60247515A (en) 1985-12-07

Similar Documents

Publication Publication Date Title
JPS6340650B2 (en)
US5637244A (en) Method and apparatus for creating an image by a pulsed laser beam inside a transparent material
JPH054898B2 (en)
JP2001145956A (en) Apparatus and method for laminate shaping of photosetting resin three-dimensional shaped article
JPS6235966A (en) Method and apparatus for generating 3-d object
JPS61114818A (en) Apparatus for forming solid configuration
JPH0342233A (en) Optical shaping method
JPH02153722A (en) Optical molding method
JPH0533901B2 (en)
JPS61225012A (en) Formation of three-dimensional configuration
JPH01228828A (en) Optical shaping method
JPH0533900B2 (en)
JPS61116320A (en) Three-dimensional shape forming device
JPH0493228A (en) Method for forming three-dimensional matter
JPH0499618A (en) Formation of object having three-dimensional configuration
JPH02108519A (en) Formation of three-dimensional shape and device therefor
JP4918768B2 (en) Optical screen, projection screen using the same, and method of manufacturing the optical screen
JP3306470B2 (en) Optical modeling
JPH0514839Y2 (en)
JPH0236931A (en) Method and device for preparing three-dimensional body
JPH05169550A (en) Optically molding method
JPH02103127A (en) Method and apparatus for forming three-dimensional configuration
JPH11170377A (en) Method for photo-shaping and movable device and photo-shaping apparatus using the method
JPH0224124A (en) Optical shaping method
JPH01228827A (en) Optical shaping method