JPH0222035A - Optical shaping - Google Patents

Optical shaping

Info

Publication number
JPH0222035A
JPH0222035A JP63252795A JP25279588A JPH0222035A JP H0222035 A JPH0222035 A JP H0222035A JP 63252795 A JP63252795 A JP 63252795A JP 25279588 A JP25279588 A JP 25279588A JP H0222035 A JPH0222035 A JP H0222035A
Authority
JP
Japan
Prior art keywords
shape
solid
light
deformation
fluid material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63252795A
Other languages
Japanese (ja)
Other versions
JPH0533901B2 (en
Inventor
Yoji Marutani
洋二 丸谷
Takashi Nakai
孝 中井
Seiji Hayano
誠治 早野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Osaka Prefecture
Original Assignee
Mitsubishi Corp
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Osaka Prefecture filed Critical Mitsubishi Corp
Priority to JP63252795A priority Critical patent/JPH0222035A/en
Publication of JPH0222035A publication Critical patent/JPH0222035A/en
Publication of JPH0533901B2 publication Critical patent/JPH0533901B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Polymerisation Methods In General (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To make it possible to prevent occurrence of deformation when a cured part is formed by irradiating it with light by forming a solid while a shape-holding part for reinforcement is simultaneously cured and formed and removing the shape-holding part if necessary after forming it. CONSTITUTION:When a cured part is formed by irradiating it with light, a tongue piece 4' is most easily deformed. Therefore, a shape-holding part 5 for reinforcement over the tongue piece 4' and a neighboring part of another end part of a base 2 is prepd. at the same time when a side wall part 3 is cured and formed and then, an upper part 4 being continuously extended to the upper end is cured and formed. Therefore, when the tongue piece 4' is formed, the shape-holding part 5 extended from the base 2 reinforces and holds the tongue piece 4' and prevents the occurrence of deformation of the tongue piece 4' to make an upper part 4 without deformation. It is possible to obtain a solid having a required shape without any deformation by removing the shape- holding part 5 from the thus formed solid 7 by means of a proper method such as cutting.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光及び光硬化性流動物質を用いて所望形状の
固体を形成する光学的造形法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical shaping method using light and a photocurable fluid material to form a solid body of a desired shape.

従来の技術及びその問題点 従来、鋳型製作時に必要とされる製品形状に対応する模
型、或いは切削加工の倣い制御用又は形彫放電加工電極
用の模型の製作は、手加工により、或いはNCフライス
盤等を用いたNC切削加工により行なわれていた。しか
しながら、手加工による場合は多くの手間と熟練とを要
するという問題が存し、NC切削加工による場合は、刃
物の刃先形状変更のための交換や摩耗等を考慮した複雑
な工作プログラムを作る必要があると共に、加工面に生
じた段を除くために更に仕上げ加工を必要とする場合が
あるという問題が存していた。
Conventional technology and its problems Traditionally, models corresponding to the product shape required during mold production, or models for tracing control in cutting or die-sinking electrical discharge machining electrodes, have been produced by hand processing or using an NC milling machine. This was done by NC cutting using, etc. However, when using manual machining, there is a problem in that it requires a lot of time and skill, and when using NC machining, it is necessary to create a complicated machining program that takes into account exchanges to change the shape of the cutting edge, wear, etc. In addition, there is a problem in that additional finishing machining may be required to remove steps formed on the machined surface.

このような問題を解決するものとして本発明者は、以下
に示す光学的造形法を提案している(特開昭60−24
7515号、特開昭62−101408号)。
To solve these problems, the present inventor has proposed the following optical modeling method (Japanese Patent Laid-Open No. 60-24
No. 7515, JP-A-62-101408).

該方法の1実施態様は、光硬化性流動物質を容器内に収
容して該容器の上方からの光照射により流動物質上下面
に及ぶ連続した硬化部分が得られる深さとし、該流動物
質の上方から凸レンズ等の光収束器を介して選択的に光
照射を行ない、該流動物質上下面に及ぶ硬化部分を形成
し、更に該硬化部分上に前記深さに相当する深さをなす
よう、光硬化性流動物質を付加し、該流動物質から選択
的光照射を行なって前記硬化部分から連続して上方へ延
びた硬化部分を形成し、これら光硬化性流動物質の付加
及び硬化部分の形成を繰り返して所望形状の固体を形成
するものである。
In one embodiment of the method, a photocurable fluid material is housed in a container, and the depth is such that a continuous hardened portion extending over the upper and lower surfaces of the fluid material is obtained by irradiating light from above the container, and selectively irradiate light through a light converging device such as a convex lens to form a hardened portion extending over the upper and lower surfaces of the fluid material, and further irradiate light onto the hardened portion to a depth corresponding to the above depth. Adding a curable fluid material, selectively irradiating the fluid material with light to form a cured portion extending continuously upward from the cured portion, and adding these photocurable fluid materials and forming the cured portion. This process is repeated to form a solid in a desired shape.

前記光硬化性流動物質の付加は、第9図に示すように、
支持棒(51)に支持されたベースプレート(52)を
該流動物質(A)中で下降させることにより行なうこと
ができ、第10図に示すように、光透過性を有する底壁
(62)を備える液密な箱状有底体(61)を流動物質
(A)中で上昇させることにより行なうこともできる。
The addition of the photocurable fluid substance is as shown in FIG.
This can be done by lowering the base plate (52) supported by the support rod (51) into the fluid material (A), and as shown in FIG. It can also be carried out by raising the liquid-tight box-shaped bottomed body (61) in the fluid material (A).

第9図に示す硬化部分(a)及び第10図に示す硬化部
分(b)は、それぞれ段階的硬化が繰り返され、前記所
望形状の固体を形成する途上のものである。
The cured portion (a) shown in FIG. 9 and the cured portion (b) shown in FIG. 10 are each in the process of forming a solid having the desired shape after repeated stepwise curing.

この固体形成過程においては、以下に述べる種々の変形
の発生が問題となる。
In this solid formation process, the occurrence of various deformations described below becomes a problem.

一般に、光硬化性流動物質(A)は、硬化時の収縮性を
有しており、段階的硬化が繰り返されることにより、硬
化部分間の収縮量の差が蓄積する。
Generally, the photocurable fluid material (A) has shrinkage properties during curing, and by repeating stepwise curing, differences in the amount of shrinkage between cured parts accumulate.

従って、第9図に示した流動物質付加方法においては、
硬化部分(a)に舌片(a′)を形成する際に、該舌片
(a′)端部に収縮量相違による変形が発生するという
問題があった。
Therefore, in the fluid material addition method shown in FIG.
When forming the tongue piece (a') on the hardened portion (a), there is a problem in that the end portion of the tongue piece (a') is deformed due to a difference in the amount of shrinkage.

一方、第10図に示した流動物質付加方法においては、
有底体(61)を上記連続した硬化部分が得られる深さ
よりも一旦上昇させて底壁(62)と硬化部分(b)と
の付着を剥離し、その後有底体(61)を下降させて底
壁(62)下面と硬化部分(b)上面との距離を、前記
深さに相当する距離とするのであるが、舌片(b′)が
上記剥離の際に有底鉢底壁(62)に伴われて塑性変形
を起こすという問題があった。
On the other hand, in the fluid material addition method shown in FIG.
The bottomed body (61) is once raised above the depth at which the continuous hardened portion is obtained to peel off the adhesion between the bottom wall (62) and the hardened portion (b), and then the bottomed body (61) is lowered. The distance between the lower surface of the bottom wall (62) and the upper surface of the hardened portion (b) is set to be a distance corresponding to the above-mentioned depth. 62), there was a problem in that plastic deformation occurred.

更に、2つの截頭四角錐の各底面が合わせられた第11
a図に示すような形状の固体(41)を得るために、固
体形成を行なった場合には、第11b図に示すように、
収縮量相違により四周側壁が湾曲変形した固体(42)
になり、また、第12a図に示す方形屋根が張り出した
形状の固体(43)の形成を行なった場合には、第12
b図に示すように屋根部(44’ )の周縁が上方へ反
った固体(44)になるという問題があった。
Furthermore, the 11th
When solid formation is performed to obtain a solid (41) having the shape shown in Figure 11b, as shown in Figure 11b,
Solid whose four circumferential side walls are curved and deformed due to differences in the amount of shrinkage (42)
In addition, when forming a solid body (43) with an overhanging rectangular roof as shown in Fig. 12a, the 12th
As shown in Figure b, there was a problem in that the periphery of the roof (44') became a solid body (44) that was warped upward.

上記光学的造形法の他の実施態様として流動物質(A)
を収容した容器と、光源装置から発せられる光を該容器
の流動物質(A)中に導く導光体とを相対的に移動させ
、所望形状の固体を形成する造形法、及び2つの光源か
ら発せられた光をそれぞれ点状に収束させ、それぞれの
光エネルギ集中照射箇所を流動物質(A)中で相互に交
差させ、該交差部を移動させて上記固体を形成する造形
法があるが、これらの場合にも、第9図、第11b図及
び第12b図に示したと同様の変形が発生するという問
題があった。
Fluid material (A) as another embodiment of the above optical modeling method
A molding method in which a solid body having a desired shape is formed by relatively moving a container containing a light source device and a light guide that guides light emitted from a light source device into a fluid substance (A) of the container, and from two light sources. There is a modeling method in which the emitted light is converged into points, the areas irradiated with concentrated light energy intersect with each other in the fluid material (A), and the intersections are moved to form the solid body. In these cases as well, there is a problem in that deformations similar to those shown in FIGS. 9, 11b, and 12b occur.

本発明は、上記問題点を解決し、光照射による硬化部分
形成時に、変形の発生を防止し得る光学的造形法を提供
することを目的とする。
An object of the present invention is to solve the above-mentioned problems and provide an optical modeling method that can prevent deformation from occurring during the formation of a hardened portion by light irradiation.

問題点を解決するための手段 本発明の上記目的は、光により硬化する光硬化性流動物
質を容器内に収容し、該流動物質中に光照射を行ないつ
つ、該光照射箇所を前記容器に対し水平及び垂直方向に
造形対象の形状に応じて相対移動させ、所望形状の固体
を形成するにあたり、該形成過程における硬化部分の変
形を防止するために、変形発生のおそれある箇所に付着
され、又は該箇所と他の箇所とにわたって延びる補強用
の形状保持部を同時に硬化形成しつつ前記固体形成を行
ない、該形成後に前記形状保持部を必要に応じて除去す
ることを特徴とする光学的造形法により達成される。
Means for Solving the Problems The above-mentioned object of the present invention is to house a photocurable fluid material that hardens with light in a container, and while irradiating the fluid material with light, irradiating the light irradiation area with the container. On the other hand, in order to prevent the hardened portion from deforming during the formation process by moving it relative to the shape of the object to be modeled in the horizontal and vertical directions and forming a solid body in the desired shape, it is attached to a place where deformation is likely to occur. Or an optical shaping characterized in that the solid formation is performed while simultaneously hardening and forming a reinforcing shape-retaining portion extending over the portion and another portion, and after the formation, the shape-retaining portion is removed as necessary. achieved by law.

前記光硬化性流動物質としては、光照射により硬化する
種々の物質を用いることができ、例えば変性ポリウレタ
ンメタクリレート、オリゴエステルアクリレート、ウレ
タンアクリレート、エポキシアクリレート、感光性ポリ
イミド、アミノアルキドを挙げることができる。
As the photocurable fluid substance, various substances that are cured by light irradiation can be used, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd.

該光硬化性流動物質に、予め顔料、セラミックス粉、金
属粉等の改質用材料を混入したものを使用してもよい。
The photocurable fluid substance may be mixed with a modifying material such as pigment, ceramic powder, metal powder, etc. in advance.

前記光としては、使用する光硬化性物質に応じ、可視光
、紫外光等種々の光を用いることができる。
As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable material used.

該光は通常の光としてもよいが、レーザ光とすることに
より、エネルギーレベルを高めて造形時間を短縮し、良
好な集光性を利用して造形精度を向上させ得るという利
点を得ることができる。
Although the light may be ordinary light, using laser light has the advantages of increasing the energy level, shortening the modeling time, and improving the modeling accuracy by utilizing good light focusing. can.

実施例 以下に、本発明の実施例を、添付図面を参照しつつ説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、目的とする側面視コ字形状の固体(1)を示
す。この固体(1)の造形法に関し、第3図は、支持棒
(51)及びベースプレート(52)を用いた方法(第
9図に示したもの)、第4図は、箱状有底体(61)を
用いた方法(第10図に示したもの)に、各々本発明を
適用する場合の1態様を示す。
FIG. 1 shows a target solid body (1) having a U-shape when viewed from the side. Regarding the modeling method of this solid (1), Fig. 3 shows a method using a support rod (51) and a base plate (52) (shown in Fig. 9), and Fig. 4 shows a method using a box-shaped bottomed body ( 61) (shown in FIG. 10), one embodiment in which the present invention is applied to each method will be shown.

最初に、第3図に示す本発明方法を説明する。First, the method of the present invention shown in FIG. 3 will be explained.

先ず、上述の如き光硬化性流動物質(A)中でのベース
プレー1−(52)の下降及び光収束器(6)を介する
選択的光照射に基づく硬化部分形成を繰り返し、ベース
プレート(52)上に固体(1)の基部(2)を形成す
る。基部(2)を形成した後、該基部(2)の一端から
上方へ延びる側壁部(3)を形成し、その後に該側壁部
(3)上に土壁部(4)を形成するのであるが、段階的
硬化形成を行なう過程で土壁部(4)の下端部に相当す
る薄い舌片(4′)が形成される。該舌片(4′)は、
第9図に示したように、固体(1)の段階的硬化形成途
上において、最も変形し易い。よって、かかる形状の固
体形成の場合は、該変形発生のおそれある舌片(4′)
と基部(2)の他端近傍部とにわたって延びる補強用の
形状保持部(5)を設けることとし、該保持部(5)を
側壁部(3)の硬化形成と同時に形成し、該側壁部(3
)及び形状保持部(5)を形成した後、これら上端に連
続する上辺部(4)を硬化形成する。従って、舌片(4
′)の形成時には、基部(2)から延びる形状保持部(
5)が舌片(4′)を補強支持し、該舌片(4′)の変
形発生を防止するので変形のない上辺部(4)とするこ
とができる。このようにして形成した固体(7)(第2
図参照)から形状保持部(5)を切断等適宜の方法で除
去することにより、変形のない所望形状の固体(1)を
得ることかできる。
First, by repeating the lowering of the base plate 1-(52) in the photocurable fluid material (A) as described above and the formation of a cured portion based on selective light irradiation via the light converging device (6), the base plate (52) is formed. Form the base (2) of the solid (1) on top. After forming the base (2), a side wall (3) extending upward from one end of the base (2) is formed, and then a mud wall (4) is formed on the side wall (3). However, during the stepwise hardening process, a thin tongue piece (4') corresponding to the lower end of the earthen wall part (4) is formed. The tongue piece (4') is
As shown in FIG. 9, the solid (1) is most likely to deform during the stepwise hardening process. Therefore, in the case of solid formation with such a shape, the tongue piece (4') that is likely to be deformed
A reinforcing shape-retaining portion (5) extending across the base portion (2) and the vicinity of the other end of the base portion (2) is provided, and the holding portion (5) is formed simultaneously with the hardening and forming of the side wall portion (3). (3
) and the shape-retaining portion (5), an upper side portion (4) continuous to the upper end thereof is formed by hardening. Therefore, the tongue piece (4
′), the shape-retaining portion (2) extending from the base (2) is formed.
5) reinforces and supports the tongue (4') and prevents deformation of the tongue (4'), so that the upper side (4) can be made without deformation. Solid (7) thus formed (second
By removing the shape-retaining portion (5) from the solid material (see figure) by an appropriate method such as cutting, it is possible to obtain a solid material (1) having a desired shape without deformation.

なお、−旦光照射に基づく硬化部分形成を行なった後、
該硬化部分上に流動物質(A)を付加する場合、実際に
は次の操作を行なうのが望ましい。
Note that - after forming a hardened portion based on light irradiation,
When adding the fluid substance (A) onto the hardened portion, it is actually desirable to carry out the following operation.

第7図(a)に示すように、硬化部分上に連続した硬化
部分が得られる深さだけベースプレート(52)を下降
させて該硬化部分上に流動物質(A)を流入させる場合
、該ベースプレート(52)の下降距離が極めて僅かで
あることから、第7図(b)に示すように、流動物質(
A)の表面張力により、硬化部分上に該流動物質(A)
が流入しないことがあり、常に上記付加の確実性に欠け
、更に人手による硬化部分上への流動物質(A)の導入
を要し、手間を要する。これに対し、第8図に示すよう
に、ベースプレート(52)を上記深さよりも下降させ
て硬化部分上に流動物質(A)を流入させ、そののちベ
ースプレート(52)を上昇させて流動物質(A)上面
と硬化部分上面との距離を前記深さに相当する距離とす
れば、流動物質(A)の付加を確実に行なうことができ
、人手による流動物質の導入を要しない。
As shown in FIG. 7(a), when the base plate (52) is lowered to a depth that provides a continuous hardened portion on the hardened portion and the fluid substance (A) is caused to flow onto the hardened portion, the base plate Since the descending distance of (52) is extremely small, as shown in FIG. 7(b), the fluid material (
Due to the surface tension of A), the fluid substance (A)
may not flow in, the above-mentioned addition always lacks reliability, and furthermore, it is necessary to manually introduce the fluid substance (A) onto the hardened portion, which requires time and effort. On the other hand, as shown in FIG. 8, the base plate (52) is lowered below the above depth to allow the fluid material (A) to flow onto the hardened portion, and then the base plate (52) is raised to allow the fluid material (A) to flow onto the hardened portion. A) If the distance between the upper surface and the upper surface of the hardened portion is set to a distance corresponding to the above-mentioned depth, the fluid material (A) can be added reliably, and manual introduction of the fluid material is not required.

つぎに第4図に示す、本発明方法を説明する。Next, the method of the present invention shown in FIG. 4 will be explained.

該方法は、第10図に示した如く、箱状有底体(61)
の流動物質(A)中での上昇、及び底壁(62)を透過
する選択的光照射に基づ(硬化部分形成を繰り返して所
望形状の固体を形成するものである。該方法も、第3図
に述べたと同様に、基部(2)を形成し、そののち側辺
部(3)の硬化形成を行ないつつ、同時に基部(2)か
ら変形のおそれある舌片(4′)にわたって延びる形状
保持部(5)を硬化形成し、更に該側辺部(3)及び形
状保持部(5)上に上辺部(4)を形成して第2図に示
す形状保持部付き固体(7)を得、該固体(7)から形
状保持部(5)を除去して、上述の変形のない所望形状
固体(1)を得るものである。この方法によっても、変
形発生のおそれある舌片(4′)は、形状保持部(5)
に補強支持され、よって変形のない所望形状の固体(1
)を得ることができる。
In this method, as shown in FIG. 10, a box-shaped bottomed body (61)
A solid having a desired shape is formed by repeating the formation of a hardened portion based on the rise in the fluid material (A) and selective light irradiation passing through the bottom wall (62). In the same manner as described in Fig. 3, the base (2) is formed, and then the side parts (3) are hardened, and at the same time, the shape extending from the base (2) to the tongue (4') which may be deformed is formed. The holding part (5) is hardened and formed, and the upper part (4) is further formed on the side part (3) and the shape-retaining part (5) to form the solid body (7) with the shape-retaining part shown in FIG. Then, the shape-retaining portion (5) is removed from the solid (7) to obtain the solid (1) with the desired shape without deformation.This method also removes the tongue (4) which may be deformed. ') is the shape retention part (5)
A solid body (1
) can be obtained.

次に、第11a図に示した固体(41)を形成する場合
について説明すると、第3図又は第4図に示した光学的
造形法に基づき該固体(41)の外形を得るにあたり、
第5図に示すように、側壁(31)を硬化形成しつつ、
対向する側壁(31)どうしを垂直に連結する補強用形
状保持部(32)を同時に形成すれば、湾曲変形し易い
側壁(31)どうしが形状保持部(32)を介して互い
に支持し合い、これにより前記湾曲変形の発生が防止さ
れて、正確な外形を有する形状保持部(32)付き固体
(33)を得ることができる。また、第12a図に示し
た方形屋根張り出し形状の固体(43)を得る場合には
、第6a図及び第6b図に示すように、先ず下部筒体(
35)の硬化形成の際に、該下部筒体(35)下端部か
ら外方へ張り出す形状保持基部(36)及び該基部(3
6)周縁から上方へ延びて屋根部(37)の変形発生お
それある周縁部(37’)に連続する補強用形状保持部
(38)を硬化形成し、そののち屋根部(37)を形成
する。これにより、変形発生のおそれある周縁部(37
’ )が形状保持基部(36)から延びる形状保持部(
38)に補強支持され、第12b図に示したような周縁
部(37’ )の変形発生が防止され、第6a図及び第
6b図に示す固体(39)とすることができる。該固体
(39)を得たのち、該固体(39)から形状保持部(
38)及び形状保持基部(36)を除去することにより
、所望形状の固体(43)を得ることができる。
Next, to explain the case of forming the solid (41) shown in FIG. 11a, in obtaining the outer shape of the solid (41) based on the optical modeling method shown in FIG. 3 or 4,
As shown in FIG. 5, while hardening and forming the side wall (31),
If the reinforcing shape-retaining portions (32) that vertically connect the opposing side walls (31) are formed at the same time, the side walls (31), which are prone to curve deformation, will support each other via the shape-retaining portions (32). This prevents the occurrence of the curved deformation, and it is possible to obtain a solid body (33) with a shape-retaining portion (32) having an accurate outer shape. In addition, when obtaining a solid body (43) having a rectangular roof overhang shape as shown in Fig. 12a, first, as shown in Figs. 6a and 6b, the lower cylindrical body (
35), a shape-retaining base (36) protruding outward from the lower end of the lower cylinder (35) and the base (3
6) Curing and forming a reinforcing shape-retaining part (38) extending upward from the periphery and continuous to the periphery (37') where there is a risk of deformation of the roof (37), and then forming the roof (37). . As a result, the peripheral edge (37
') extends from the shape-retaining base (36).
38) to prevent deformation of the peripheral edge (37') as shown in FIG. 12b, and form the solid body (39) shown in FIGS. 6a and 6b. After obtaining the solid (39), the shape retaining portion (
38) and the shape-retaining base (36), a solid (43) having a desired shape can be obtained.

なお、本発明方法は、上述のように、変形発生のおそれ
ある箇所に付着され、又は該箇所と他の箇所とにわたっ
て延びる補強用の形状保持部を同時に硬化形成しつつ所
望形状の固体形成を行うことを特徴とするものであり、
この特徴を備える限りにおいて、光照射に基づく種々の
造形法に適用されるものである。従って、上記実施例に
述べた光照射に基づく造形法の外、例えば容器内の光硬
化性流動物質の上面を僅かずつ上昇させ上方からの光照
射により固体を形成する方法、容器の側壁又は底壁の一
部を透明板とし、該透明板に向けて硬化部分支持用の基
盤面を配置し、該基盤面を透明板から遠ざけつつ該透明
板を介する光照射に基づき基盤面に固体を形成する方法
などに適用され得る。また、これら方法における光照射
は、例えば導光体を用いた光照射、複数の光源から発せ
られる光を一点に交差させる光照射、光軸に垂直な断面
における光強度の大きい部分が環状の光量分布を呈する
光の照射などを採用できる。上記導光体を用いる場合、
該導光体の先端部を半球状のものとすれば、光エネルギ
が点状に集中するように光を収束させて照射を行い得る
という利点がある。
As described above, the method of the present invention simultaneously hardens and forms a reinforcing shape-retaining portion that is attached to a location where there is a risk of deformation or that extends between the location and other locations, while simultaneously forming a solid in a desired shape. It is characterized by doing,
As long as it has this feature, it can be applied to various modeling methods based on light irradiation. Therefore, in addition to the modeling method based on light irradiation described in the above embodiments, for example, there is a method in which the upper surface of the photocurable fluid material in the container is slightly raised and a solid is formed by light irradiation from above, and a method in which a solid is formed by light irradiation from above, or a method in which a solid is formed by irradiating light from above, A part of the wall is a transparent plate, a base surface for supporting the cured portion is placed facing the transparent plate, and a solid is formed on the base surface based on light irradiation through the transparent plate while keeping the base surface away from the transparent plate. It can be applied to methods such as In addition, light irradiation in these methods includes, for example, light irradiation using a light guide, light irradiation in which light emitted from multiple light sources intersects at one point, and light irradiation in which the portion of high light intensity in a cross section perpendicular to the optical axis is annular. It is possible to employ methods such as irradiation of light that exhibits a distribution. When using the above light guide,
If the tip of the light guide has a hemispherical shape, there is an advantage that the light can be converged and irradiated so that the light energy is concentrated in a point shape.

また、上記複数光を交差させる光照射を採用すれば、該
光交差箇所において光エネルギを非線形的に増加させる
ことができ、所望形状の固体を速やかに形成することが
できる。上記環状の光量分布を有する光の照射を行えば
、該光照射の1度の走査で比較的太い帯状固体を高い寸
法精度で形成することができ、所望形状の固体形成を効
率良いものとする。
Further, by employing light irradiation in which the plurality of lights intersect, the light energy can be nonlinearly increased at the intersection of the lights, and a solid having a desired shape can be quickly formed. By irradiating the light having the above-mentioned annular light intensity distribution, a relatively thick band-shaped solid can be formed with high dimensional accuracy by one scan of the light irradiation, and solids having a desired shape can be formed efficiently. .

発明の効果 以上から明らかなように、本発明方法によれば、光硬化
性流動物質に対し、光エネルギ集中照射箇所を相対移動
させ、所望形状の固体を形成するにあたり、該形成過程
において変形発生のおそれある箇所に付着され、または
該箇所と他の箇所とにわたって延びる補強用の形状保持
部を同時に硬化形成しつつ前記固体形成を行ない、該形
成後に前記形状保持部を必要に応じて除去するので、該
形状保持部に基づき、光照射による硬化部分形成時特有
の変形発生を確実に防止できる光学的造形法を提供する
ことができる。
Effects of the Invention As is clear from the above, according to the method of the present invention, when a solid body having a desired shape is formed by relatively moving the irradiation point of concentrated light energy with respect to a photocurable fluid material, deformation does not occur during the formation process. The solid formation is performed while simultaneously hardening and forming a reinforcing shape-retaining part that is attached to a part where there is a risk of oxidation or extending between the part and other parts, and after the formation, the shape-retaining part is removed as necessary. Therefore, based on the shape retaining portion, it is possible to provide an optical modeling method that can reliably prevent the occurrence of deformation peculiar to the formation of a hardened portion by light irradiation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に基づき形成する固体の1例を示す
斜視図、第2図は形状保持部付き固体の1例を示す斜視
図、第3図は本発明方法の1実施例を概略的に示す説明
図、第4図は本発明方法の他の実施例を概略的に示す説
明図、第5図は本発明方法に基づき得られる形状保持部
付き固体を示す斜視図、第6a図は本発明方法に基づき
得られる形状保持基部及び形状保持部付き固体を示す斜
視図、第6b図はその縦断正面図、第7図(a)。 (b)は支持棒及びベースプレートを用いた従来の光硬
化性流動物質の付加状態を示す説明図、第8図は該流動
物質を確実に付加し得る方法を示す説明図、第9図は従
来の光学的造形法の1例を概略的に示す説明図、第10
図は従来の光学的造形法の他の例を概略的に示す説明図
、第11a図は従来方法に基づき得ようとする固体を示
す斜視図、第11b図は従来方法に基づき形成された固
体を示す斜視図、第12a図は従来方法に基づき得よう
とする他の固体を示す斜視図、第12b図は従来方法に
基づき形成された固体を示す縦断側面図である。 (1)・・・所望形状の固体 (4′)・・・上片下部(舌片) (5)、  (32)、(38)・・・形状保持部(6
)・・・光収束器 (A)・・・光硬化性流動物質 (以 上) 第11a 図 第11b 図 第12?I図 第12b 図
Fig. 1 is a perspective view showing an example of a solid formed based on the method of the present invention, Fig. 2 is a perspective view showing an example of a solid with a shape-retaining portion, and Fig. 3 is a schematic diagram of an embodiment of the method of the present invention. FIG. 4 is an explanatory diagram schematically showing another embodiment of the method of the present invention, FIG. 5 is a perspective view showing a solid with a shape-retaining portion obtained based on the method of the present invention, and FIG. 6a FIG. 6b is a perspective view showing a shape-retaining base and a solid body with a shape-retaining portion obtained based on the method of the present invention, FIG. 6b is a longitudinal sectional front view thereof, and FIG. 7(a). (b) is an explanatory diagram showing a conventional method of adding a photocurable fluid material using a support rod and a base plate, FIG. 8 is an explanatory diagram showing a method for reliably adding the fluid material, and FIG. Explanatory diagram schematically showing an example of the optical modeling method, No. 10
The figure is an explanatory diagram schematically showing another example of the conventional optical modeling method, Figure 11a is a perspective view showing a solid to be obtained based on the conventional method, and Figure 11b is a solid formed based on the conventional method. FIG. 12a is a perspective view showing another solid to be obtained based on the conventional method, and FIG. 12b is a longitudinal sectional side view showing a solid formed based on the conventional method. (1)... Solid with desired shape (4')... Lower part of upper piece (tongue piece) (5), (32), (38)... Shape retaining part (6
)...Light concentrator (A)...Photocurable fluid material (above) Fig. 11a Fig. 11b Fig. 12? Figure I Figure 12b

Claims (1)

【特許請求の範囲】[Claims] (1)光により硬化する光硬化性流動物質を容器内に収
容し、該流動物質中に光照射を行ないつつ、該光照射箇
所を前記容器に対し水平及び垂直方向に造形対象の形状
に応じて相対移動させ、所望形状の固体を形成するにあ
たり、該形成過程における硬化部分の変形を防止するた
めに、変形発生のおそれある箇所に付着され、又は該箇
所と他の箇所とにわたって延びる補強用の形状保持部を
同時に硬化形成しつつ前記固体形成を行ない、該形成後
に前記形状保持部を必要に応じて除去することを特徴と
する光学的造形法。
(1) A photocurable fluid material that is hardened by light is placed in a container, and while irradiating light into the fluid material, the light irradiation area is adjusted horizontally and vertically to the container according to the shape of the object to be modeled. In order to prevent deformation of the hardened part during the formation process by relatively moving the hardened part to form a solid in the desired shape, a reinforcing material is attached to a part where deformation is likely to occur or extends between the part and other parts. An optical modeling method characterized in that the solid formation is performed while simultaneously hardening and forming a shape-retaining portion, and after the formation, the shape-retaining portion is removed as necessary.
JP63252795A 1988-03-08 1988-10-05 Optical shaping Granted JPH0222035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63252795A JPH0222035A (en) 1988-03-08 1988-10-05 Optical shaping

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5539888 1988-03-08
JP63-55398 1988-03-08
JP63252795A JPH0222035A (en) 1988-03-08 1988-10-05 Optical shaping

Publications (2)

Publication Number Publication Date
JPH0222035A true JPH0222035A (en) 1990-01-24
JPH0533901B2 JPH0533901B2 (en) 1993-05-20

Family

ID=26396291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63252795A Granted JPH0222035A (en) 1988-03-08 1988-10-05 Optical shaping

Country Status (1)

Country Link
JP (1) JPH0222035A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252725A (en) * 1988-08-18 1990-02-22 Osaka Prefecture Optical shaping method
JPH02251419A (en) * 1989-03-27 1990-10-09 Sony Corp Three-dimensional shape formation
US5253177A (en) * 1990-05-02 1993-10-12 Mitsubishi Corporation Photo-solidification modeling device
JPH0985837A (en) * 1995-09-26 1997-03-31 Matsushita Electric Works Ltd Preparation of molding with three-dimensional shape
WO1997011837A1 (en) * 1995-09-27 1997-04-03 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US5943235A (en) * 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
US6508971B2 (en) 1995-09-27 2003-01-21 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US8460451B2 (en) 2011-02-23 2013-06-11 3D Systems, Inc. Support material and applications thereof
US9093861B2 (en) 2009-09-16 2015-07-28 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion system and uninterruptible power supply system
US9157007B2 (en) 2011-03-09 2015-10-13 3D Systems, Incorporated Build material and applications thereof
US9394441B2 (en) 2011-03-09 2016-07-19 3D Systems, Inc. Build material and applications thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device
JPS6035510A (en) * 1983-08-08 1985-02-23 松下電器産業株式会社 Electric double layer capacitor
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method
JPS6235966A (en) * 1984-08-08 1987-02-16 スリーデイー、システムズ、インコーポレーテッド Method and apparatus for generating 3-d object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device
JPS6035510A (en) * 1983-08-08 1985-02-23 松下電器産業株式会社 Electric double layer capacitor
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method
JPS6235966A (en) * 1984-08-08 1987-02-16 スリーデイー、システムズ、インコーポレーテッド Method and apparatus for generating 3-d object

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252725A (en) * 1988-08-18 1990-02-22 Osaka Prefecture Optical shaping method
JPH0533900B2 (en) * 1988-08-18 1993-05-20 Oosakafu
JPH02251419A (en) * 1989-03-27 1990-10-09 Sony Corp Three-dimensional shape formation
US5253177A (en) * 1990-05-02 1993-10-12 Mitsubishi Corporation Photo-solidification modeling device
JPH0985837A (en) * 1995-09-26 1997-03-31 Matsushita Electric Works Ltd Preparation of molding with three-dimensional shape
US6532394B1 (en) 1995-09-27 2003-03-11 3D Systems, Inc. Method and apparatus for data manipulation and system control in a selective deposition modeling system
US5943235A (en) * 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
US6508971B2 (en) 1995-09-27 2003-01-21 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
WO1997011837A1 (en) * 1995-09-27 1997-04-03 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US6660209B2 (en) 1995-09-27 2003-12-09 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US7077638B2 (en) 1995-09-27 2006-07-18 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US9093861B2 (en) 2009-09-16 2015-07-28 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion system and uninterruptible power supply system
US8460451B2 (en) 2011-02-23 2013-06-11 3D Systems, Inc. Support material and applications thereof
US9534103B2 (en) 2011-02-23 2017-01-03 3D Systems, Inc. Support material and applications thereof
US9157007B2 (en) 2011-03-09 2015-10-13 3D Systems, Incorporated Build material and applications thereof
US9394441B2 (en) 2011-03-09 2016-07-19 3D Systems, Inc. Build material and applications thereof

Also Published As

Publication number Publication date
JPH0533901B2 (en) 1993-05-20

Similar Documents

Publication Publication Date Title
JPS62275734A (en) Method for forming solid
JPS6340650B2 (en)
KR100257135B1 (en) Thermal stereolithography
JPH0222035A (en) Optical shaping
JPH0342233A (en) Optical shaping method
JPS62101408A (en) Optical shaping
JPS61114818A (en) Apparatus for forming solid configuration
JPH04366617A (en) Optical shaping method
JPH02153722A (en) Optical molding method
JPH01228828A (en) Optical shaping method
JPH0533900B2 (en)
JP2003145629A (en) Method and apparatus for photo-fabrication
AU2016368935A1 (en) Device and method for producing a three-dimensional, shaped metal body
JPH01228827A (en) Optical shaping method
JP3306470B2 (en) Optical modeling
JPH0252724A (en) Optical shaping method
JPH03136834A (en) Three-dimensional structure and preparation thereof
JP2600047B2 (en) Optical modeling
JP3490491B2 (en) Stereolithography product manufacturing method and stereolithography apparatus
JPH02103127A (en) Method and apparatus for forming three-dimensional configuration
KR102078571B1 (en) 3 Dimension Printer
JPH068341A (en) Optical shaping method
JPH06114946A (en) Optically molding method
JPH01232025A (en) Optical shaping method
KR100573927B1 (en) Direct fabrication method of three-dimensional micro-scaled surfaces