JPH0252724A - Optical shaping method - Google Patents

Optical shaping method

Info

Publication number
JPH0252724A
JPH0252724A JP63205077A JP20507788A JPH0252724A JP H0252724 A JPH0252724 A JP H0252724A JP 63205077 A JP63205077 A JP 63205077A JP 20507788 A JP20507788 A JP 20507788A JP H0252724 A JPH0252724 A JP H0252724A
Authority
JP
Japan
Prior art keywords
laser
light
irradiation
solid
set section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63205077A
Other languages
Japanese (ja)
Other versions
JPH0479827B2 (en
Inventor
Yoji Marutani
洋二 丸谷
Takashi Nakai
孝 中井
Seiji Hayano
誠治 早野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Osaka Prefecture
Original Assignee
Mitsubishi Corp
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Osaka Prefecture filed Critical Mitsubishi Corp
Priority to JP63205077A priority Critical patent/JPH0252724A/en
Publication of JPH0252724A publication Critical patent/JPH0252724A/en
Publication of JPH0479827B2 publication Critical patent/JPH0479827B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Abstract

PURPOSE:To efficiently form a comparatively thick belt-shaped solid of desired shape with high dimension accuracy by one scanning by using laser with light amount distribution having a ring large light amount area or a section vertical to the optical axis as irradiation light. CONSTITUTION:Ring laser is irradiated to a photosetting fluidized substance and scanned at given speed. The set section width (X1) based on the ring laser irradiation is considerably larger than the set section width (X2) of TEMoo model laser irradiation, and therefore, a belt-shaped set section thicker than existing laser having the light amount distribution represented by Gaussian function can be formed with same power consumption. The dimension accuracy of the belt-shaped set section peripheral edge based on laser irradiation is lowered by using a diffused TEMoo model laser, and for instance, a solid of complicated shape cannot be formed. Said defects can be eliminated by using the ring laser to form a solid of complicated shape with high dimension accuracy efficiently.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光及び光硬化性流動物質を用いて所望形状の
固体を形成する光学的造形法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical shaping method using light and a photocurable fluid material to form a solid body of a desired shape.

従来の技術及びその問題点 従来、鋳型製作時に必要とされる製品形状に対応する模
型、或いは切削加工の倣い制御用又は形彫放電加工電極
用の模型の製作は、手加工により、或いはNCフライス
盤等を用いたNC切削加工により行なわれていた。しか
しながら、手加工による場合は多くの手間と熟練とを要
するという問題が存し、NC切削加工による場合は、刃
物の刃先形状変更のための交換や摩耗等を考慮した複雑
な工作プロクラムを作る必要があると共に、加工面に生
じた段を除くために更に仕上げ加工を必要とする場合が
あるという問題が存していた。
Conventional technology and its problems Traditionally, models corresponding to the product shape required during mold production, or models for tracing control in cutting or die-sinking electrical discharge machining electrodes, have been produced by hand processing or using an NC milling machine. This was done by NC cutting using, etc. However, when using manual machining, there is a problem in that it requires a lot of time and skill, and when using NC machining, it is necessary to create a complicated machining program that takes into account replacement to change the shape of the cutting edge of the blade, wear, etc. In addition, there is a problem in that additional finishing machining may be required to remove steps formed on the machined surface.

このような問題を解決するものとして本発明者は、以下
に示す光学的造形法を提案している。
In order to solve these problems, the present inventor has proposed the following optical modeling method.

該方法は、光硬化性流動物質(A)を容器(図示せず)
内に収容し、支持棒(3)に支持されたベースプレート
(2)を、上方からの光照射により流動物質(A)上面
からベースプレート(2)上面に及ぶ連続した硬化部分
が得られる深さとなるように流動物質(A)中に沈め(
第7図(a)参照)、該流動物質(A)の上方から凸レ
ンズ等の光収束器(4)を介して選択的に光照射を行な
い、該流動物質(A)上面からベースプレート(2)上
面に及ぶ硬化部分(5)を形成しく第7図(b)参照)
、更に該硬化部分(5)上において前記深さに相当する
深さをなすよう、ベースプレート(2)を流動物質(A
)中に沈降させ(第7図(e)参照)、該流動物質(A
)の上方から選択的光照射を行なって硬化部分″(5)
から連続して上方へ延びた硬化部分(6)を形成しく第
7図(d)参照)、これらベースプレート(2)の沈降
及び硬化部分の形成を繰り返して所望形状の固体を形成
するものである(特開昭60−247517号)。
In this method, the photocurable fluid material (A) is placed in a container (not shown).
The base plate (2) housed in the container and supported by the support rod (3) is irradiated with light from above to a depth such that a continuous hardened portion extending from the upper surface of the fluid substance (A) to the upper surface of the base plate (2) is obtained. Submerged in a fluid substance (A) as shown in (
(see FIG. 7(a)), selectively irradiates light from above the fluid material (A) through a light converging device (4) such as a convex lens, and from the top surface of the fluid material (A) onto the base plate (2). (See Figure 7(b))
Furthermore, the base plate (2) is coated with a fluid substance (A) to a depth corresponding to the above-mentioned depth on the hardened portion (5).
) (see Figure 7(e)), and the fluid material (A
) is selectively irradiated with light from above to cure the hardened portion'' (5).
A hardened portion (6) extending continuously upward is formed from the base plate (see Fig. 7(d)), and the settling of the base plate (2) and the formation of the hardened portion are repeated to form a solid having a desired shape. (Japanese Patent Application Laid-Open No. 60-247517).

該提案に係る光学的造形法は、光硬化性流動物質の深さ
を調整しつつ光照射を選択的に行なうという簡単な操作
により所望形状の固体を形成するものであり、前述の如
き手加工による場合の手間と熟練との必要性を排し、N
C切削加工による場合の刃物の交換、複雑な工作プログ
ラムの作成、及び仕上げ加工の付加の必要性を排す等の
効果を奏するものであった。
The proposed optical modeling method forms a solid body in a desired shape by a simple operation of selectively irradiating light while adjusting the depth of the photocurable fluid material, and does not require manual processing as described above. It eliminates the need for labor and skill when using N
This has the effect of eliminating the need for changing blades, creating complex machining programs, and adding finishing machining when using C-cutting.

然しなから、光照射を選択的に行なう際に、光束をレン
ズ等で収束すれば、例えばレーザ光においては1μm内
外の径というように全光エネルギを集中でき寸法精度良
好な固体を得ることができるが、1度の走査で得られる
固体は光束の径に対応した薄い帯状のものに限られると
いう問題があった。
However, when selectively irradiating light, if the light beam is converged with a lens, for example, in the case of laser light, it is possible to concentrate all the light energy to a diameter of 1 μm or less, and to obtain a solid with good dimensional accuracy. However, there is a problem in that the solid that can be obtained in one scan is limited to a thin strip corresponding to the diameter of the light beam.

この問題に対処するため、レーザ光を太い光束で放出さ
せ、或いはレンズ等により光束の径を拡げて照射するこ
とも考えられるが、レーザ光の強度は光束断面において
、例えば光軸を中心とするガウス分布の如く、周辺部へ
向けて減衰した状態となっているため、該周辺部での硬
化度合が不安定となり、得られる固体の寸法精度が悪く
なるという問題がある。
In order to deal with this problem, it is possible to emit laser light as a thick beam, or to expand the diameter of the beam using a lens, etc., but the intensity of the laser beam is determined based on the cross section of the beam, for example centered on the optical axis. Since the material is attenuated toward the periphery like a Gaussian distribution, there is a problem that the degree of hardening in the periphery becomes unstable and the dimensional accuracy of the obtained solid deteriorates.

本発明の目的は、上記問題点を解決し、光照射の1度の
走査で比較的太い帯状固体を高い寸法精度で形成するこ
とができ、所望形状の固体を効率良く形成し得る光学的
造形法を提供することにある。
An object of the present invention is to solve the above-mentioned problems, and to provide an optical modeling method that can form a relatively thick band-shaped solid with high dimensional accuracy in one scan of light irradiation, and can efficiently form a solid of a desired shape. It is about providing law.

問題点を解決するための手段 本発明の上記目的は、光により硬化する光硬化性流動物
質を容器内に収容し、該流動物質中に光照射を行ないつ
つ、該照射箇所を前記容器に対し水平及び垂直方向に造
形対象の形状に応じて相対移動させ、所望形状の固体を
形成する光学的造形法において、前記光照射を行なうに
あたり、光軸に垂直な断面における光量分布が環状の多
光量領域を有するモードで発振されるレーザを前記光と
して使用することを特徴とする光学的造形法により達成
される。
Means for Solving the Problems The above object of the present invention is to house a photocurable fluid material that hardens with light in a container, and while irradiating the fluid material with light, irradiating the irradiated area with respect to the container. In an optical modeling method in which a solid body having a desired shape is formed by relative movement according to the shape of the object to be modeled in the horizontal and vertical directions, when performing the light irradiation, the light intensity distribution in a cross section perpendicular to the optical axis is annular. This is achieved by an optical modeling method characterized in that a laser oscillated in a mode having a region is used as the light.

本発明を適用し得る所望形状の固体形成方法としては、
上に述べた特開昭60−247515号明細書記載の光
学的造形法の外、上下方向に透光性を有する中空又は中
実の有底体を容器内の前記光硬化性流動物質中に浸漬す
ることにより該有底体の底面と前記容器底の上面との間
に、上方からの光照射により前記物質上下面に及ぶ連続
した硬化部分が得られる深さとなるように前記物質を収
容し、前記有底体の上方から選択的に光照射を行なって
前記底面及び上面間の前記物質上下面に及ぶ硬化部分を
形成し、その後前記有底体を若干引き上げ、又は硬化部
分を引き下げることにより前記硬化部分上面と前記有底
体底面との間に、前記深さに相当する深さをなすように
前記有底体周囲の流動物質を付加し、前記有底体の上方
から選択的に光照射を行なって前記硬化部分から連続し
て延びた硬化部分を形成し、これら光硬化性物質の付加
及び硬化部分の形成を繰り返して行なう光学的造形法を
挙げることもでき(特開昭62−101408号)、こ
の方法においては、硬化すべき光硬化性物質の液面は有
底鉢底面により覆われるので、空気中の成分や埃等、容
器中の雰囲気による影響を防止しうるという利点が得ら
れる。
As a method for forming a solid in a desired shape to which the present invention can be applied,
In addition to the optical modeling method described in JP-A No. 60-247515 mentioned above, a hollow or solid bottomed body having translucency in the vertical direction is placed in the photocurable fluid material in the container. The substance is housed at a depth between the bottom surface of the bottomed body and the top surface of the container bottom such that a continuous hardened portion extending over the top and bottom surfaces of the substance is obtained by irradiation with light from above by immersion. , by selectively irradiating light from above the bottomed body to form a hardened portion extending over the upper and lower surfaces of the substance between the bottom surface and the top surface, and then slightly pulling up the bottomed body or pulling down the hardened portion; A fluid material around the bottomed body is added between the upper surface of the hardened portion and the bottom surface of the bottomed body so as to have a depth corresponding to the depth, and light is selectively emitted from above the bottomed body. An optical modeling method may also be mentioned in which irradiation is performed to form a cured part that extends continuously from the cured part, and the addition of a photocurable substance and the formation of the cured part are repeated (Japanese Patent Application Laid-Open No. 1983-1999). 101408), this method has the advantage that since the liquid level of the photocurable material to be cured is covered by the bottom of the pot, it is possible to prevent the influence of the atmosphere in the container, such as components in the air and dust. can get.

前記光硬化性物質としては、光照射により硬化する種々
の物質を用いることができ、例えば変性ポリウレタンメ
タクリレート、オリゴエステルアクリレート1.ウレタ
ンアクリレート、エポキシアクリレート、感光性ポリイ
ミド、アミノアルキドを挙げることができる。
As the photocurable substance, various substances that are cured by light irradiation can be used, such as modified polyurethane methacrylate, oligoester acrylate, etc. Examples include urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd.

該光硬化性流動物質に、予め顔料、セラミックス粉、金
属粉等の改質用材料を混入したものを使用してもよい。
The photocurable fluid substance may be mixed with a modifying material such as pigment, ceramic powder, metal powder, etc. in advance.

実施例 以下に、本発明の実施例を、添付図面を参照しつつ説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、例えば上述の特開昭60−247515号明
細書、特開昭62−101408号明細書等に記載され
た光学的造形法において、光照射を行うにあたり、照射
光として用いるレーザの、光軸に垂直な断面における光
量分布を示す。この第1図に示すレーザは、その先軸よ
り該光軸周辺部において多光粗領域を有するモードで発
振される、所謂環状レーザである。該環状レーザは、レ
ーザ発振器内の共振ミラーを適宜に選択することにより
、周知の方法で該レーザ発振器から発振され得る。
FIG. 1 shows the laser beam used as irradiation light when performing light irradiation in the optical modeling method described in, for example, the above-mentioned Japanese Patent Application Laid-Open No. 60-247515 and Japanese Patent Application Laid-Open No. 62-101408. , which shows the light intensity distribution in a cross section perpendicular to the optical axis. The laser shown in FIG. 1 is a so-called annular laser which is oscillated in a mode having a multi-light coarse region from its front axis to the periphery of its optical axis. The annular laser can be oscillated from the laser oscillator in a known manner by appropriately selecting a resonant mirror within the laser oscillator.

上記光硬化性流動物質は、その硬化開始のための光量に
明確な閾値がなく、十分な光量が与えられない場合は、
光照射の継続に基づき徐々に硬化する。前記流動物質が
硬化し始める光強度硬化初期値を第1図(b)で示し、
光強度(a)以上の光量で、前記流動物質が確実に硬化
するものとする。従って、図中、光強度(a)及び(b
)間における光量の光が照射された光硬化性流動物質は
、短時間の光照射下においては半硬化状態にある。
The above-mentioned photocurable fluid material does not have a clear threshold for the amount of light to start curing, and if a sufficient amount of light is not given,
It gradually hardens based on continued light irradiation. The initial light intensity curing value at which the fluid substance starts to harden is shown in FIG. 1(b),
It is assumed that the fluid substance is reliably cured with an amount of light equal to or higher than the light intensity (a). Therefore, in the figure, the light intensity (a) and (b
) The photocurable fluid material irradiated with light of an amount between 1 and 2 is in a semi-cured state under short-term light irradiation.

上記条件の下に、上述の環状レーザを光硬化性流動物質
に照射しつつ一定速度で走査させた場合の該流動物質硬
化部分の幅を(Xl)で示し、半硬化部分の幅を(Rx
+)で示す。なお、環状レーザの光束の直径を(R1)
とする(第4図参照)上記環状レーザの光硬化性流動物
質に対する照射に対比するため、第2図に示すようなT
EMooモードの光量分布を光軸に垂直な断面において
有する従来使用のレーザ、及び前記T E M o o
モード光量分布のレーザを光拡散器等で拡散したレーザ
(第3図参照)を、各々光硬化性流動物質に照射しつつ
走査させた(第5図及び第6図参照)。その走行速度は
、上記環状レーザを走査させた場合と同じである。なお
、上記環状レーザ及びTEMooモードレーザは、共振
ミラーの形状のみが異なるレーザ発振器から発振された
ものであり、該レーザ発振器の入力電力は同じである。
Under the above conditions, when the annular laser is scanned at a constant speed while irradiating the photocurable fluid material, the width of the hardened portion of the fluid material is represented by (Xl), and the width of the semi-hardened portion is (Rx
Indicated by +). In addition, the diameter of the luminous flux of the annular laser is (R1)
(See Figure 4) In order to compare the irradiation of the annular laser to the photocurable fluid material, T as shown in Figure 2 is used.
A conventionally used laser having an EMoo mode light intensity distribution in a cross section perpendicular to the optical axis, and the T E Moo
A laser having a mode light intensity distribution diffused by a light diffuser or the like (see FIG. 3) was scanned while irradiating each photocurable fluid material (see FIGS. 5 and 6). The traveling speed is the same as when the annular laser is scanned. Note that the annular laser and the TEMoo mode laser are oscillated from laser oscillators that differ only in the shape of the resonant mirror, and the input power of the laser oscillators is the same.

上記TEMooモードレーザ照射の走査後の流動物質硬
化部分幅を(X2)、半硬化部分幅を(Rx2)、光束
の直径を(R2)として第5図に示す。該TEMooモ
ードレーザの直径(R2)は、上記環状レーザの直径(
R1)と同じである。
FIG. 5 shows the width of the hardened portion of the fluid material after scanning with the TEMoo mode laser irradiation as (X2), the width of the semi-hardened portion as (Rx2), and the diameter of the light beam as (R2). The diameter (R2) of the TEMoo mode laser is the diameter (R2) of the annular laser (
Same as R1).

また、前記T E M o oモードレーザを拡散させ
た拡散T E M o oモードレーザ(第3図参照)
照射の走査後の流動物質硬化部分幅を(X3 ) 、半
硬化部分幅を(Rx 3 ) 、光束の直径を(R3)
として第6図に示す。
In addition, a diffused T E Mo o mode laser (see Fig. 3), which is a diffusion of the T E Mo o mode laser described above, is used.
After scanning the irradiation, the width of the hardened portion of the fluid material is (X3), the width of the semi-hardened portion is (Rx3), and the diameter of the light beam is (R3).
As shown in Fig. 6.

第4図、第5図及び第6図から判るように、上記環状レ
ーザ照射に基づく光硬化性流動物質の硬化部分幅(Xl
)は、TEMooモードレーザ照射の硬化部分幅(X2
)よりかなり大きく、従って、ガウス関数で表わされる
光量分布を有する従来レーザに比し、より太い帯状の硬
化部分を、上述の環状レーザを用いることにより、同じ
消費電力回で形成することができる。
As can be seen from FIGS. 4, 5, and 6, the width of the cured portion (Xl
) is the width of the cured portion of TEMoo mode laser irradiation (X2
), and therefore, compared to a conventional laser having a light intensity distribution expressed by a Gaussian function, a thicker band-shaped cured part can be formed with the same power consumption by using the above-mentioned annular laser.

また、第3図及び第6図に示した拡散 T E M o oモードレーザ照射の硬化部分幅(X
3)を、環状レーザ照射に基づき形成される硬化部分幅
(Xl)と同じにすることも可能であるが、半硬化部分
幅(RXa)が環状レーザ照射の場合の半硬化部分幅(
Rx1)より極めて大きくなる。
In addition, the width of the cured portion (X
3) can be made the same as the cured portion width (Xl) formed based on annular laser irradiation, but the semi-cured portion width (RXa) is the same as the semi-cured portion width (Xl) formed based on annular laser irradiation.
Rx1).

従って、拡散TEMooモードレーザを用いると、該レ
ーザ照射に基づき得られる帯状硬化部分周縁部の寸法精
度の低下を招き、例えば複雑な形状の固体を形成し得な
い。環状レーザ使用は、これらの欠点を解消し、該複雑
形状固体を高い寸法精度で効率良く形成することを可能
にするのである。
Therefore, when a diffused TEMoo mode laser is used, the dimensional accuracy of the peripheral edge of the band-shaped cured portion obtained by the laser irradiation decreases, and, for example, it is impossible to form a solid having a complicated shape. The use of an annular laser eliminates these drawbacks and makes it possible to efficiently form complex-shaped solids with high dimensional accuracy.

発明の効果 以上から明らかなように、本発明によれば、光硬化性流
動物質に対する光照射を行うにあたり、光軸に垂直な断
面における光量分布が環状の多光歯領域を有するモード
で発振されるレーザを照射光として使用するので、該光
照射の1度の走査で比較的太い帯状固体を高い寸法精度
で形成することができ、所望形状の固体を効率良く形成
し得る光学的造形法を提供することができる。
Effects of the Invention As is clear from the above, according to the present invention, when irradiating a photocurable fluid material with light, the light amount distribution in a cross section perpendicular to the optical axis is oscillated in a mode having an annular multi-optical tooth region. Since a laser is used as the irradiation light, a relatively thick band-shaped solid can be formed with high dimensional accuracy in one scan of the light irradiation, and this optical modeling method can efficiently form a solid of a desired shape. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施において光照射を行うにあた
り使用する環状レーザの光軸に垂直な断面の光量分布の
1例を示すグラフ、第2図は従来使用のT E M o
 oモードレーザの光軸に垂直な断面の光量分布の1例
を示すグラフ、第3図はTEMooモードレーザを拡散
した拡散T E M o oモードレーザの光軸に垂直
な断面の光量分布の1例を示すグラフ、第4図は光硬化
性流動物質に対する環状レーザ照射の走査後の該流動物
質硬化部分を示す平面図、第5図はTEMo。 モードレーザ照射の走査後の硬化部分を示す平面図、第
6図は拡散T E M o oモードレーザ照射の走査
後の硬化部分を示す平面図、第7図(a)〜(b)は従
来の光学的造形法を概略的に示す説明図である。 (X+ )、(X2 )、(Xa )・・団・硬化部分
幅(Rx+ )、(RX2 )、(RX3 )・・団・
半硬化部分幅 (R+)、(R2)、(R3)・・・・・・レーザ光束
直径 (以 上) 第 図 第 図 第 図 (b) (C) (d)
FIG. 1 is a graph showing an example of the light intensity distribution in a cross section perpendicular to the optical axis of the annular laser used for light irradiation in carrying out the method of the present invention, and FIG.
A graph showing an example of the light intensity distribution in a cross section perpendicular to the optical axis of an o-mode laser. Figure 3 is a graph showing an example of the light intensity distribution in a cross section perpendicular to the optical axis of a diffused TE Moo mode laser obtained by diffusing a TEMoo mode laser. A graph showing an example, FIG. 4 is a plan view showing a hardened portion of the photocurable fluid material after scanning with annular laser irradiation, and FIG. 5 is TEMo. FIG. 6 is a plan view showing the hardened portion after scanning of the diffuse T E Moo mode laser irradiation, and FIGS. 7(a) to (b) are the conventional hardened portions. FIG. 2 is an explanatory diagram schematically showing an optical modeling method. (X+), (X2), (Xa)...Group, hardened portion width (Rx+), (RX2), (RX3)...Group
Semi-cured portion width (R+), (R2), (R3)... Laser beam diameter (or more) Fig. Fig. Fig. Fig. (b) (C) (d)

Claims (1)

【特許請求の範囲】[Claims] [1]光により硬化する光硬化性流動物質を容器内に収
容し、該流動物質中に光照射を行ないつつ、該照射箇所
を前記容器に対し水平及び垂直方向に造形対象の形状に
応じて相対移動させ、所望形状の固体を形成する光学的
造形法において、前記光照射を行なうにあたり、光軸に
垂直な断面における光量分布が環状の多光量領域を有す
るモードで発振されるレーザを前記光として使用するこ
とを特徴とする光学的造形法。
[1] A photocurable fluid material that is hardened by light is placed in a container, and while irradiating light into the fluid material, the irradiation area is directed horizontally and vertically to the container according to the shape of the object to be modeled. In an optical modeling method in which a solid body having a desired shape is formed by relative movement, the light irradiation is performed using a laser that is oscillated in a mode in which the light intensity distribution in a cross section perpendicular to the optical axis has an annular high-light-intensity region. An optical modeling method characterized by its use as a
JP63205077A 1988-08-18 1988-08-18 Optical shaping method Granted JPH0252724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63205077A JPH0252724A (en) 1988-08-18 1988-08-18 Optical shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63205077A JPH0252724A (en) 1988-08-18 1988-08-18 Optical shaping method

Publications (2)

Publication Number Publication Date
JPH0252724A true JPH0252724A (en) 1990-02-22
JPH0479827B2 JPH0479827B2 (en) 1992-12-17

Family

ID=16501044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63205077A Granted JPH0252724A (en) 1988-08-18 1988-08-18 Optical shaping method

Country Status (1)

Country Link
JP (1) JPH0252724A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU750878B2 (en) * 1998-07-03 2002-08-01 Australian National University, The Laser direct writing of planar lightwave circuits
US6577799B1 (en) 1998-07-03 2003-06-10 The Australian National University Laser direct writing of planar lightwave circuits
EP1405714A1 (en) * 2002-09-30 2004-04-07 EOS GmbH Electro Optical Systems Method and apparatus for layerwise manufacturing of three dimensional objects
JP2017109393A (en) * 2015-12-16 2017-06-22 国立大学法人横浜国立大学 Production method of resin molded article
JP2020509409A (en) * 2017-02-15 2020-03-26 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Optical lithography process suitable for a sample containing at least one fragile light emitter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU750878B2 (en) * 1998-07-03 2002-08-01 Australian National University, The Laser direct writing of planar lightwave circuits
US6577799B1 (en) 1998-07-03 2003-06-10 The Australian National University Laser direct writing of planar lightwave circuits
EP1405714A1 (en) * 2002-09-30 2004-04-07 EOS GmbH Electro Optical Systems Method and apparatus for layerwise manufacturing of three dimensional objects
JP2004130793A (en) * 2002-09-30 2004-04-30 Eos Gmbh Electro Optical Systems Apparatus for manufacturing three-dimensional object at each layer, and its method
JP2017109393A (en) * 2015-12-16 2017-06-22 国立大学法人横浜国立大学 Production method of resin molded article
JP2020509409A (en) * 2017-02-15 2020-03-26 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Optical lithography process suitable for a sample containing at least one fragile light emitter

Also Published As

Publication number Publication date
JPH0479827B2 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
JPH054898B2 (en)
JP3004302B2 (en) Solid modeling system and method
KR100257034B1 (en) Cad/cam stereolithographic data conversion
JP3803735B2 (en) Light solidification modeling device that performs optical scanning simultaneously with recoating
JPS6340650B2 (en)
JPH0252724A (en) Optical shaping method
JPH0533901B2 (en)
JPH01228828A (en) Optical shaping method
JPH02153722A (en) Optical molding method
JPH02128829A (en) Optical molding method
JP2001301045A (en) Rapid prototyping apparatus
JPH04371829A (en) Three dimensional shape-making method and device
JPH0224121A (en) Optical shaping method
JPH0533900B2 (en)
JPH1142714A (en) Light molding apparatus
JPH0493228A (en) Method for forming three-dimensional matter
JPH0562579B2 (en)
JPH02103127A (en) Method and apparatus for forming three-dimensional configuration
JP2600047B2 (en) Optical modeling
JPH0499618A (en) Formation of object having three-dimensional configuration
JP3306470B2 (en) Optical modeling
KR0178872B1 (en) Stereolithographic supports
JPH08238678A (en) Optically molding machine
KR100229580B1 (en) Cad/cam stereolithographic data conversion
KR100573927B1 (en) Direct fabrication method of three-dimensional micro-scaled surfaces