JPH0562579B2 - - Google Patents

Info

Publication number
JPH0562579B2
JPH0562579B2 JP63055397A JP5539788A JPH0562579B2 JP H0562579 B2 JPH0562579 B2 JP H0562579B2 JP 63055397 A JP63055397 A JP 63055397A JP 5539788 A JP5539788 A JP 5539788A JP H0562579 B2 JPH0562579 B2 JP H0562579B2
Authority
JP
Japan
Prior art keywords
fluid material
container
base plate
light
support rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63055397A
Other languages
Japanese (ja)
Other versions
JPH01228827A (en
Inventor
Yoji Marutani
Takashi Nakai
Seiji Hayano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Osaka Prefecture
Original Assignee
Mitsubishi Corp
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Osaka Prefecture filed Critical Mitsubishi Corp
Priority to JP63055397A priority Critical patent/JPH01228827A/en
Publication of JPH01228827A publication Critical patent/JPH01228827A/en
Publication of JPH0562579B2 publication Critical patent/JPH0562579B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光及び光硬化性流動物質を用いて所
望形状の固体を形成する光学的造形法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical modeling method for forming a solid body of a desired shape using light and a photocurable fluid material.

従来の技術及びその問題点 従来、鋳型製作時に必要とされる製品形状に対
応する模型、或いは切削下降の倣い制御用又は形
彫放電加工電極用の模型の製作は、手加工によ
り、或いはNCフライス盤等を用いたNC切削加
工により行なわれていた。しかしながら、手加工
による場合は多くの手間と熟練とを要するという
問題が存し、NC切削加工による場合は、刃物の
刃先形状変更のための交換や摩耗等を考慮した複
雑な工作プログラムを作る必要があると共に、加
工面に生じた段を除くために更に仕上げ加工を必
要とする場合があるという問題が存していた。
Conventional technology and its problems Conventionally, models corresponding to the product shape required during mold production, models for controlling the profile of cutting descent, or models for die-sinking electrical discharge machining electrodes have been produced by hand processing or using an NC milling machine. This was done by NC cutting using tools such as. However, when using manual machining, there is a problem in that it requires a lot of time and skill, and when using NC machining, it is necessary to create a complex machining program that takes into account replacement and wear to change the shape of the cutting edge. In addition, there is a problem in that additional finishing machining may be required to remove steps formed on the machined surface.

このような問題を解決するものとして、本発明
者は、第4図aに示す光学的造形法を提案してい
る(特開昭60−247515号、特開昭62−101408号)。
該方法の1実施態様は、光硬化性流動物質Aを容
器51内に収容し、支持棒3に支持されたベース
プレート2を、上方から光照射により流動物質A
上面からベースプレート2上面に及ぶ連続した硬
化部分が得られる深さとなるように流動物質A中
に沈め、該流動物質Aの上方から凸レンズ等の光
収束器4を介して選択的に光照射を行い、該流動
物質A上面からベースプレート上面に及ぶ硬化部
分を形成し、更に該硬化部分上において前記深さ
に相当する深さをなすよう、ベースプレート2を
流動物質A中に沈降させ、該流動物資Aの上方か
ら選択的光照射を行つて前記硬化部分から連続し
て上方へ延びた硬化部分を形成し、これらベース
プレート2の沈降及び硬化部分の形成を繰り返し
て所望形状の固体を形成するものである。第4図
aに示す硬化部分Bは、前記所望形状の固体を形
成する途上での段階的硬化が繰り返されているも
のである。
In order to solve this problem, the present inventor has proposed an optical modeling method shown in FIG.
In one embodiment of the method, the photocurable fluid material A is contained in a container 51, and the base plate 2 supported by the support rod 3 is irradiated with light from above to form the fluid material A.
It is immersed in the fluid material A to a depth that provides a continuous hardened portion extending from the upper surface to the upper surface of the base plate 2, and selectively irradiated with light from above the fluid material A via a light converging device 4 such as a convex lens. , forming a hardened portion extending from the upper surface of the fluid material A to the upper surface of the base plate, and further sinking the base plate 2 into the fluid material A so as to form a depth corresponding to the depth above the hardened portion; Selective light irradiation is performed from above to form a hardened portion that extends upward continuously from the hardened portion, and the settling of the base plate 2 and the formation of the hardened portion are repeated to form a solid having a desired shape. . The hardened portion B shown in FIG. 4a is one in which stepwise hardening is repeated during the formation of a solid having the desired shape.

このような方法においては、第4図bに示すよ
うに、ベースプレート2を所定深さに沈降させる
場合、流動物質Aへの支持棒3の浸漬体積が増加
し、該流動物質A上面の位置が高くなる。これに
より、流動物質A上面から硬化部分B上面までの
深さは、容器51を基準としたベースプレート2
の降下量より大きくなる。従つて、適切なベース
プレート2の沈降距離を得るには、支持棒3の流
動物質Aへの浸漬体積増をも考慮に入れた距離と
することが必要となり、支持棒3の径の変更等の
際に、その考慮が面倒となる。また、徐々に流動
物質A上面の位置が高くなるため、凸レンズ等の
光収束器4と流動物質A上面との距離が所定の収
束距離となるよう、該光収束器4または容器51
の少なくともいずれか一方を、センサ、駆動装置
等を用いて移動制御しなければならず、作業に手
間を要し、しかも装置が大がかりになるという問
題がある。
In such a method, as shown in FIG. 4b, when the base plate 2 is lowered to a predetermined depth, the immersion volume of the support rod 3 in the fluid material A increases, and the position of the upper surface of the fluid material A increases. It gets expensive. As a result, the depth from the upper surface of the fluid substance A to the upper surface of the hardened portion B is determined by the base plate 2 with respect to the container 51.
is greater than the amount of fall. Therefore, in order to obtain an appropriate settling distance of the base plate 2, it is necessary to set the distance by taking into consideration the increase in the volume of the support rod 3 immersed in the fluid substance A, and it is necessary to set the distance by taking into account the increase in the volume of the support rod 3 immersed in the fluid substance A. In some cases, this consideration becomes troublesome. In addition, since the position of the upper surface of the fluid material A gradually becomes higher, the light concentrator 4 or the container 5
It is necessary to control the movement of at least one of them using a sensor, a drive device, etc., which is a problem in that the work is time-consuming and the device becomes large-scale.

本発明は、上記問題点を解決し、上述の如き煩
雑な手間を要せず簡便に所望形状の固体を形成で
きる光学的造形法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide an optical modeling method that can easily form a solid body of a desired shape without requiring the above-mentioned complicated labor.

問題点を解決するための手段 本発明の前記目的は、光により硬化する光硬化
性流動物質を容器内に収容し、上下方向に延びる
支持棒の下端部に支持されたベースプレートを前
記流動物質中で段階的に下降させつつ各段階にお
いて前記流動物質の上方から選択的な光照射を行
なうことにより、ベースプレート上に順次硬化部
分を形成し、所望形状の固体を得る光学的造形法
において、前記容器側壁の上部に前記光硬化性流
動物質を溢れ出させる流出口を設け、該ベースプ
レート沈降のために降下される前記支持棒の浸漬
体増幅によつて前記光硬化性流動物質を該流出口
から溢れ出させて受容器に受け、該流動物質上面
の高さを一定に保持しつつ前記固体形成を行なう
ことを特徴とする光学的造形法、及び 光により硬化する光硬化性流動物質を容器内に
収容し、上下方向に延びる支持棒の下端部に支持
されたベースプレートを前記流動物質中で段階的
に下降させつつ各段階において前記流動物質の上
方から選択的な光照射を行なうことにより、ベー
スプレート上に順次硬化部分を形成し、所望形状
の固体を得る光学的造形法において、前記容器側
壁の外周を囲むオーバーフロータンクを設け、前
記ベースプレート沈降のために降下される前記支
持棒の浸漬体積増によつて前記光硬化性流動物質
を前記容器から溢れ出させて該オーバーフロータ
ンクで受け、該流動物質上面の高さを一定に保持
しつつ前記固体形成を行なうことを特徴とする光
学的造形法により、達成される。
Means for Solving the Problems The object of the present invention is to house a photocurable fluid material that is cured by light in a container, and to place a base plate supported by the lower end of a vertically extending support rod into the fluid material. In the optical modeling method, the container is lowered in stages and selectively irradiated with light from above the fluid material at each stage to form a solid part in a desired shape on the base plate in order. An outlet is provided in the upper part of the side wall for overflowing the photocurable fluid material, and the photocurable fluid material is caused to overflow from the outlet by the immersion amplification of the support rod that is lowered for the base plate to settle. An optical modeling method characterized by forming the solid material while keeping the height of the upper surface of the fluid material constant, and placing a photocurable fluid material that hardens with light in a container. The base plate, which is accommodated and supported by the lower end of a support rod extending in the vertical direction, is lowered stepwise in the fluid material, and selectively irradiated with light from above the fluid material at each step. In an optical modeling method in which a solid portion having a desired shape is obtained by sequentially forming hardened portions on the container, an overflow tank is provided surrounding the outer periphery of the side wall of the container, and an overflow tank is provided to surround the outer periphery of the side wall of the container, and the immersion volume of the support rod that is lowered to settle the base plate is increased. The optical modeling method is characterized in that the photocurable fluid material overflows from the container and is received in the overflow tank, and the solid formation is performed while maintaining a constant height of the top surface of the fluid material. achieved.

前記光硬化性流動物質としては、光照射により
硬化する種々の物質を用いることができ、例えば
変性ポリウレタンメタクリレート、オリゴエステ
ルアクリレート、ウレタンアクリレート、エポキ
シアクリレート、感光性ポリイミド、アミノアル
キドを挙げることができる。
As the photocurable fluid substance, various substances that are cured by light irradiation can be used, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd.

該光硬化性流動物質に、予め顔料、セラミツク
ス粉、金属粉等の改質用材料を混入したものを使
用してもよい。
The photocurable fluid substance may be mixed with a modifying material such as pigment, ceramic powder, metal powder, etc. in advance.

前記光としては、使用する光硬化性物質に応
じ、可視光、紫外光等種々の光を用いることがで
きる。該光は通常の光としてもよいが、レーザ光
とすることにより、エネルギーレベルを高めて造
形時間を短縮し、良好な集光性を利用して造形精
度を向上させ得るという利点を得ることができ
る。
As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable material used. Although the light may be ordinary light, using laser light has the advantages of increasing the energy level, shortening the modeling time, and improving the modeling accuracy by utilizing good light focusing. can.

実施例 以下に、本発明の実施例を、添付図面を参照し
つつ説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明方法を実施するための装置の
1例を示す。該装置は、光硬化性流動物質Aを収
容する容器1と、上下方向に延びる支持棒3の下
端部に支持されたベースプレート2と、容器1上
方の光源から発せられた光を容器1中の流動物質
A上面近傍で点状に収束させる光収束器4とを備
え、流動物質Aに対し光照射位置を相対的に移動
させるようになつている。容器1は、その側壁1
1に、該容器1から流動物質Aを溢れ出させ、該
流動物質A上面の高さを一定に保つための流出口
5が設けられている。流出口5の高さは、得よう
とする造形固体6及びベースプレート2の高さを
合わせたものより高くされる。流出口5の下方に
は、該流出口から溢れ出た流動物質を受けるため
の受容器7が配置されている。
FIG. 1 shows an example of an apparatus for carrying out the method of the invention. This device consists of a container 1 containing a photocurable fluid material A, a base plate 2 supported at the lower end of a support rod 3 extending in the vertical direction, and a light emitted from a light source above the container 1 into the container 1. A light converging device 4 is provided to converge the light into a point near the upper surface of the fluid material A, and the light irradiation position is moved relative to the fluid material A. The container 1 has its side wall 1
1 is provided with an outlet 5 for causing the fluid substance A to overflow from the container 1 and for keeping the height of the top surface of the fluid substance A constant. The height of the outlet 5 is set higher than the combined height of the shaped solid 6 to be obtained and the base plate 2. A receiver 7 is arranged below the outlet 5 to receive the fluid material overflowing from the outlet.

光源及び光収束器4は、容器1外に固定されて
おり、容器1に対し、主に水平方向に移動する。
この光学的造形装置における光収束器4は、凸レ
ンズであるが、例えば光を反射し収束せしめる凹
面鏡であつてもよい。
The light source and light concentrator 4 are fixed outside the container 1 and move mainly in the horizontal direction with respect to the container 1.
The light converging device 4 in this optical modeling apparatus is a convex lens, but may also be a concave mirror that reflects and converges light, for example.

また、ベースプレート2を支持する支持棒3も
容器1外に固定され、該容器1に対し垂直方向に
移動する。
Further, a support rod 3 that supports the base plate 2 is also fixed outside the container 1 and moves in a direction perpendicular to the container 1.

上記光源及び光収束器4の移動制御、又は支持
棒3の移動制御は、NC等の自動制御や人手によ
る制御等、適宜に行うことができる。
The movement control of the light source and light converging device 4 or the movement control of the support rod 3 can be performed as appropriate, such as automatic control such as NC, manual control, etc.

本装置を用いて所望形状の固体6の造形を行う
には、まず容器1に光硬化性流動物質A、流出口
5から溢れ出る程度に入れる(第2図a参照)。
つぎに、支持棒3を降下させてベースプレート2
を流動物質A中に浸漬し、第2図bに示すよう
に、上方からの光照射により流動物質A上面から
ベースプレート2上面に及ぶ連続した硬化部分が
得られる深さとなるように該ベースプレート2を
位置決めする。この場合、ベースプレート2及び
支持棒3の浸漬体積分の流動物質Aが流出口5か
ら溢れ出るため、流動物質A上面は上記所定の高
さに保持される。その後、第2図cに示すよう
に、流動物質Aの硬化に必要なエネルギーレベル
の光を光源から発し、光収束器4でもつて該光
を、点状に収束させつつベースプレート2上の流
動物質Aに集中照射する。この状態で光の集中箇
所を容器1に対し移動させ、得ようとする造形固
体の形状に対応して選択的に光照射を行う。これ
により、硬化部分60が得られる。なお、上述し
た連続硬化部分を得ることのできる深さを超える
深さになると、硬化部分がベースプレート2上面
に固着せず、流動物質A中で浮遊又は沈降して所
望形状の造形固体を得られなくなる。硬化部分6
0が得られたのち、第2図dに示すように、容器
1内流動物質A上面から硬化部分60上面までの
深さが、これら両面間に及び連続した硬化部分が
光照射により得られる深さ、即ち硬化部分60を
形成したと同じ深さとなるように、支持棒3を下
降させ、ベースプレート2を沈降させる。該支持
棒3下降により、流動物質Aに浸漬する支持棒3
の体積は増加するが、これに伴い該流動物質A
が、流出口5から溢れ出て流動物質A上面が、第
2図bに示したと同様に、一定高さに保持され
る。よつて、第2図eに示すように、流動物質A
上方から、前述と同様の光収束器4を介する集中
光照射を選択的に行うことにより、硬化部分60
上に新たにこれに連続する硬化部分61を得るこ
とができる。更に、これら支持棒3の上記深さに
相当する下降に伴うベースプレート2の沈降及び
光照射による硬化部分の形成を繰り返すことによ
り、所望形状の造形固体60を形成することがで
きる。この間、流出口5から溢れ出た流動物質は
Aは、受容器7に受入れられる。
In order to form a solid 6 of a desired shape using this apparatus, first the photocurable fluid material A is placed in the container 1 to the extent that it overflows from the outlet 5 (see FIG. 2a).
Next, lower the support rod 3 and lower the base plate 2.
is immersed in the fluid material A, and the base plate 2 is immersed in the fluid material A to a depth that allows a continuous hardened portion extending from the top surface of the fluid material A to the top surface of the base plate 2 by irradiating light from above, as shown in FIG. 2b. Position. In this case, the fluid material A corresponding to the immersion volume of the base plate 2 and the support rod 3 overflows from the outlet 5, so that the upper surface of the fluid material A is maintained at the predetermined height. Thereafter, as shown in FIG. 2c, a light source emits light having an energy level necessary for curing the fluid material A, and the light converger 4 converges the light into a point shape while the fluid material on the base plate 2 is being focused. Concentrate irradiation on A. In this state, the light concentration point is moved relative to the container 1, and light is irradiated selectively in accordance with the shape of the shaped solid to be obtained. As a result, a hardened portion 60 is obtained. Note that if the depth exceeds the depth at which the continuous hardened portion described above can be obtained, the hardened portion will not adhere to the upper surface of the base plate 2 and will float or settle in the fluid material A, making it impossible to obtain a shaped solid of the desired shape. It disappears. Hardened part 6
0 is obtained, as shown in FIG. 2d, the depth from the upper surface of the fluid substance A in the container 1 to the upper surface of the hardened portion 60 is the depth that can be obtained by light irradiation if the continuous hardened portion extends between these two surfaces. The support rod 3 is lowered and the base plate 2 is lowered to the same depth as that at which the hardened portion 60 was formed. By lowering the support rod 3, the support rod 3 is immersed in the fluid substance A.
The volume of the fluid substance A increases, but along with this the volume of the fluid substance A increases.
However, the fluid material A overflows from the outlet 5 and the upper surface of the fluid material A is maintained at a constant height as shown in FIG. 2b. Therefore, as shown in FIG. 2e, the fluid substance A
The cured portion 60 is selectively irradiated with concentrated light from above through the light concentrator 4 similar to that described above.
A new, continuous hardened portion 61 can be obtained on top. Further, by repeating the settling of the base plate 2 as the support rods 3 are lowered to the above-mentioned depth and the formation of a hardened portion by light irradiation, it is possible to form a shaped solid 60 having a desired shape. During this time, the fluid material A overflowing from the outlet 5 is received by the receiver 7.

光源及び光収束器4を、これら一体的に複数用
いてもよく、また、容器1を固定光照射に対し水
平多動させる位置制御であつてもよい。
A plurality of light sources and light concentrators 4 may be used integrally, or the position may be controlled such that the container 1 is moved horizontally with respect to fixed light irradiation.

上記のように、本発明光学的造形法において
は、容器内の光硬化性流動物質上面が、支持棒の
浸漬体積増にかかわりなく該流動物質に対する光
照射時には、常に一定高さにある。これにより、
光収束器から流動物質上面までの距離が適切な収
束距離に保たれ、該光収束器又は容器の垂直移動
制御を要せず、そのためのセンサ、駆動装置等を
省くことができ、装置が簡易なものとなる。ま
た、支持棒の下降距離も、流動物質上面上昇を考
慮した計算等を要することなく、上記適切深さに
相当する距離に設定するだけでよい。
As described above, in the optical modeling method of the present invention, the upper surface of the photocurable fluid material in the container is always at a constant height when the fluid material is irradiated with light, regardless of the increase in the immersion volume of the support rod. This results in
The distance from the light concentrator to the top surface of the fluid substance is maintained at an appropriate convergence distance, and there is no need to control the vertical movement of the light concentrator or container, and sensors, drive devices, etc. for this purpose can be omitted, and the device is simple. Become something. In addition, the descending distance of the support rod need only be set to a distance corresponding to the above-mentioned appropriate depth, without the need for calculations taking into account the rise of the upper surface of the fluid material.

なお、上記光学的造形装置は、これに使用され
た容器1に替え、第3図に示す容器20を用いる
こともできる。該容器20は、上述した光硬化性
流動物質A上面の所定高さ、即ち、得ようとする
造形固体6及びこれを保持するベースプレート2
が該流動物質A中に没しうる高さと同じ高さの容
器本体21と、該要器本体21の開口周縁を周回
するようにして上方へ延びるオーバーフロータン
ク22とを備えている。この容器20は、容器本
体21から溢れ出た流動物質Aをオーバーフロー
タンク22で受け、該オーバーフロータンク22
に設けられた流出口23から、該オーバーフロー
タンク22に受けられた流動物質Aを排出するも
のである。従つて、該容器20も、上記の容器1
と同様、支持棒3の浸漬体積増にかかわりなく、
流動物質A上面が一定高さに保持され、上述と同
様の効果を得ることができる。
Note that the optical modeling apparatus described above can also use a container 20 shown in FIG. 3 instead of the container 1 used therein. The container 20 has a predetermined height above the upper surface of the photocurable fluid material A, that is, the shaped solid 6 to be obtained and the base plate 2 that holds it.
The container body 21 has the same height as the height at which the main body 21 can be immersed in the fluid substance A, and the overflow tank 22 extends upward so as to go around the opening periphery of the main body 21. This container 20 receives the fluid substance A overflowing from the container body 21 in an overflow tank 22.
The fluid material A received in the overflow tank 22 is discharged from an outlet 23 provided in the overflow tank 22. Therefore, the container 20 is also the same as the container 1 described above.
Similarly, regardless of the increase in the immersion volume of the support rod 3,
The upper surface of the fluid material A is maintained at a constant height, and the same effect as described above can be obtained.

発明の効果 以上から明らかなように、本発明方法によれ
ば、硬化部分を保持するベースプレートと共に降
下される支持棒の光硬化性流動物質内への浸漬体
積増によつて、容器内の該流動物質を溢れ出さ
せ、該容器内の流動物質上面の高さを保持しつつ
固体形成を行うので、光収束器と流動物質上面と
の距離調節のための煩雑な手間を要せず、また、
支持棒の下降に流動物質の上面上昇を考慮するこ
となく、簡便に所望形状の固体を形成することが
できる光学的造形法を提供できる。
Effects of the Invention As is clear from the above, according to the method of the present invention, the immersion volume of the support rod, which is lowered together with the base plate that holds the cured portion, is increased into the photocurable fluid material, thereby increasing the flow rate of the photocurable fluid material in the container. Since the substance is caused to overflow and a solid is formed while maintaining the height of the upper surface of the fluid material in the container, there is no need for complicated efforts to adjust the distance between the light converging device and the upper surface of the fluid material, and
It is possible to provide an optical modeling method that can easily form a solid in a desired shape without considering the rise of the upper surface of the fluid material when the support rod is lowered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例に係る光学的造形法
を実施するための装置の1例を概略的に示す縦断
側面図、第2図a〜eはその実施状況を段階的に
示す説明図、第3図は上記装置に用いられる容器
の他の例を示す縦断正面図、第4図a,bは従来
の光学的造形法を概略的に示す説明図である。 1,20……容器、2……ベースプレート、3
……支持棒、4……光収束器、5,23……流出
口、6……所望形状の造形固体、60,61……
硬化部分、A……光硬化性流動物質。
FIG. 1 is a longitudinal sectional side view schematically showing an example of an apparatus for carrying out an optical modeling method according to an embodiment of the present invention, and FIGS. 2 a to 2 e are explanations showing the implementation status step by step. Figures 3 and 3 are longitudinal sectional front views showing other examples of containers used in the above device, and Figures 4a and 4b are explanatory diagrams schematically showing conventional optical modeling methods. 1, 20... Container, 2... Base plate, 3
... Support rod, 4 ... Light converging device, 5, 23 ... Outlet, 6 ... Shaped solid of desired shape, 60, 61 ...
Cured portion, A...photocurable fluid material.

Claims (1)

【特許請求の範囲】 1 光により硬化する光硬化性流動物質を容器内
に収容し、上下方向に延びる支持棒の下端部に支
持されたベースプレートを前記流動物質中で段階
的に下降させつつ各段階において前記流動物質の
上方から選択的な光照射を行なうことにより、ベ
ースプレート上に順次硬化部分を形成し、所望形
状の固体を得る光学的造形法において、前記容器
側壁の上部に前記光硬化性流動物質を溢れ出させ
る流出口を設け、該ベースプレート沈降のために
降下される前記支持棒の浸漬体積増によつて前記
光硬化性流動物質を該流出口から溢れ出させて受
容器に受け、該流動物質上面の高さを一定に保持
しつつ前記固体形成を行なうことを特徴とする光
学的造形法。 2 光により硬化する光硬化性流動物質を容器内
に収容し、上下方向に延びる支持棒の下端部に支
持されたベースプレートを前記流動物質中で段階
的に下降させつつ各段階において前記流動物質の
上方から選択的な光照射を行なうことにより、ベ
ースプレート上に順次硬化部分を形成し、所望形
状の固体を得る光学的造形法において、前記容器
側壁の外周を囲むオーバーフロータンクを設け、
前記ベースプレート沈降のために降下される前記
支持棒の浸漬体積増によつて前記光硬化性流動物
質を前記容器から溢れ出させて該オーバーフロー
タンクで受け、該流動物質上面の高さを一定に保
持しつつ前記固体形成を行なうことを特徴とする
光学的造形法。
[Scope of Claims] 1. A photocurable fluid material that is hardened by light is housed in a container, and a base plate supported by the lower end of a support rod extending in the vertical direction is lowered in steps into the fluid material. In an optical modeling method, in which a solid portion having a desired shape is obtained by sequentially forming hardened portions on a base plate by selectively irradiating light from above the fluid material in a step, the light hardening material is applied to the upper part of the side wall of the container. providing an outlet through which the fluid substance overflows, and causing the photocurable fluid substance to overflow from the outlet and be received in a receiver by increasing the immersion volume of the support rod that is lowered for settling the base plate; An optical modeling method characterized in that the solid formation is performed while the height of the upper surface of the fluid substance is maintained constant. 2. A photocurable fluid material that is hardened by light is housed in a container, and a base plate supported by the lower end of a support rod extending in the vertical direction is lowered stepwise into the fluid material, and at each step, the fluid material is In an optical modeling method that sequentially forms hardened portions on a base plate to obtain a solid having a desired shape by selectively irradiating light from above, an overflow tank surrounding the outer periphery of the side wall of the container is provided,
By increasing the immersion volume of the support rod that is lowered to settle the base plate, the photocurable fluid material overflows from the container and is received in the overflow tank, and the height of the top surface of the fluid material is maintained constant. An optical modeling method characterized in that the solid formation is performed while the solid state is formed.
JP63055397A 1988-03-08 1988-03-08 Optical shaping method Granted JPH01228827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63055397A JPH01228827A (en) 1988-03-08 1988-03-08 Optical shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63055397A JPH01228827A (en) 1988-03-08 1988-03-08 Optical shaping method

Publications (2)

Publication Number Publication Date
JPH01228827A JPH01228827A (en) 1989-09-12
JPH0562579B2 true JPH0562579B2 (en) 1993-09-08

Family

ID=12997395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63055397A Granted JPH01228827A (en) 1988-03-08 1988-03-08 Optical shaping method

Country Status (1)

Country Link
JP (1) JPH01228827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104647752B (en) * 2013-11-20 2017-04-12 三纬国际立体列印科技股份有限公司 Three-dimensional printing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139711A (en) * 1989-12-25 1992-08-18 Matsushita Electric Works, Ltd. Process of and apparatus for making three dimensional objects
US5573721A (en) * 1995-02-16 1996-11-12 Hercules Incorporated Use of a support liquid to manufacture three-dimensional objects
JP6815940B2 (en) * 2017-06-15 2021-01-20 株式会社ミマキエンジニアリング Modeling equipment and modeling method
EP3415314A1 (en) * 2017-06-15 2018-12-19 Mimaki Engineering Co., Ltd. Building apparatus and building method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235966A (en) * 1984-08-08 1987-02-16 スリーデイー、システムズ、インコーポレーテッド Method and apparatus for generating 3-d object

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235966A (en) * 1984-08-08 1987-02-16 スリーデイー、システムズ、インコーポレーテッド Method and apparatus for generating 3-d object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104647752B (en) * 2013-11-20 2017-04-12 三纬国际立体列印科技股份有限公司 Three-dimensional printing device

Also Published As

Publication number Publication date
JPH01228827A (en) 1989-09-12

Similar Documents

Publication Publication Date Title
JPS62275734A (en) Method for forming solid
JPS6340650B2 (en)
JP6882508B2 (en) Equipment and methods for manufacturing 3D workpieces
CN1300667A (en) Method and apparatus for forming three-layer laminated products from optical solidified liquid
CN104325643A (en) Method and device for manufacturing 3D (three-dimensional) product
JPH054898B2 (en)
JP2007146216A (en) Equipment for manufacturing molding with three-dimensional shape
CN110340355A (en) The manufacturing method of three-D moulding object
GB2430640A (en) Method for microstructuring surfaces of a workpiece and use thereof
JPH0562579B2 (en)
JPH0533901B2 (en)
JPH01228828A (en) Optical shaping method
JPH02128829A (en) Optical molding method
JPH0533900B2 (en)
JPH0479827B2 (en)
JP2715649B2 (en) Resin three-dimensional shape forming device and forming method
JP3306470B2 (en) Optical modeling
JP2600047B2 (en) Optical modeling
JPH068341A (en) Optical shaping method
JPH03239531A (en) Manufacture of solid model
JPH0479825B2 (en)
JP3352165B2 (en) Liquid leveling method in stereolithography
JPH02103127A (en) Method and apparatus for forming three-dimensional configuration
JP2000202915A (en) Sqeegee device for stereo lithographing apparatus, and method therefor
JPH0832433B2 (en) Optical modeling method