JPH03239531A - Manufacture of solid model - Google Patents

Manufacture of solid model

Info

Publication number
JPH03239531A
JPH03239531A JP3610990A JP3610990A JPH03239531A JP H03239531 A JPH03239531 A JP H03239531A JP 3610990 A JP3610990 A JP 3610990A JP 3610990 A JP3610990 A JP 3610990A JP H03239531 A JPH03239531 A JP H03239531A
Authority
JP
Japan
Prior art keywords
container
resin
photocurable
light
liq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3610990A
Other languages
Japanese (ja)
Other versions
JPH07119064B2 (en
Inventor
Seiji Hayano
誠治 早野
Atsushi Hagitani
萩谷 敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Original Assignee
Mitsubishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp filed Critical Mitsubishi Corp
Priority to JP3610990A priority Critical patent/JPH07119064B2/en
Publication of JPH03239531A publication Critical patent/JPH03239531A/en
Publication of JPH07119064B2 publication Critical patent/JPH07119064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To avoid influences of temp. change and oxygen hindrance and to shorten remarkably manufacturing time for a model by inserting a container having an opening on its bottom in a photocurable fluid substance while inside of the container is compressed with a compressed fluid, moving the irradiated part while light irradiation is performed to form a continuously solidified part of the photocurable fluid substance. CONSTITUTION:A table 3 is sunk in a specified depth to the liq. surface of a photocurable resin 2. An irradiation device 4 is inserted in a resin liq. 2 from the upper side of the liq. surface and a compressed fluid is fed in the irradiation device 4 to push down the resin liq. 2 and the resin liq. is irradiated with a light flux. A resin liq. 2 between the irradiated part of the liq. surface and the table 3 below it is cured to form a cured product on the table. When the irradiation device 4 is moved horizontally, a cured layer 5a corresponding to the shape of the lowermost layer of a solid model is formed on the table 3. After the table 3 is lowered by a thickness of a layer of the cured layer, another cured layer 5b is formed on the cured layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光硬化性流動物質を用いて所望形状の固体を形
成する立体モデル製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a three-dimensional model manufacturing method for forming a solid having a desired shape using a photocurable fluid material.

〔従来の技術〕[Conventional technology]

光硬化性流動物質を容器内に収容して、該物質に光エネ
ルギ集中照射を行ないながらその照射個所を水平に移動
させ、造形対象の所定の断面形状に相当する薄い光硬化
性物質の同化層を形威し、その後該同化層表面に新たな
光硬化性流動物質層を付加し、再び光エネルギ集中照射
を行なって前記固化層に連続する断面形状の同化層を形
成する操作を繰り返すことにより、所定断面形状の同化
層を順次積層して所望形状の立体物を形成する光学的造
形法が特公昭63−40650号公報に提案されている
。同公報に記載の方法によれば、変性ポリウレタンメタ
クリレート、オリゴエステルアクリレート、エポキシア
クリレート、ウレタンアクリレート等の光硬化性樹脂液
を用いて複雑な形状の立体モデルを製造することが可能
である。通常、この方法により立体モデルを製造する場
合、1つの断面形状の固化層を形成後、次の断面形状の
固化層を形成するために前記固化層上に所定の厚さの未
硬化の光硬化性流動物質を供給する必要がある。
A photocurable fluid material is housed in a container, and while the substance is irradiated with concentrated light energy, the irradiated area is moved horizontally to create a thin assimilation layer of the photocurable material corresponding to a predetermined cross-sectional shape of the object to be modeled. By repeating the operation of adding a new photocurable fluid material layer to the surface of the assimilated layer, and irradiating concentrated light energy again to form an assimilated layer with a cross-sectional shape that is continuous with the solidified layer. Japanese Patent Publication No. 63-40650 proposes an optical modeling method in which a three-dimensional object of a desired shape is formed by sequentially laminating assimilated layers having a predetermined cross-sectional shape. According to the method described in the publication, it is possible to manufacture a three-dimensional model with a complicated shape using a photocurable resin liquid such as modified polyurethane methacrylate, oligoester acrylate, epoxy acrylate, or urethane acrylate. Normally, when manufacturing a three-dimensional model by this method, after forming a solidified layer with one cross-sectional shape, a predetermined thickness of uncured photo-cured material is placed on the solidified layer to form a solidified layer with the next cross-sectional shape. It is necessary to supply a fluid substance.

この操作は前記公報に記載の方法では容器内に所要量の
光硬化性流動物質を追加注入し、容器内の光硬化性流動
物質上面(以下便宜上「液面」と呼ぶ)高さを所定量上
昇させて前記固化層を光硬化性流動物質中に所定深さだ
け浸漬させることにより行なっている。この立体モデル
製造方法においては1回に形成する同化層の厚さは0.
1 mmから1mm程度と極めて薄いため前記同化層を
浸漬させる深さもそれに応じて小さくなっている。
In the method described in the above-mentioned publication, this operation involves additionally injecting a required amount of photocurable fluid material into the container, and increasing the height of the top surface (hereinafter referred to as "liquid level") of the photocurable fluid material in the container by a predetermined amount. This is done by raising the solidified layer and immersing the solidified layer into the photocurable fluid material to a predetermined depth. In this three-dimensional model manufacturing method, the thickness of the assimilated layer formed at one time is 0.
Since it is extremely thin, about 1 mm to 1 mm, the depth to which the assimilation layer is immersed is correspondingly small.

ところがワークの固化層上面は、光照射により完全に硬
化して乾燥状態になっているため、光硬化性流動物質と
のなじみが悪く、上述のように浸漬深さが極めて小さい
と、固化層外縁部には表面張力により、周囲の光硬化性
流動物質の湾曲した自由表面が形成されてしまい、固化
層上面への周囲の光硬化性流動物質の導入が阻止される
という問題が生じていた。
However, the upper surface of the solidified layer of the workpiece is completely cured by light irradiation and is in a dry state, so it is not compatible with the photocurable fluid material, and as mentioned above, if the immersion depth is extremely small, the outer edge of the solidified layer A problem has arisen in that a curved free surface of the surrounding photocurable fluid material is formed due to surface tension in the solidified layer, preventing the surrounding photocurable fluid material from being introduced to the upper surface of the solidified layer.

このため実際に上記方法を用いて立体モデルを製造する
場合には容器内に上下動可能な基盤を浸漬して、この基
盤上に前記固化層を積層する方法がとられており、1つ
の固化層を形成後基盤を一旦10〜50mm程度と大き
く下降させて、製作中のモデル(以下“ワーク”という
)を光、硬化性物質中に沈下させ、ワークの前記固化層
上面と周囲の光硬化性物質液面との間に十分大きな高低
差を設け、周囲の光硬化性物質を固化層上面に流入させ
た後、再度基盤を上昇させて所定の浸漬深さを得る操作
を行なっている。
For this reason, when actually manufacturing a three-dimensional model using the above method, a method is used in which a vertically movable base is immersed in a container and the solidified layer is laminated on this base. After forming the layer, the base is lowered by a large distance of about 10 to 50 mm, and the model being manufactured (hereinafter referred to as the "work") is submerged in light and a curable substance, and the upper surface of the solidified layer and the surrounding area of the work is light-cured. After creating a sufficiently large difference in height between the substrate and the liquid surface of the solidified material and allowing the surrounding photocurable material to flow onto the upper surface of the solidified layer, the substrate is raised again to obtain a predetermined immersion depth.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の方法ではワークを一旦大きく沈下させてから所定
浸漬深さまで上昇させる必要があり、基盤の上下動作や
、基盤を所定浸漬深さに調整した後の液面静定までに時
間がかかるため、1つの固化層形成後に次の光照射を開
始するまでの準備期間が長くなる問題があった。この立
体モデル製造法は極めて薄い固化層(厚さ0.1〜1m
m)を積層して立体モデルを完成させるため、1つのモ
デルを製造する際、上記操作を1000回以上行なう場
合があり、上記準備期間がモデル製造時間に与える影響
は大きい。特にワーク断面積が大きい場合には流動物質
導入のための基盤上下動作もそれに応じて大きく設定す
る必要があり、更に、流動物質がワークの固化層上面を
覆うまでの時間も長くなるため、上記操作に相当長時間
を要していた。
In the above method, it is necessary to lower the workpiece greatly and then raise it to the specified immersion depth, and it takes time to move the substrate up and down and to stabilize the liquid level after adjusting the substrate to the specified immersion depth. There is a problem in that it takes a long time to prepare for starting the next light irradiation after the formation of one solidified layer. This three-dimensional model manufacturing method uses an extremely thin solidified layer (0.1 to 1 m thick).
m) to complete the three-dimensional model by laminating the three-dimensional model, the above operation may be performed more than 1000 times when manufacturing one model, and the preparation period described above has a large effect on the model manufacturing time. In particular, when the cross-sectional area of the workpiece is large, the vertical movement of the base for introducing the fluid material must be set accordingly, and the time required for the fluid material to cover the top surface of the solidified layer of the workpiece will also be longer. It took quite a long time to operate.

また、上述の方法では光硬化性流動物質表面は大気に曝
されているため、流動物質表面は気温の変化の影響を受
けて温度が変化し、光照射による硬化速度が変動する問
題があった。
In addition, in the above method, the surface of the photocurable fluid material is exposed to the atmosphere, so the temperature of the surface of the fluid material changes due to changes in air temperature, causing a problem in which the curing speed due to light irradiation fluctuates. .

更に、上記方法では表面が大気に接触しているため、流
動物質表面に大気中の酸素が吸着される問題があった。
Furthermore, in the above method, since the surface is in contact with the atmosphere, there is a problem that oxygen in the atmosphere is adsorbed onto the surface of the fluid material.

ウレタンアクリレート、エポキシアクリレート等のアク
リル系光硬化性樹脂は、酸素の存在化では阻害反応を生
じて光硬化反応が生じにくくなる性質(酸素阻害)を有
しており、上記方法でこれらの光硬化樹脂を用いた場合
、硬化速度が遅くなるため固化層形成時間が長くなると
いう問題が生じている。
Acrylic photocurable resins such as urethane acrylate and epoxy acrylate have a property (oxygen inhibition) that in the presence of oxygen, an inhibition reaction occurs and the photocuring reaction is difficult to occur (oxygen inhibition). When a resin is used, a problem arises in that the curing speed is slow and the time required to form a solidified layer becomes long.

本発明は上記問題を解決するために、1つの固化層形成
後法の固化層形成を開始するまでの準備期間を短縮し、
同時に気温の変化及び酸素阻害による影響を排除してモ
デル製作時間を大幅に短縮することができる立体モデル
製造法を提供することを目的としている。
In order to solve the above-mentioned problems, the present invention shortens the preparation period until starting the solidified layer formation by the method after forming one solidified layer,
It is an object of the present invention to provide a three-dimensional model manufacturing method that can significantly shorten model manufacturing time by eliminating the effects of temperature changes and oxygen inhibition.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の立体モデル製造法は、光照射による固化層形成
を光硬化性物質の定常液面下で行なうことを特徴とする
The three-dimensional model manufacturing method of the present invention is characterized in that the solidified layer is formed by light irradiation under the steady liquid level of the photocurable material.

すなわち、本発明によれば、下部に開口を有する容器内
に光硬化用光源を設け、該容器内部を圧力流体で加圧し
ながら光硬化性流動物質に挿入し、容器内圧力により前
記流動物質の容器内への侵入を防止すると共に前記開口
下部に前記圧力流体と前記流動物質との境界面を形威し
、該境界面に前配光源から光照射を行ないつつ前記開口
と共に照射個所を移動させて光硬化性流動物質の連続し
た固化部を形成することを特徴とする立体モデル製造法
が提供される。
That is, according to the present invention, a light curing light source is provided in a container having an opening at the bottom, and a photocurable fluid material is inserted into the container while pressurizing the inside of the container with a pressure fluid, and the fluid material is heated by the pressure inside the container. In addition to preventing intrusion into the container, forming an interface between the pressurized fluid and the fluid substance at the lower part of the opening, and irradiating the interface with light from a front light distribution source while moving the irradiation point together with the opening. A three-dimensional model manufacturing method is provided, which is characterized by forming a continuous solidified portion of a photocurable fluid material.

また、本発明によれば、 光硬化性流動物質液面に向けてノズルから圧力流体を連
続的に噴射し、前記液面に所定深さの凹部を生じさせ、
該凹部内液面に、光硬化用光源から光照射を行ないつつ
、前記ノズルと前記光源とを移動して、光硬化性流動物
質の定常液面下に連続した平板状の固化物を形成するこ
とを特徴とする立体モデル製造法が提供される。
Further, according to the present invention, a pressure fluid is continuously injected from a nozzle toward the liquid surface of the photocurable fluid material, and a recess of a predetermined depth is created in the liquid surface,
While irradiating the liquid surface in the recess with light from a photocuring light source, the nozzle and the light source are moved to form a continuous flat solidified material below the steady liquid surface of the photocurable fluid material. A three-dimensional model manufacturing method is provided.

〔作 用〕[For production]

本発明の第1の方法によれば、光硬化性流動物質中に挿
入した容器開口下部に形成される流動物質液面を光照射
により固化させながら、容器を移動させて前記照射個所
を移動させることにより、液中に所望形状の固体が形成
される。固化部分は常に液面下にあるため、前記容器を
移動させることにより、該同化部分は直ちに流動物質に
覆われる。また、光照射を定常液面化で行なうため、照
射個所は気温の変化の影響を受けない。更に、容器内の
加圧を、酸素を含まない流体で行なえば、容器開口下部
の液面に酸素が吸着されることがない。
According to the first method of the present invention, the liquid surface of the fluid material formed at the lower part of the opening of the container inserted into the photocurable fluid material is solidified by light irradiation, and the container is moved to move the irradiated area. As a result, a solid having a desired shape is formed in the liquid. Since the solidified part is always below the liquid level, by moving the container, the assimilated part is immediately covered with the fluid material. Furthermore, since the light irradiation is performed at a steady liquid level, the irradiated area is not affected by changes in temperature. Furthermore, if the inside of the container is pressurized with a fluid that does not contain oxygen, oxygen will not be adsorbed on the liquid level at the bottom of the opening of the container.

また、本発明の第2の方法によれば、ノズルからの噴流
により生じた光硬化物質液面の凹部に光照射を行ないな
がら、ノズルと光硬化用光源とを同時に水平移動させる
ことにより液中に固化層が形成される。前記凹部はノズ
ルと共に移動するため、形成された固化部分は直ちに液
中に没する。
According to the second method of the present invention, the nozzle and the photocuring light source are simultaneously moved horizontally while irradiating light onto the recesses in the liquid surface of the photocuring material generated by the jet from the nozzle. A solidified layer is formed. Since the recess moves together with the nozzle, the formed solidified portion is immediately submerged in the liquid.

照射個所は常に定常液面化であり、気温変化の影響を受
けず、また、ノズルから酸素を含まない流体を噴射すれ
ば前記凹部内の液面への酸素吸着を防止できる。
The irradiated area is always at a steady liquid level and is not affected by changes in temperature, and if a fluid containing no oxygen is injected from the nozzle, oxygen adsorption to the liquid level in the recess can be prevented.

〔実施例〕〔Example〕

本発明による立体モデル製造法の一実施例を第1図に示
す。
An embodiment of the three-dimensional model manufacturing method according to the present invention is shown in FIG.

第1図において1は光硬化性樹脂2を収容した容器を、
3は上下動可能に設けられたテーブルを、4は内部に光
硬化用光源を設置した光照射器である。テーブル3の上
下移動と照射器4の水平及び垂直方向の移動はそれぞれ
、図示しない駆動装置により行なわれ、それぞれNC工
作機等に公知の方法で位置及び速度が制御される。
In FIG. 1, 1 is a container containing a photocurable resin 2;
3 is a table that is movable up and down, and 4 is a light irradiator in which a light source for photocuring is installed. The vertical movement of the table 3 and the horizontal and vertical movement of the irradiator 4 are each performed by a drive device (not shown), and the position and speed of each are controlled by a known method for NC machine tools and the like.

照射器4は、第2図に示すように一端に開口12を有す
る略円筒上の中空容器11から戒り、容器11内部には
接続口13を介して接続された加圧手段(図示せず)か
ら加圧用流体が供給されている。
The irradiator 4 is connected to a substantially cylindrical hollow container 11 having an opening 12 at one end as shown in FIG. ) is supplied with pressurizing fluid.

また容器11内部には例えば光学ファイバ等の導光手段
14を介して外部に設けたレーザ発振器(図示せず)等
の高エネルギ光が供給される。15は導光手段14から
の光束を開口12近傍の所定個所へ集光させる集光器で
ある。
Furthermore, high-energy light from an externally provided laser oscillator (not shown) is supplied to the inside of the container 11 via a light guiding means 14 such as an optical fiber. Reference numeral 15 denotes a condenser that condenses the light beam from the light guiding means 14 to a predetermined location near the aperture 12.

本実施例においては、立体モデル製造開始にあたり、ま
ず第1図(A)に示すようにテーブル3を光硬化樹脂2
の液面に対して所定深さまで沈下させる。テーブル3を
沈下させる深さは、以下に説明する操作により形成する
固化層の厚さより大きくなるように設定される。次に液
面上方から照射器4を樹脂液2に挿入し、テーブル3と
所定間隔を隔てて対向させる。照射器4の容器11には
、このとき接続口13から加圧流体が供給され、容器1
1内圧を上昇させて樹脂液2の容器内への侵入を防止す
る。上記加圧流体としては窒素ガス、アルゴンガス等の
不活性ガスや空気等の気体、若しくは流動パラフィンや
水等の液体を用い、樹脂液2が光硬化する際に加圧流体
が樹脂固化面に付着しないようにする。容器内を加圧す
ることにより第2図に示すように樹脂液2は加圧流体に
より開口12の直下まで押し下げられ、樹脂液2と加圧
流体との境界に液面2aが形成される。この液面2aと
開口12との距離は容器11内に供給する流体圧力を変
えることにより調節される。この液面位置調節のため、
容器11内には液面での光反射を利用した非接触センサ
(図示せず)若しくは他の公知の液面センサを設けて液
面位置を検出し、加圧流体圧力を調節して液面を開口1
2から一定の距離に保持するようにすることもできる。
In this example, when starting the production of a three-dimensional model, the table 3 was first placed on the photocuring resin 2 as shown in FIG. 1(A).
sink to a predetermined depth relative to the liquid level. The depth to which the table 3 is sunk is set to be greater than the thickness of the solidified layer formed by the operation described below. Next, the irradiator 4 is inserted into the resin liquid 2 from above the liquid level and is opposed to the table 3 at a predetermined distance. At this time, pressurized fluid is supplied to the container 11 of the irradiator 4 from the connection port 13, and the container 1
1. The internal pressure is increased to prevent the resin liquid 2 from entering the container. The pressurized fluid is an inert gas such as nitrogen gas or argon gas, a gas such as air, or a liquid such as liquid paraffin or water, and when the resin liquid 2 is photocured, the pressurized fluid is applied to the resin solidification surface. Avoid adhesion. By pressurizing the inside of the container, the resin liquid 2 is pushed down by the pressurized fluid to just below the opening 12, as shown in FIG. 2, and a liquid level 2a is formed at the boundary between the resin liquid 2 and the pressurized fluid. The distance between the liquid level 2a and the opening 12 is adjusted by changing the fluid pressure supplied into the container 11. For this liquid level position adjustment,
A non-contact sensor (not shown) that uses light reflection on the liquid surface or other known liquid level sensor is provided in the container 11 to detect the liquid level position, and adjust the pressurized fluid pressure to adjust the liquid level. The opening 1
It is also possible to maintain it at a constant distance from 2.

照射器4を樹脂液2に挿入後、照射器4の上下位置及び
/又は加圧流体圧力を調節することにより、前記液面2
aとテーブル3との距離は形成する同化層厚さに等しく
なるように保持される。この状態で導光手段14から光
束を照射し、集光器15により液面2a上の一点に収束
させる。これにより液面2aの照射個所と、その下部の
テーブル3との間の樹脂液2が硬化し、テーブル上に固
化物を形成する。照射器4をこの状態から所定の軌跡を
痛くように制御して水平移動させるとテーブル3上には
立体モデルの最下層断面形状に対応した同化層5aが形
成される(第1図(A))。次に光照射を止め、テーブ
ル3を固化層−要分の厚さに相当する距離だけ下降させ
る(第1図(B))。その後置度光照射を行ないつつ照
射器4を水平に移動させると前記固化層上に別の固化層
5bが形成される(第1図(C)、第2図)。この操作
を繰り返すことにより、テーブル3上に所定断面形状の
同化層を積層しく第1図(b))、所望の形状の立体モ
デルを得ることができる。
After inserting the irradiator 4 into the resin liquid 2, the liquid level 2 can be adjusted by adjusting the vertical position of the irradiator 4 and/or the pressurized fluid pressure.
The distance between a and the table 3 is maintained equal to the thickness of the assimilation layer to be formed. In this state, a light beam is irradiated from the light guiding means 14 and converged by the condenser 15 to one point on the liquid surface 2a. As a result, the resin liquid 2 between the irradiated part on the liquid surface 2a and the table 3 below it is hardened, and a solidified substance is formed on the table. When the irradiator 4 is moved horizontally from this state in a controlled manner along a predetermined trajectory, an assimilation layer 5a corresponding to the cross-sectional shape of the lowermost layer of the three-dimensional model is formed on the table 3 (FIG. 1(A)). ). Next, the light irradiation is stopped and the table 3 is lowered by a distance corresponding to the thickness of the solidified layer (FIG. 1(B)). When the irradiator 4 is moved horizontally while performing subsequent light irradiation, another solidified layer 5b is formed on the solidified layer (FIGS. 1(C) and 2). By repeating this operation, assimilation layers with a predetermined cross-sectional shape can be laminated on the table 3 (FIG. 1(b)), and a three-dimensional model with a desired shape can be obtained.

本実施例によれば樹脂の硬化は液中で行なわれ、固化部
分は、照射器4を移動させると直ちに樹脂液に覆われる
ので固化層上に所定厚さの樹脂液を導入する操作は不要
である。従って1つの固化層形威完了後次の固化層形成
開始までに要する時間は、テーブル3を所定量(0,1
〜l mff1程度)下降させる時間のみとなり、所要
時間が大幅に短縮される。また、樹脂液の硬化が液中で
行なわれるため気温の変化が照射部分まで及ばないので
硬化速度が変動することはない。更に本方法の有利な点
は、容器11に供給する加圧流体として酸素を含まない
ものを使用すれば、アクリル系光硬化樹脂等の酸素阻害
を生じる樹脂を用いた場合でも従来より硬化速度を大幅
に上げることができることである。酸素阻害を防止する
ことにより光硬化速度は通常2〜4倍、最高30倍程度
まで上昇させることができ、モデル製作時間は大幅に短
縮される。また、本方法によれば加圧流体の加熱温度制
御を行なうことにより樹脂液の光照射個所を加熱し、硬
化速度を増大できるため、最適な条件で硬化作業を行な
うことができる。
According to this embodiment, the resin is cured in the liquid, and the solidified portion is immediately covered with the resin liquid when the irradiator 4 is moved, so there is no need to introduce a predetermined thickness of the resin liquid onto the solidified layer. It is. Therefore, the time required from the completion of one solidified layer formation to the start of the next solidified layer formation is based on Table 3 by a predetermined amount (0, 1
〜l mff1) Only the time needed to lower it is reduced, and the required time is significantly shortened. Further, since the resin liquid is cured in the liquid, changes in temperature do not reach the irradiated area, so the curing speed does not fluctuate. A further advantage of this method is that if a pressurized fluid that does not contain oxygen is used as the pressurized fluid supplied to the container 11, the curing speed can be increased compared to conventional methods even when using a resin that is inhibited by oxygen, such as an acrylic photocurable resin. This can be significantly increased. By preventing oxygen inhibition, the photocuring speed can be increased usually by 2 to 4 times, up to about 30 times, and the model production time is significantly shortened. Further, according to the present method, by controlling the heating temperature of the pressurized fluid, the light irradiated portion of the resin liquid can be heated and the curing speed can be increased, so that the curing operation can be performed under optimal conditions.

第3図は本発明の方法の別の実施例を示す図である。本
実施例では、第2図の光学系14.15は樹脂液2の液
面より上に位置させ、ノズル21を用いて加圧流体を液
面に連続的に噴射する。これにより樹脂液表面は噴流に
押されて凹部22を形成する。
FIG. 3 shows another embodiment of the method of the invention. In this embodiment, the optical system 14, 15 in FIG. 2 is positioned above the surface of the resin liquid 2, and the nozzle 21 is used to continuously inject pressurized fluid onto the liquid surface. As a result, the surface of the resin liquid is pushed by the jet and forms a recess 22 .

第2図の方法と同様にこの凹部22の深さは液面センサ
を用い、噴流の噴射圧力を調節することにより一定に保
たれる。本実施例では光照射は前記凹部22の底部液面
22Hに行なわれる。第1図の方法と同様、ノズル22
と導光手段14及び集光器15を水平に移動させること
により、凹部22も移動し、液面22aの照射個所も水
平に移動するため、樹脂液2の定常液面下には平板状の
固化層5が形成される。第1図の方法と同様にテーブル
3の下降と光照射とを繰り返すことにより同様の立体モ
デルが形成されることがわかる。本方法においても、凹
部22の移動と共に同化部分は液中に没するため、同化
層上への樹脂液の導入操作を行なう必要はない。又、第
1図の方法と同様にノズル9から噴出する加圧流体を酸
素を含まないものとし、或いは加圧流体の温度制御を行
なうことにより最適な硬化条件を設定できる。
Similar to the method shown in FIG. 2, the depth of the recess 22 is kept constant by adjusting the jet pressure using a liquid level sensor. In this embodiment, light irradiation is performed on the bottom liquid surface 22H of the recess 22. Similar to the method of FIG. 1, the nozzle 22
By horizontally moving the light guiding means 14 and the condenser 15, the concave portion 22 also moves, and the irradiated area on the liquid surface 22a also moves horizontally, so that a flat plate is formed below the steady surface of the resin liquid 2. A solidified layer 5 is formed. It can be seen that a similar three-dimensional model can be formed by repeating the lowering of the table 3 and the irradiation of light in the same manner as in the method shown in FIG. In this method as well, since the assimilated portion is submerged in the liquid as the recess 22 moves, there is no need to introduce the resin liquid onto the assimilated layer. Further, as in the method shown in FIG. 1, optimum curing conditions can be set by making the pressurized fluid jetted from the nozzle 9 free of oxygen or by controlling the temperature of the pressurized fluid.

本発明は上記実施例に限定されるわけではなく、種々の
変更が可能である。例えば第2図の実施例において、導
光体14を用いて西東を照射しているが、導光体を用い
ずに、反射鏡を用いて光を照射個所に導くことも可能で
ある。この場合容器11の開口12と対向する端面を貫
通して集光器15を設け、集光器15と容器11の壁面
との間を気密に保持することによっても同様の構成が得
られる。又、第3図において、導光体14、集光器15
をノズル21の外部に設ける代わりに、ノズル21の内
部に設置して、第2図と類似の構造にすること等も可能
である。
The present invention is not limited to the above embodiments, and various modifications are possible. For example, in the embodiment shown in FIG. 2, the light guide 14 is used to irradiate the west and east directions, but it is also possible to guide the light to the irradiation location using a reflecting mirror without using the light guide. In this case, a similar configuration can also be obtained by providing the condenser 15 passing through the end surface of the container 11 facing the opening 12 and keeping the space between the condenser 15 and the wall of the container 11 airtight. In addition, in FIG. 3, the light guide 14 and the condenser 15
Instead of being provided outside the nozzle 21, it is also possible to provide it inside the nozzle 21, resulting in a structure similar to that shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように光照射による同化層形成を樹脂液
の定常液面下で行なうことにより以下の効果を得ること
ができる。まず、第1に固化層表面は常に液中に没して
いるため、固化層上部への樹脂液導入操作が不要となり
、従来テーブルの大きな上下動作に要していた時間が不
要となる。また、樹脂液液面の静定を待つ必要がないた
め、1つの固化層形戊完了後次の固化層形成開始までに
要する時間を大幅に短縮できる。
In the present invention, the following effects can be obtained by forming an assimilation layer by light irradiation below the steady liquid level of the resin liquid as described above. First, since the surface of the solidified layer is always submerged in the liquid, there is no need to introduce the resin liquid into the upper part of the solidified layer, and the time that was conventionally required for large vertical movements of the table is no longer necessary. Furthermore, since there is no need to wait for the level of the resin liquid to settle, the time required from the completion of forming one solidified layer to the start of formation of the next solidified layer can be significantly shortened.

第2に、光照射を行なう樹脂液層は定常液面下にあり、
気温変化の影響が少いため、樹脂の硬化速度を一定に保
つことができる。
Second, the resin liquid layer that performs light irradiation is below the steady liquid level;
Since it is less affected by temperature changes, the curing speed of the resin can be kept constant.

第3に、定常液面下にある樹脂液に光照射を行なうこと
により、光照射部を大気から遮断できるため、酸素阻害
を生じる樹脂の場合でも大きな硬化速度が得られる。
Thirdly, by irradiating the resin liquid below the steady liquid level, the light irradiated area can be shielded from the atmosphere, so a high curing rate can be obtained even in the case of a resin that is inhibited by oxygen.

更に、第4に樹脂液の定常液面高さが変動しても照射位
置が影響を受けないため、従来必要とされていた樹脂液
の液位制御が不要となる。
Furthermore, fourthly, since the irradiation position is not affected even if the steady level height of the resin liquid changes, the liquid level control of the resin liquid, which was conventionally required, becomes unnecessary.

以上の効果により本発明によれば、立体モデル製造に要
する時間を大幅に短縮することが可能となる。
Due to the above effects, according to the present invention, it is possible to significantly shorten the time required for manufacturing a three-dimensional model.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による立体モデル製造法の一実施例を示
す略示図、第2図は、同上実施例の光照射器の樋底を示
す断面図、第3図は本発明による立体モデル製造法の別
の実施例を示す図である。 1・・・容器、       2・・・光硬化性樹脂、
3・・・テーブル、     4・・・光照射器、5・
・・固化層、     11・・・容器、12・・・開
口、      13・・・接続口、14・・・導光手
段、    15・・・集光器、21・・・ノズル、2
2・・・凹部。
FIG. 1 is a schematic diagram showing an embodiment of the three-dimensional model manufacturing method according to the present invention, FIG. 2 is a sectional view showing the bottom of the gutter of the light irradiator of the same embodiment, and FIG. It is a figure which shows another Example of a manufacturing method. 1... Container, 2... Photocurable resin,
3...Table, 4...Light irradiator, 5...
...Solidified layer, 11...Container, 12...Opening, 13...Connection port, 14...Light guide means, 15...Concentrator, 21...Nozzle, 2
2... Concavity.

Claims (1)

【特許請求の範囲】 1、下部に開口を有する容器内に光硬化用光源を設け、
該容器内部を圧力流体で加圧しながら光硬化性流動物質
に挿入し、容器内圧力により前記流動物質の容器内への
侵入を防止すると共に前記開口下部に前記圧力流体と前
記流動物質との境界面を形成し、該境界面に前記光源か
ら光照射を行ないつつ前記開口と共に照射個所を移動さ
せて光硬化性流動物質の連続した固化部を形成すること
を特徴とする立体モデル製造法。 2、光硬化性流動物質液面に向けてノズルから圧力流体
を連続的に噴射して、前記液面に所定深さの凹部を生じ
させ、該凹部内液面に、光硬化用光源から光照射を行な
いつつ、前記ノズルと前記光源とを移動して、光硬化性
流動物質の定常液面下に連続した平板状の固化物を形成
することを特徴とする立体モデル製造法。
[Claims] 1. A light source for photocuring is provided in a container having an opening at the bottom,
The inside of the container is pressurized with a pressure fluid and inserted into the photocurable fluid material, and the pressure inside the container prevents the fluid material from entering the container, and a boundary between the pressure fluid and the fluid material is formed at the lower part of the opening. A method for producing a three-dimensional model, comprising forming a surface, irradiating the boundary surface with light from the light source, and moving the irradiated area together with the opening to form a continuous solidified portion of a photocurable fluid material. 2. Continuously inject pressure fluid from a nozzle toward the liquid surface of the photocurable fluid material to create a recess of a predetermined depth in the liquid surface, and apply light from a photocuring light source to the liquid surface within the recess. A method for manufacturing a three-dimensional model, comprising moving the nozzle and the light source while performing irradiation to form a continuous flat solidified material below a steady liquid surface of a photocurable fluid material.
JP3610990A 1990-02-19 1990-02-19 Solid model manufacturing method Expired - Lifetime JPH07119064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3610990A JPH07119064B2 (en) 1990-02-19 1990-02-19 Solid model manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3610990A JPH07119064B2 (en) 1990-02-19 1990-02-19 Solid model manufacturing method

Publications (2)

Publication Number Publication Date
JPH03239531A true JPH03239531A (en) 1991-10-25
JPH07119064B2 JPH07119064B2 (en) 1995-12-20

Family

ID=12460604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3610990A Expired - Lifetime JPH07119064B2 (en) 1990-02-19 1990-02-19 Solid model manufacturing method

Country Status (1)

Country Link
JP (1) JPH07119064B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04307226A (en) * 1991-04-04 1992-10-29 Yamanashi Pref Gov Shaping device for model using laser lithography
JP2012086418A (en) * 2010-10-18 2012-05-10 Roland Dg Corp Optical shaping apparatus
US8796158B2 (en) 2003-06-12 2014-08-05 Samsung Electronics Co., Ltd. Methods for forming circuit pattern forming region in an insulating substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180162050A1 (en) 2016-12-14 2018-06-14 Electronics And Telecommunications Research Institute System for and method of manufacturing three-dimensional structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04307226A (en) * 1991-04-04 1992-10-29 Yamanashi Pref Gov Shaping device for model using laser lithography
US8796158B2 (en) 2003-06-12 2014-08-05 Samsung Electronics Co., Ltd. Methods for forming circuit pattern forming region in an insulating substrate
JP2012086418A (en) * 2010-10-18 2012-05-10 Roland Dg Corp Optical shaping apparatus

Also Published As

Publication number Publication date
JPH07119064B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
JP2001145956A (en) Apparatus and method for laminate shaping of photosetting resin three-dimensional shaped article
US5139711A (en) Process of and apparatus for making three dimensional objects
JPS62275734A (en) Method for forming solid
JP2007146216A (en) Equipment for manufacturing molding with three-dimensional shape
JP2020514136A (en) Device and method for manufacturing a three-dimensional workpiece
CN105599297A (en) Tank, system and method for manufacturing three-dimensional body
JP3066606B2 (en) Method and apparatus for manufacturing a three-dimensional object
JPH03239531A (en) Manufacture of solid model
JP3782049B2 (en) Stereolithography method and apparatus therefor
JP2665258B2 (en) 3D shape forming method
JPH01228828A (en) Optical shaping method
JP2619545B2 (en) 3D model manufacturing method
JPH04371829A (en) Three dimensional shape-making method and device
JPH02108519A (en) Formation of three-dimensional shape and device therefor
US5238497A (en) Apparatus for shaping solid profile resin bodies
JPH0295831A (en) Forming method and apparatus of three dimensional shape
JP2019019364A (en) Lamination molding device
JPH0533900B2 (en)
JPH0562579B2 (en)
JPH0479827B2 (en)
JP2000318050A (en) Stereo lithographic device and method
KR20180003295A (en) Three-dimensional object
JPH0596632A (en) Method and apparatus for optical shaping
JPH04118221A (en) Forming method and device of three-dimensional form
JP2000085019A (en) Method and apparatus for treating step of fabricated article