JP2619545B2 - 3D model manufacturing method - Google Patents

3D model manufacturing method

Info

Publication number
JP2619545B2
JP2619545B2 JP2042683A JP4268390A JP2619545B2 JP 2619545 B2 JP2619545 B2 JP 2619545B2 JP 2042683 A JP2042683 A JP 2042683A JP 4268390 A JP4268390 A JP 4268390A JP 2619545 B2 JP2619545 B2 JP 2619545B2
Authority
JP
Japan
Prior art keywords
solidified layer
fluid material
photocurable fluid
layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2042683A
Other languages
Japanese (ja)
Other versions
JPH03246025A (en
Inventor
敦 萩谷
誠治 早野
Original Assignee
エヌ・ティ・ティ・データ通信株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・ティ・ティ・データ通信株式会社 filed Critical エヌ・ティ・ティ・データ通信株式会社
Priority to JP2042683A priority Critical patent/JP2619545B2/en
Publication of JPH03246025A publication Critical patent/JPH03246025A/en
Application granted granted Critical
Publication of JP2619545B2 publication Critical patent/JP2619545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光硬化性流動物質を使用して鋳型原型や放電
加工電極用模型、工業製品のデザイン評価模型等の立体
モデルを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a three-dimensional model such as a mold prototype, a model for an electric discharge machining electrode, and a design evaluation model of an industrial product using a photocurable fluid material. .

〔従来の技術〕[Conventional technology]

光硬化性流動物質を容器内に収容して、該物質に光エ
ネルギ集中照射を行ないながらその照射箇所を水平に移
動させ、造形対象の所定の断面形状に相当する薄い光硬
化性物質の固化層を形成し、その後該固化層表面に新た
な光硬化性流動物質層を付加し、再び光エネルギ集中照
射を行なって前記固化層に連続する断面形状の固化層を
形成する操作を繰り返すことにより、所定断面形状の固
化層を順次積層して所望形状の立体物を形成する光学的
造形法が特公昭63−40650号公報に提案されている。
A photocurable fluid material is accommodated in a container, and the irradiated portion is moved horizontally while performing light energy concentration irradiation on the material, and a solidified layer of a thin photocurable material corresponding to a predetermined cross-sectional shape of a modeling object. Is formed, and then a new photocurable fluid material layer is added to the surface of the solidified layer, and light energy concentration irradiation is performed again to repeat the operation of forming a solidified layer having a continuous sectional shape on the solidified layer, Japanese Patent Publication No. Sho 63-40650 proposes an optical molding method in which solidified layers having a predetermined sectional shape are sequentially laminated to form a three-dimensional object having a desired shape.

同公報に記載の方法によれば、変性ポリウレタンメタ
クリレート、オリゴエステルアクリレート、エポキシア
クリレート等の光硬化性樹脂液を用いて複雑な形状の立
体モデルを製造することが可能である。
According to the method described in the publication, a three-dimensional model having a complicated shape can be manufactured using a photocurable resin liquid such as a modified polyurethane methacrylate, oligoester acrylate, or epoxy acrylate.

通常この方法により立体モデルを製造する場合、1つ
の断面形状の固化層を形成後、次の断面形状の固化層を
形成するために前記固化層上に所定の厚さの未硬化の光
硬化性流動物質を供給する必要がある。この操作は前記
公報に記載の方法では容器内に所望量の光硬化性流動物
質を追加注入し、容器内の光硬化性流動物質上面(以下
便宜上「液面」と呼ぶ)高さを所定量上昇させて前記固
化層が光硬化性流動物質中に所定深さだけ浸漬するよう
にして行なっている。この立体モデル製造方法において
は1回に形成する固化層の厚さは0.1mmから1mm程度と極
めて薄いため前記固化層を浸漬させる深さもそれに応じ
て小さくなっている。
Usually, when a three-dimensional model is manufactured by this method, after forming a solidified layer having one cross-sectional shape, an uncured photocurable material having a predetermined thickness is formed on the solidified layer in order to form a solidified layer having the next cross-sectional shape. It is necessary to supply a flowing substance. In this operation, in the method described in the above publication, a desired amount of the photocurable fluid substance is additionally injected into the container, and the height of the upper surface of the photocurable fluid substance (hereinafter referred to as “liquid level” for convenience) in the container is increased by a predetermined amount. The solidification layer is raised so as to be immersed in the photocurable fluid material to a predetermined depth. In this three-dimensional model manufacturing method, since the thickness of the solidified layer formed at one time is extremely thin, about 0.1 mm to 1 mm, the depth at which the solidified layer is immersed is correspondingly small.

ところがワークの固化層上面は、光照射により完全に
硬化して乾燥状態になっているため光硬化性流動物質と
のなじみが悪く、上述のように浸漬深さが極めて小さい
と固化層外縁部には表面張力により、周囲の光硬化性流
動物質の湾曲した自由表面が形成されてしまい、固化層
上面への周囲の光硬化性流動物質の導入が阻止されると
いう問題が生じていた。
However, the upper surface of the solidified layer of the work is completely cured by light irradiation and is in a dry state, so that it does not fit well with the photocurable fluid material. However, due to the surface tension, a curved free surface of the surrounding photocurable fluid material is formed, and there has been a problem that introduction of the peripheral photocurable fluid material to the upper surface of the solidified layer is prevented.

このため実際に上記方法を用いて立体モデルを製造す
る場合には容器内に上下動可能な基盤を浸漬して、この
基盤上に前記固化層を積層する方法がとられており、1
つの固化層を形成後基盤を一旦10〜50mm程度と大きく下
降させて、製作中のモデル(以下“ワーク”という)を
光硬化性物質中に沈下させ、ワークの前記固化層上面と
周囲の光硬化性物質液面との間に十分大きな高低差を設
け、周囲の光硬化性物質を固化層上面に注入させた後、
再度基盤を上昇させて所定の浸漬深さを得る操作を行な
っている。
Therefore, when a three-dimensional model is actually manufactured using the above method, a method is used in which a vertically movable base is immersed in a container and the solidified layer is laminated on the base.
After the two solidified layers are formed, the substrate is once lowered greatly to about 10 to 50 mm, and the model being manufactured (hereinafter referred to as “work”) is submerged in a photocurable substance, and the upper surface of the solidified layer of the work and the surrounding light After setting a sufficiently large height difference between the liquid surface of the curable substance and injecting the surrounding photocurable substance into the upper surface of the solidified layer,
The operation of raising the base again to obtain a predetermined immersion depth is performed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述のようにワークを一旦必要量以上に沈下させた後
に再度所定の深さまで上昇させる方法により、ワークの
固化層上に光硬化性物質を導入することが可能となって
いるが、この方法は以下に述べる問題がある。
As described above, it is possible to introduce a photocurable substance onto the solidified layer of the work by a method in which the work is once settled to a required amount or more and then raised to a predetermined depth again. There are the following problems.

すなわち、ワークの固化層上面は前述のように硬化後
乾燥状態になっており、光硬化性物質とのなじみが悪い
ため、ワークを沈下させて周囲から光硬化性物質の導入
が開始されても、固化層上面が完全に光硬化性物質で覆
われる前にワークを上昇させると、固化層上面中央付近
に表面張力による自由表面が形成されてしまい、固化層
上面中央部には光硬化性物質が導入されない場合があ
る。
That is, the solidified layer upper surface of the work is in a dry state after being cured as described above, and has poor compatibility with the photocurable substance, so that even if the work is settled and the introduction of the photocurable substance from the surroundings is started. If the workpiece is lifted before the upper surface of the solidified layer is completely covered with the photocurable substance, a free surface due to surface tension is formed near the center of the upper surface of the solidified layer, and the photocurable substance is formed at the center of the upper surface of the solidified layer. May not be introduced.

このため、上述の方法では一旦ワークを沈下させた
後、再度上昇させる前に、周囲から流入した光硬化性物
質が中央部に到達するまでの時間を置く必要がある。一
般に本立体モデルを製造法に使用する光硬化性物質は比
較的粘度が高いため、上記の光硬化性物質導入には時間
がかかり、特に断面形状が大きい場合には長時間を要し
ている。また、一旦基盤を大きく沈下させた後に再度上
昇させて所定位置に高精度で位置決めする必要があるこ
とから基盤の位置決めにも相当な時間を必要としており
上記の光硬化物質の導入時間を加算すると1つの固化層
形成後次の固化層の形成を開始するまでかなりの時間が
必要となる。本立体モデル製法法は極めて薄い固化層
(厚さ0.1〜1mm程度)を多数積層して立体モデルを製造
するため、1つのモデルを製作する際上記固化層形成操
作を1000回以上繰り返す場合があり、全体として上記操
作に要する時間は非常に大きくなってしまい、立体モデ
ル製造に長時間を要していた。
For this reason, in the above-described method, it is necessary to allow time for the photocurable substance flowing from the surroundings to reach the central portion after the work is once settled and before the work is raised again. In general, since the photocurable substance used in the production method of this three-dimensional model has a relatively high viscosity, it takes time to introduce the photocurable substance, and it takes a long time especially when the cross-sectional shape is large. . In addition, since it is necessary to raise the base again once and then raise it again and position it at a predetermined position with high precision, it takes a considerable amount of time to position the base, and when adding the introduction time of the above photocurable substance, After the formation of one solidified layer, a considerable time is required until the formation of the next solidified layer is started. In this solid model manufacturing method, since a solid model is manufactured by laminating a large number of extremely thin solidified layers (about 0.1 to 1 mm), the above solidified layer forming operation may be repeated 1000 times or more when a single model is manufactured. However, as a whole, the time required for the above operation becomes very long, and it takes a long time to produce a three-dimensional model.

本発明は上記問題を解決するために、短時間で効率良
くワークの固化層上面に光硬化物質を供給する方法を提
供して立体モデル製造に要する時間を短縮することを目
的としている。
An object of the present invention is to provide a method for efficiently supplying a photocurable substance to the upper surface of a solidified layer of a work in a short time and to reduce the time required for manufacturing a three-dimensional model in order to solve the above problem.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、光硬化性流動物質を用いて前述の方法で立
体モデルを製造するにあたり、ワークを載せた基盤は光
硬化性流動物質導入のための前述の上下動作は行なわ
ず、一定量の下降動作のみを行なうようにして、他の手
段を用いて容器内の光硬化性物質をワーク固化層上面に
供給するようにしたことを特徴としている。
According to the present invention, when manufacturing a three-dimensional model by the above-described method using a photocurable fluid, the base on which the work is placed does not perform the above-described up and down operation for introducing the photocurable fluid, but a certain amount of lowering. It is characterized in that only the operation is performed, and the photocurable substance in the container is supplied to the upper surface of the work solidified layer using another means.

すなわち、本発明によれば前記基盤を一定量下降させ
る下降操作を行う際に、下降操作前または下降操作中、
または下降操作後に前記光硬化性流動物質の液面を液面
高さ調整手段を用いて、一旦所定量だけ上昇させ、その
後上昇前の液面高さまで下降させることを特徴とする立
体モデル製造法が提供される。
That is, according to the present invention, when performing the lowering operation of lowering the base by a fixed amount, before the lowering operation or during the lowering operation,
Or a three-dimensional model manufacturing method characterized by raising the liquid level of the photocurable fluid material once by a predetermined amount using liquid level height adjusting means after the lowering operation, and then lowering the liquid level to the liquid level before the raising. Is provided.

また、本発明によれば、前記基盤を一定量下降させる
下降操作を行う際に、下降操作前または下降操作中、ま
たは下降操作後に、前記光硬化性流動物質を収容した容
器を、一旦所定量だけ上昇させ、その後上昇前の位置ま
で下降させることを特徴とする立体モデル製造法が提供
される。
Further, according to the present invention, when performing the lowering operation of lowering the base by a predetermined amount, before the lowering operation, during the lowering operation, or after the lowering operation, the container containing the photocurable fluid substance is temporarily removed by a predetermined amount. A three-dimensional model manufacturing method characterized in that the three-dimensional model is raised only after that, and then lowered to a position before rising.

更に、本発明によれな、前記基盤を一定量下降させる
前に、光硬化性流動物質を固化層上面に塗布し、その後
前記基盤を一定量下降させて固化層上面に周囲の光硬化
性流動物質を導入することを特徴とする立体モデル製造
法が提供される。同様に、本発明によれば前記基盤を一
定量下降させる下降操作を行う際に、下降操作後にスク
リーン手段を前記固化層と所定の間隙を保持しながら固
化層及び周囲の光硬化性物質表面に展開することを特徴
とする立体モデル製造法が提供される。
Further, according to the present invention, before lowering the substrate by a certain amount, a photo-curable fluid substance is applied to the upper surface of the solidified layer, and then the substrate is lowered by a certain amount and the surrounding photo-curable fluid is applied to the upper surface of the solidified layer. There is provided a method for producing a three-dimensional model, which comprises introducing a substance. Similarly, according to the present invention, when performing the lowering operation of lowering the base by a fixed amount, after the lowering operation, the screen means is kept on the solidified layer and the surrounding photocurable material surface while maintaining a predetermined gap with the solidified layer. A three-dimensional model manufacturing method is provided, which is characterized by being developed.

更に、本発明によれば前記基盤を一定量下降させる下
降操作を行う際に、下降操作後に、前記固化層と所定の
間隙を保持しながら固化層上および周囲の光硬化物質中
にメッシュスクリーンを展開すると共に該メッシュスク
リーン表面を掃引手段を用いて掃引することを特徴とす
る立体モデル製造法が提供される。
Further, according to the present invention, when performing the lowering operation of lowering the base by a fixed amount, after the lowering operation, the mesh screen is placed on the solidified layer and in the surrounding photocurable material while maintaining a predetermined gap with the solidified layer. A three-dimensional model manufacturing method is provided wherein the mesh screen is unfolded and the surface of the mesh screen is swept using a sweeping means.

また、本発明によれば、前記基盤を一定量下降させる
下降操作を行う際に、下降操作前または下降操作中、ま
たは下降操作後に、ポンプ手段を用いて前記容器内の光
硬化性流動物質を前記固化層上に供給することを特徴と
する立体モデル製造法が提供される。
Further, according to the present invention, when performing the lowering operation of lowering the base by a predetermined amount, before the lowering operation, during the lowering operation, or after the lowering operation, the photocurable fluid substance in the container using pump means is removed. A three-dimensional model manufacturing method is provided, wherein the three-dimensional model is provided on the solidified layer.

〔作 用〕(Operation)

前記基盤を一定量下降させる際に液面高さ調整手段を
用いて容器内の液面を上昇させる方法によれば、基盤の
必要以上の下降動作を伴わずに固化層上面と光硬化性流
動物質液面との間に大きな高低差を設けることができ、
周囲の光硬化性流動物質が速やかに固化層上面に流入す
る。容器内の液面を上昇させる代わりに容器全体を基盤
に対して上昇させることによっても同様の効果が得られ
る。また、基盤を下降させる前に、固化層上面に光硬化
性流動物質を塗布し、その後基盤を下降させる方法によ
れば、基盤下降時に固化層表面は樹脂液が塗布されたウ
エットな状態になり、樹脂液と固化層表面とのなじみが
良くなるため、基盤の下降時に表面張力による樹脂液の
自由表面が形成されず周囲の光硬化性流動物質が速やか
に固化層上面に流入する。
According to the method of raising the liquid level in the container by using the liquid level height adjusting means when lowering the substrate by a certain amount, the upper surface of the solidified layer and the photocurable fluid flow without unnecessary lowering operation of the substrate. A large height difference can be provided with the substance liquid level,
The surrounding photocurable fluid material quickly flows into the upper surface of the solidified layer. The same effect can be obtained by raising the whole container with respect to the base instead of raising the liquid level in the container. According to the method of applying a photocurable fluid substance to the upper surface of the solidified layer before lowering the substrate, and then lowering the substrate, the surface of the solidified layer becomes wet with the resin liquid applied when the substrate is lowered. In addition, since the affinity between the resin liquid and the surface of the solidified layer is improved, a free surface of the resin liquid is not formed due to surface tension when the substrate is lowered, and the surrounding photocurable fluid material quickly flows into the upper surface of the solidified layer.

又、スクリーン手段を固化層上面に展開する方法によ
れば、光硬化性流動物質の表面張力により形成される自
由表面はスクリーン手段と共に移動し、固化層上面が光
硬化性流動物質で覆われる。
Further, according to the method of spreading the screen means on the upper surface of the solidified layer, the free surface formed by the surface tension of the photocurable fluid material moves together with the screen means, and the upper surface of the solidified layer is covered with the photocurable fluid material.

また、上記スクリーン手段の代わりにメッシュスクリ
ーンを展開し、該メッシュスクリーン上を掃引手段を用
いて掃引することによっても同様の効果が得られる。
A similar effect can be obtained by developing a mesh screen in place of the above screen means and sweeping the mesh screen using the sweep means.

更に、ポンプ手段を用いて容器内の光硬化性流動物質
を固化層上に供給する方法によれば、固化層上面に直接
該物質が供給されるため速かに表面を光硬化性流動物質
で覆うことができる。
Furthermore, according to the method of supplying the photocurable fluid substance in the container onto the solidified layer using the pump means, the material is supplied directly to the upper surface of the solidified layer. Can be covered.

上記いずれの方法によっても、基盤は一定量ずつの下
降動作のみを行ない、操作完了後の容器内液面高さは一
定に保たれる。
In any of the above methods, the base only performs the downward movement of a fixed amount at a time, and the liquid level in the container after the operation is completed is kept constant.

〔実施例〕〔Example〕

第1図に本発明の第1の実施例を示す、第1図におい
て1はワークを示し、2はワークを載置した基盤、3は
光硬化性樹脂液等の光硬化性流動物質(以下「樹脂液」
という)を、4は容器を示す。本実施例では容器4には
樹脂液に浸漬したシリンダ7と該シリンダ中を滑動する
ピストン7aとが設けられており、シリンダ7の下端は樹
脂液内に開放され、ピストン1下部のシリンダ7内は樹
脂液で満たされている。また、5は水平方向に移動可能
なレンズ等の集光手段であり、レーザ光等の高エネルギ
光ビーム6を樹脂液表面の所望の箇所に集束させるのに
用いられる。
FIG. 1 shows a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a work, 2 denotes a base on which the work is mounted, and 3 denotes a photocurable fluid material such as a photocurable resin liquid (hereinafter, referred to as a photocurable resin material). "Resin liquid"
4) indicates a container. In this embodiment, the container 4 is provided with a cylinder 7 immersed in the resin liquid and a piston 7a sliding in the cylinder. The lower end of the cylinder 7 is opened into the resin liquid, and the cylinder 7 below the piston 1 Is filled with a resin liquid. Reference numeral 5 denotes a condensing means such as a lens which can move in a horizontal direction, and is used for converging a high-energy light beam 6 such as a laser beam to a desired position on the surface of the resin liquid.

第1図ステップ(A)は1回の光照射による固化層形
成完了直後の状態を示している。この状態ではワーク1
の上面は樹脂液3液面と同一高さになっている。またピ
ストン7aはシリンダ7内で上昇した位置に停止してい
る。光照射が完了すると、次にステップ(B)でピスト
ン7aが所定量下降し、樹脂液3の液面はピストン7aの排
除した樹脂液量に応じた高さ△Hだけ上昇し、樹脂液3
が固化層上面に流入して厚さ△Hの樹脂液層が形成され
る。△Hはワーク固化層上面に樹脂液を速やかに導入す
るのに必要な距離であり、10〜50mm程度又は、造形対象
断面積に応じてそれ以上の値となる。次にステップ
(C)ではワーク1を載せた基盤2が次の固化層形成に
必要な一定量△tだけ下降する。△tは固化層1層分に
対応する厚さであり、0.1〜1mm程度とされる。その後ス
テップ(D)でピストン7aがステップ(A)の位置に復
帰すると液面は△Hだけ下降するため、固化層上面には
厚さ△tの樹脂液層が形成される。これにより次の光照
射開始準備が完了する。
FIG. 1A shows a state immediately after the formation of the solidified layer by one light irradiation. In this state, work 1
Has the same height as the liquid surface of the resin liquid 3. Further, the piston 7a is stopped at a position raised in the cylinder 7. When the light irradiation is completed, the piston 7a descends by a predetermined amount in step (B), and the liquid level of the resin liquid 3 rises by a height ΔH corresponding to the amount of resin liquid removed by the piston 7a.
Flows into the upper surface of the solidified layer to form a resin liquid layer having a thickness ΔH. ΔH is the distance required to quickly introduce the resin liquid to the upper surface of the work solidified layer, and is about 10 to 50 mm or more depending on the cross-sectional area of the molding object. Next, in step (C), the base 2 on which the work 1 is placed is lowered by a predetermined amount Δt necessary for forming the next solidified layer. Δt is a thickness corresponding to one solidified layer, and is about 0.1 to 1 mm. Thereafter, when the piston 7a returns to the position of the step (A) in the step (D), the liquid level falls by ΔH, so that a resin liquid layer having a thickness of Δt is formed on the upper surface of the solidified layer. Thus, the preparation for starting the next light irradiation is completed.

本実施例では液面の上昇、下降をピストン7aの動作に
より行なっており、液面を上昇させた後、上昇前の液面
高さに戻す操作はピストン7aの位置を公知の方法で制御
することにより迅速かつ精度良く行なうことができる。
また樹脂液3の、シリンダ7aからの流出、流入は樹脂液
中で行なわれるため液面が乱れず、液面がステップ
(D)の状態に復帰した直後から光照射を再開できる利
点がある。
In the present embodiment, the liquid level is raised and lowered by the operation of the piston 7a, and after raising the liquid level, the operation of returning to the liquid level before the rise is performed by controlling the position of the piston 7a by a known method. By doing so, it can be performed quickly and accurately.
Further, since the resin liquid 3 flows out and in from the cylinder 7a in the resin liquid, the liquid surface is not disturbed, and there is an advantage that light irradiation can be resumed immediately after the liquid surface returns to the state of step (D).

本実施例では液面上昇操作(ステップ(B))を基盤
2の下降操作(ステップ(C))に先立って行なってい
るが液面上昇は基盤2の下降操作と同時、又は下降操作
完了後に行なうようにしても良い。またシリンダ7、ピ
ストン7aは容器4外部に設け、配管等で容器内樹脂液に
連通させても良い。
In this embodiment, the liquid level raising operation (step (B)) is performed prior to the lowering operation (step (C)) of the substrate 2, but the liquid level raising is performed simultaneously with the lowering operation of the substrate 2 or after the lowering operation is completed. You may do it. Further, the cylinder 7 and the piston 7a may be provided outside the container 4 and communicate with the resin liquid in the container by piping or the like.

更に、第2図に示すようにシリンダ7、ピストン7aの
代わりに液中に、伸縮可能な材料で膨脹室8を形成し、
外部から膨脹室8内に圧力流体を注入、除去して膨脹室
8を膨脹、収縮させることによっても同じ効果が得られ
る。
Further, as shown in FIG. 2, instead of the cylinder 7 and the piston 7a, an expansion chamber 8 is formed of a material that can expand and contract in liquid.
The same effect can be obtained by expanding and contracting the expansion chamber 8 by injecting and removing a pressure fluid from the outside into the expansion chamber 8.

第3図はシリンダ、ピストン等を用いずに容器4全体
を上下動させることにより液面を上下させる実施例であ
る。
FIG. 3 shows an embodiment in which the liquid surface is moved up and down by moving the whole container 4 up and down without using a cylinder, a piston or the like.

本実施例ではワーク1の固化層形成完了後(ステップ
(A))基盤2は固定したまま容器4を△Hだけ上昇さ
せ(ステップ(B))、次いで基盤2を△tだけ下降し
(ステップ(C))、その後容器4を元の位置まで下降
させる(ステップ(D))ことにより最終的に固化層上
部に厚さ△tの樹脂液層を形成している。本実施例では
容器4を距離△Hだけ往復移動させる操作によりワーク
1に対する液面高さを変化させるため容器4内での液面
上昇や下降に要する時間が不要となり動作時間を短くす
ることができる。容器4の移動は、第1図、第2図の実
施例と同様、基盤2の下降と同時又は下降完了後に行な
っても良い。
In this embodiment, after the formation of the solidified layer of the work 1 is completed (Step (A)), the container 4 is raised by ΔH while the substrate 2 is fixed (Step (B)), and then the substrate 2 is lowered by Δt (Step (A)). (C)) Thereafter, the container 4 is lowered to the original position (Step (D)), whereby a resin liquid layer having a thickness Δt is finally formed on the solidified layer. In this embodiment, the height of the liquid surface with respect to the work 1 is changed by the operation of reciprocating the container 4 by the distance ΔH, so that the time required for raising and lowering the liquid level in the container 4 becomes unnecessary, and the operation time can be shortened. it can. The movement of the container 4 may be performed simultaneously with the lowering of the base 2 or after the lowering is completed, as in the embodiment of FIGS. 1 and 2.

本発明を構成するものではないが、第4図に平板状の
スクレーパ9からなる掃引手段を用いた光造形法の参考
例を示す。本参考例では、本実施例では、ワーク1の固
化層形成完了後(ステップ(A))、まず基盤2と△t
だけ下降する(ステップ(B))。この状態ではワーク
1の固化層外縁部には樹脂液3の自由表面3aが形成さ
れ、固化層上面に樹脂液は導入されない。スクレーバ9
はその下端が、基盤2が下降する前の樹脂液3液面に接
触した状態若しくは、極めてわずかだけ液面に没した状
態に保持されており、ワーク1が下降した状態ではワー
ク1の固化層上面とスクレーバ9との間には微小な間隙
が生じるようになっている。次にステップ(C)でこの
状態からスクレーバ9を水平に移動させ、樹脂液表面と
ワーク1の固化層上面を掃引する。これにより前述の樹
脂液自由表面はスクレーパ9と共に移動し、固化層上面
に厚さ△tの樹脂液層が形成される。(ステップ
(D)) この方法によれば液面を上下させることなく、スクレ
ーパ9の移動速度に応じた速度で固化層上に樹脂液を導
入可能となるため樹脂液導入が迅速に行なわれる。また
掃引の際、スクレーパ9の下端部は常にワーク1の固化
層上面と一定の間隙を保持しており、ワーク1とスクレ
ーパ9とが接触して固化層表面に損傷を与えることはな
いが、スクレーパ9下端部を樹脂等の柔軟な材料で構成
することにより、何らかの原因でワーク1とスクレーパ
9とが接触した場合の固化層表面の損傷を防止すること
ができる。
Although it does not constitute the present invention, FIG. 4 shows a reference example of an optical shaping method using a sweeping means comprising a flat scraper 9. In the present embodiment, in this embodiment, after the formation of the solidified layer of the work 1 is completed (step (A)), first, the base 2 and Δt
(Step (B)). In this state, the free surface 3a of the resin liquid 3 is formed on the outer edge of the solidified layer of the work 1, and the resin liquid is not introduced into the upper surface of the solidified layer. Scraper 9
Is held in a state in which the lower end thereof is in contact with the liquid surface of the resin liquid 3 before the base 2 descends or is slightly immersed in the liquid surface. When the work 1 is lowered, the solidified layer of the work 1 is A minute gap is formed between the upper surface and the scraper 9. Next, in step (C), the scraper 9 is horizontally moved from this state to sweep the surface of the resin liquid and the upper surface of the solidified layer of the work 1. Thereby, the above-mentioned resin liquid free surface moves together with the scraper 9, and a resin liquid layer having a thickness Δt is formed on the upper surface of the solidified layer. (Step (D)) According to this method, the resin liquid can be introduced onto the solidified layer at a speed corresponding to the moving speed of the scraper 9 without moving the liquid surface up and down, so that the resin liquid is quickly introduced. Also, at the time of sweeping, the lower end of the scraper 9 always keeps a constant gap with the upper surface of the solidified layer of the work 1, and the work 1 and the scraper 9 do not contact and damage the solidified layer surface, By configuring the lower end of the scraper 9 with a flexible material such as resin, it is possible to prevent the surface of the solidified layer from being damaged when the work 1 contacts the scraper 9 for some reason.

第5図は、基盤を下降させる前に固化層上面に樹脂液
を塗布する方法の実施例を示している。本実施例では、
樹脂等の柔軟な材料を用いたブラシ10により固化層表面
を掃引することにより樹脂液の塗布が行なわれる。本実
施例では第5図に示すように、固化層形成後基盤を下降
させる前に掃引が行なわれる。ブラシ10は第4図のスク
レーパ9と同様に、紙面に垂直に延びた平板下端に取り
付けられており、ブラシ10先端は樹脂液3に浸漬されて
おり、掃引の際ワーク1の固化層上面と接触しながら移
動する。樹脂液3を含んだブラシ10で固化層表面を掃引
することにより固化層表面は硬化完了直後のドライな状
態から樹脂液の薄い被膜に覆われたウェットな状態にな
り、樹脂液とのなじみが良くなるため、次に基盤2を下
降させる際に表面張力による樹脂液3の自由表面が形成
されず液の導入が迅速に行なわれる。ブラシ10により掃
引は基盤2の下降動作と同時又は下降動作完了後に行な
っても同様の効果が得られる。
FIG. 5 shows an embodiment of a method of applying a resin liquid to the upper surface of the solidified layer before lowering the base. In this embodiment,
The resin liquid is applied by sweeping the surface of the solidified layer with a brush 10 using a flexible material such as a resin. In this embodiment, as shown in FIG. 5, the sweep is performed after the solidified layer is formed and before the base is lowered. The brush 10 is attached to the lower end of a flat plate extending perpendicularly to the plane of the drawing, similarly to the scraper 9 in FIG. 4, and the tip of the brush 10 is immersed in the resin liquid 3 so that the brush 10 Move while touching. By sweeping the surface of the solidified layer with the brush 10 containing the resin liquid 3, the surface of the solidified layer is changed from a dry state immediately after the completion of the curing to a wet state covered with a thin film of the resin liquid. Therefore, when the substrate 2 is lowered next time, the free surface of the resin liquid 3 is not formed due to the surface tension, and the liquid is quickly introduced. The same effect can be obtained by performing the sweeping by the brush 10 at the same time as the lowering operation of the base 2 or after the lowering operation is completed.

次に、第6図にスクリーン手段を用いる方法の実施例
を示す。
Next, FIG. 6 shows an embodiment of the method using the screen means.

図において11は樹脂フィルム或いは細いメッシュから
成るシート状スクリーンであり、一端11aは容器に対し
て固定され、他の一端は水平な回転軸11bにロール状に
巻回されており、スクリーン11の下面は樹脂液3表面に
密着している。本実施例では固化層形成完了後まず基盤
2を△tだけ下降させる(ステップ(A))。この状態
では樹脂液3は固化層外縁部に形成される樹脂液3の自
由表面3aのため固化層上面には流入しない。次にステッ
プ(B)では回転軸11bを回転させながら水平に移動さ
せることにより前記スクリーン11をワーク1の固化層上
面全体に展開する。回転軸11bは例えば容器4の壁面に
設けたガイド等に沿って回転しながらスクリーン11に適
当に張力を加えつつ移動し、スクリーン11は樹脂液3と
ワーク1の固化層表面を覆うように展開される。この回
転軸11bの移動に伴って、樹脂液3の自由表面3aはスク
リーン11下面に付着し、表面張力によりスクリーン11に
沿って移動するため、回転軸11bの移動と共に、固化層
上面は速やかに樹脂液で覆われ(ステップC)、回転軸
11bを回転させてスクリーン11を巻き取りながら元の位
置に復帰させると厚さ△tの樹脂液層が固化層上に形成
され、次の光照射開始が可能となる(ステップ
(D))。本実施例では回転軸11bを移動させている
が、逆に第7図に示すように回転軸11bの位置を固定
し、スクリーン11の他端11aを水平方向に移動させるよ
うにしてスクリーン11を展開しても同様の効果が得られ
る。この場合スクリーンの巻き取りは回転軸11bを回転
させて行なう。
In the figure, reference numeral 11 denotes a sheet-like screen made of a resin film or a thin mesh, one end 11a is fixed to a container, and the other end is wound around a horizontal rotating shaft 11b in a roll shape. Is in close contact with the surface of the resin liquid 3. In this embodiment, the base 2 is first lowered by Δt after the formation of the solidified layer (step (A)). In this state, the resin liquid 3 does not flow into the upper surface of the solidified layer due to the free surface 3a of the resin liquid 3 formed on the outer edge of the solidified layer. Next, in the step (B), the screen 11 is spread on the entire upper surface of the solidified layer of the work 1 by moving the rotating shaft 11b horizontally while rotating it. The rotating shaft 11b moves while applying appropriate tension to the screen 11 while rotating, for example, along a guide provided on the wall surface of the container 4, and the screen 11 is developed so as to cover the resin liquid 3 and the solidified layer surface of the work 1. Is done. With the movement of the rotating shaft 11b, the free surface 3a of the resin liquid 3 adheres to the lower surface of the screen 11, and moves along the screen 11 by surface tension. Covered with resin liquid (Step C), rotating shaft
When the screen 11 is returned to the original position while being wound by rotating the screen 11b, a resin liquid layer having a thickness of Δt is formed on the solidified layer, and the next light irradiation can be started (step (D)). In the present embodiment, the rotating shaft 11b is moved. Conversely, as shown in FIG. 7, the position of the rotating shaft 11b is fixed, and the screen 11 is moved by moving the other end 11a of the screen 11 in the horizontal direction. The same effect can be obtained by expanding. In this case, the screen is wound by rotating the rotating shaft 11b.

次に、第8図にメッシュスクリーンと掃引手段との両
方を用いる方法の実施例を示す。本実施例は基盤2の下
降量△tを比較的大きくとれる場合に有効であり、第7
図の実施例と同様に基盤2を下降させた後メッシュスク
リーン12を同様な手段を用いて展開する。但し、この実
施例ではメッシュスクリーン12は比較的粗いメッシュの
ものを用い、樹脂液3の液面よりわずかに下の位置に展
開される(ステップ(A))。次に第4図の参考例と同
様のスクレーパ9を用いてメッシュスクリーン11上を掃
引して樹脂液3を固化層上面に導入し(ステップ
(B),(C))、次に、メッシュスクリーン11とスク
レーパ9とを原位置に復帰させる(ステップ(C))。
本実施例ではメッシュスクリーン11は主にワーク1に固
化層表面とスクレーパ9とが接触するのを防止する目的
で使用される。本実施例ではスクレーパ9とワーク1と
の間にメッシュスクリーン11を設けて固化層表面を保護
することにより、スクレーパ9と固化層表面とが接触す
ることがないため、スクレーパ9の移動速度を高く設定
できる利点がある。
Next, FIG. 8 shows an embodiment of a method using both the mesh screen and the sweep means. This embodiment is effective when the amount of descent Δt of the base 2 can be made relatively large.
After lowering the base 2 in the same manner as in the illustrated embodiment, the mesh screen 12 is developed using the same means. However, in this embodiment, a relatively coarse mesh screen is used as the mesh screen 12 and is developed at a position slightly below the liquid surface of the resin liquid 3 (step (A)). Next, using the same scraper 9 as in the reference example in FIG. 4, the resin liquid 3 is introduced onto the upper surface of the solidified layer by sweeping the mesh screen 11 (steps (B) and (C)). 11 and the scraper 9 are returned to their original positions (step (C)).
In this embodiment, the mesh screen 11 is mainly used for preventing the work 1 from contacting the surface of the solidified layer and the scraper 9. In the present embodiment, the mesh screen 11 is provided between the scraper 9 and the work 1 to protect the surface of the solidified layer, so that the scraper 9 does not come into contact with the surface of the solidified layer. There are advantages that can be set.

次に第9図にポンプ手段を用いる方法の実施例を示
す。
Next, FIG. 9 shows an embodiment of the method using the pump means.

本実施例では適宜な形式のポンプ16を用いて容器4内
の樹脂液3を汲み出してノズル13からワーク1の固化層
上面にシャワー状に供給している。ポンプ16の形式は容
積型、遠心型を含め任意のものが使用可能である。ま
た、シャワーノズル13からの樹脂液供給は基盤2の下降
開始前、下降動作中、下降完了後のいずれの時期に行な
っても良い。又、複数個のノズルをワーク1を囲むよう
に容器4壁面に固定し、ワーク1の固化層上面に向けて
樹脂液3を噴出するようにすれば、光照射用の集光器の
移動経路との干渉を避けることができる。本方法によれ
ば大量の樹脂液を短時間で固化層上面に供給することが
でき、しかも容器内の液面高さは常に一定に保たれるた
め、断面積の大きな立体モデルを製造する場合、時間短
縮の効果が極めて大きい。更に、第10図に示すように複
数のノズル13を設けたパイプ14を、容器4の両側に設置
したレール15上に移動可能に配置し、ワーク上面に沿っ
て移動させながらワーク固化層部分に樹脂液を供給すれ
ば少ないノズル数で効率的に樹脂液供給が行える。
In this embodiment, the resin liquid 3 in the container 4 is pumped out by using an appropriate type of pump 16 and supplied from the nozzle 13 to the upper surface of the solidified layer of the work 1 in a shower shape. Any type of pump 16 can be used, including a positive displacement pump and a centrifugal pump. The supply of the resin liquid from the shower nozzle 13 may be performed at any time before the lowering of the base 2 is started, during the lowering operation, or after the lowering is completed. Further, if a plurality of nozzles are fixed to the wall surface of the container 4 so as to surround the work 1 and the resin liquid 3 is jetted toward the upper surface of the solidified layer of the work 1, the moving path of the light collector for light irradiation Can be avoided. According to this method, a large amount of resin liquid can be supplied to the upper surface of the solidified layer in a short time, and the liquid level in the container is always kept constant. The effect of time reduction is extremely large. Further, as shown in FIG. 10, a pipe 14 provided with a plurality of nozzles 13 is movably arranged on rails 15 installed on both sides of the container 4, and is moved along the upper surface of the work to form a solidified layer portion of the work. If the resin liquid is supplied, the resin liquid can be efficiently supplied with a small number of nozzles.

また、第10図においてパイプ14に複数のノズル13を設
置する代わりに、パイプ14下面に、パイプ長手方向に延
びるスリットを設け、このスリットから樹脂液を流下さ
せるようにして良い。本方法は大量の樹脂液を短時間で
固化層上面に供給するため樹脂液供給時に液面に泡が生
じる可能性がある。従って予め溶液中に界面活性剤等を
混入して消泡(抑泡)することが好ましい。
Instead of providing a plurality of nozzles 13 on the pipe 14 in FIG. 10, a slit extending in the pipe longitudinal direction may be provided on the lower surface of the pipe 14, and the resin liquid may flow down from this slit. In this method, since a large amount of resin liquid is supplied to the upper surface of the solidified layer in a short time, bubbles may be generated on the liquid surface when supplying the resin liquid. Therefore, it is preferable to defoam (suppress) by mixing a surfactant or the like in the solution in advance.

この方法の別の実施例としては、第10図と同じ構成を
用いて、ノズル13の代わりに樹脂液を微細な霧状に噴霧
するスプレーノズルを設けたものがある(図示せず)。
スプレーノズルを用いた場合、シャワーノズル13に較
べ、樹脂液の供給速度は多少低下するが、樹脂液を微細
な霧状に噴霧できるため液面に乱れを生じず、消泡剤を
使用しなくても液面に発泡を生じない。また固化量上面
に均一に樹脂液を噴霧することができるため、噴霧流量
とスプレーノズル移動速度とを調節することで固化層上
面の単位面積当たりの樹脂液供給量を制御することが可
能となる利点がある。スプレーノズルを用いて樹脂液を
噴霧する場合、まず基盤2を先に下降させ、その後に固
化層上に噴霧を行なって必要量の樹脂液を供給するよう
にすれば、液面の乱れがなく、最も短時間で次の光照射
を開始することができる。
As another embodiment of this method, there is provided a spray nozzle for spraying a resin liquid in a fine mist form instead of the nozzle 13 using the same configuration as that shown in FIG. 10 (not shown).
When a spray nozzle is used, the supply speed of the resin liquid is slightly lower than that of the shower nozzle 13, but since the resin liquid can be sprayed in a fine mist, the liquid surface is not disturbed and an antifoaming agent is not used. No foaming occurs on the liquid surface. In addition, since the resin liquid can be sprayed uniformly on the upper surface of the solidified amount, it is possible to control the amount of the resin liquid supplied per unit area of the upper surface of the solidified layer by adjusting the spray flow rate and the moving speed of the spray nozzle. There are advantages. When the resin liquid is sprayed using the spray nozzle, first, the base 2 is first lowered, and then the required amount of the resin liquid is supplied by spraying on the solidified layer. Then, the next light irradiation can be started in the shortest time.

なお、上述の実施例において基盤2、容器4の上下動
操作、集光手段5の移動操作、或いはピストン7a、スク
レーパ9等の駆動は、NC装置に連結した駆動手段で用い
て公知の方法の自動制御により行なっても良いし、人手
を介して行なうようにしても良い。
In the above-described embodiment, the vertical movement of the base 2 and the container 4, the movement of the focusing means 5, and the driving of the piston 7 a, the scraper 9, and the like are performed by a known method using driving means connected to the NC device. It may be performed by automatic control or manually.

〔発明の効果〕〔The invention's effect〕

本発明は、上述のように固化層上面への樹脂液供給を
基盤の上下動作を行なうことなく別の手段を用いて行な
うため、従来のように基盤を大きく下降させた後に再度
上昇させる操作が不要となり、基盤の動作、位置決めに
要する時間が短縮される利点がある。又、固化層上面へ
の樹脂液導入に要する時間も短縮されるため、基盤移動
時間の短縮と併せて、固化層形成後、次の固化層形成を
開始するまでの時間が大幅に削減され、短時間で立体モ
デルを製造することが可能となる。
In the present invention, since the supply of the resin liquid to the upper surface of the solidified layer is performed using another means without performing the vertical movement of the base as described above, the operation of greatly lowering the base and then raising it again as in the related art is required. There is an advantage that it becomes unnecessary and the time required for the operation and positioning of the base is reduced. In addition, since the time required for introducing the resin liquid to the upper surface of the solidified layer is also reduced, the time required for starting the next solidified layer formation after the solidified layer is formed is significantly reduced, together with the reduction of the substrate moving time, A three-dimensional model can be manufactured in a short time.

また、樹脂液の液面は固化層形成開始時には常に同じ
高さになっているため、レーザビーム等の光学系の調整
を行なう必要もない。
Further, since the liquid surface of the resin liquid is always at the same height when the solidified layer is formed, it is not necessary to adjust the optical system such as a laser beam.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は液面高さ調整手段を用いて光硬化性
流動物質を固化層上面に供給する方法の実施例を示す
図、 第3図は容器全体を上下動させて光硬化性流動物質を固
化層上面に供給する方法の実施例を示す図、 第4図は、スクレーパからなる掃引手段を用いる方法に
ついての参考例を示す図、 第5図は、基盤下降操作前に固化層上面に光硬化性流動
物質を塗布する方法の実施例を示す図、 第6図及び第7図は、スクリーン手段を用いて光硬化性
流動物質を固化層上面に供給する方法の実施例を示す
図、 第8図はメッシュスクリーンと掃引手段との両方を用い
る方法の実施例を示す図、 第9図及び第10図はポンプ手段を用いて光硬化性流動物
質を固化層上面に供給する方法の実施例を示す図であ
る。 1……ワーク、2……基盤、 3……光硬化性流動物質(樹脂液)、 3a……自由表面、4……容器、 5……集光手段、6……光ビーム、 7……シリンダ、7a……ピストン、 8……膨脹室、9……スクレーパ、 10……ブラシ、11……スクリーン、 11b……回転軸、 12……メッシュスクリーン、 13……シャワーノズル、14……パイプ、 15……レール、16……ポンプ。
FIGS. 1 and 2 show an embodiment of a method of supplying a photocurable fluid substance to the upper surface of a solidified layer using liquid level height adjusting means. FIG. 3 shows a photocuring method by moving the whole container up and down. FIG. 4 is a diagram showing an embodiment of a method of supplying a fluidizable substance to the upper surface of a solidified layer, FIG. 4 is a diagram showing a reference example of a method using a sweeping means composed of a scraper, and FIG. FIGS. 6 and 7 show an embodiment of a method of applying a photocurable fluid material to the upper surface of a layer, and FIGS. 6 and 7 show an embodiment of a method of supplying the photocurable fluid material to the upper surface of a solidified layer using a screen means. Fig. 8 shows an embodiment of a method using both a mesh screen and a sweeping means. Figs. 9 and 10 supply a photocurable fluid material to the upper surface of a solidified layer using a pump means. FIG. 4 illustrates an example of a method. DESCRIPTION OF SYMBOLS 1 ... Work, 2 ... Base, 3 ... Photocurable fluid material (resin liquid), 3a ... Free surface, 4 ... Container, 5 ... Condensing means, 6 ... Light beam, 7 ... Cylinder, 7a Piston, 8 Expansion chamber, 9 Scraper, 10 Brush, 11 Screen, 11b Rotary shaft, 12 Mesh screen, 13 Shower nozzle, 14 Pipe , 15 …… rail, 16 …… pump.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光硬化性流動物質を容器内に収容すると共
に該物質中に上下動可能な基盤を浸漬し、該物質表面に
光照射を行ないつつその照射箇所を水平移動させて造形
対象の所定断面形状の光硬化性流動物質の固化層を形成
し、次いで前記基盤を光硬化性流動物質液面に対して一
定量下降させて前記固化層上面に所定厚さの光硬化性流
動物質層を形成後再度光照射を行ない、前記所定断面に
連続する造形対象断面の形状の固化層を形成する操作を
繰り返すことにより、前記基盤上にそれぞれ所定の断面
形状の固化層を積層して所望の立体形式の固体を形成す
る立体モデル製造法において、 前記基盤の下降操作前または下降操作中、または下降操
作後に、液面高さ調整手段を用いて、一旦容器内の前記
光硬化性流動物質の液面を所定量だけ上昇させ、その後
上昇前の液面高さまで下降させることを特徴とする立体
モデル製造法。
1. A photo-curable fluid material is accommodated in a container, and a vertically movable base is immersed in the material, and the irradiated portion is horizontally moved while irradiating light on the material surface. A solidified layer of a photocurable fluid material having a predetermined cross-sectional shape is formed, and then the substrate is lowered by a predetermined amount with respect to the liquid surface of the photocurable fluid material, and a photocurable fluid material layer having a predetermined thickness is formed on the upper surface of the solidified layer. After forming the light irradiation again, by repeating the operation of forming a solidified layer of the shape of the molding target cross-section continuous to the predetermined cross-section, the solidification layer of a predetermined cross-sectional shape is laminated on the base, respectively, the desired In the three-dimensional model manufacturing method of forming a three-dimensional solid, before or during the lowering operation of the base, or after the lowering operation, using the liquid level height adjustment means, once the photocurable fluid substance in the container The liquid level rises by a predetermined amount And then lowering to a liquid level before the rise.
【請求項2】光硬化性流動物質を容器内に収容すると共
に該物質中に上下動可能な基盤を浸漬し、該物質表面に
光照射を行ないつつその照射箇所を水平移動させて造形
対象の所定断面形状の光硬化性流動物質の固化層を形成
し、次いで前記基盤を光硬化性流動物質液面に対して一
定量下降させて前記固化層上面に所定厚さの光硬化性流
動物質層を形成後再度光照射を行ない、前記所定断面に
連続する造形対象断面の形状の固化層を形成する操作を
繰り返すことにより、前記基盤上にそれぞれ所定の断面
形状の固化層を積層して所望の立体形式の固体を形成す
る立体モデル製造法において、 前記基盤の下降操作前または下降操作中、または下降操
作後に、前記容器を一旦所定量だけ上昇させ、その後該
容器を上昇前の高さまで下降させ、前記液面に対する基
盤の所要下降量を得ることを特徴とする立体モデル製造
法。
2. A photocurable fluid material is accommodated in a container, and a vertically movable base is immersed in the material, and the surface of the material is irradiated with light while the irradiated portion is horizontally moved to form a molding object. A solidified layer of a photocurable fluid material having a predetermined cross-sectional shape is formed, and then the substrate is lowered by a predetermined amount with respect to the liquid surface of the photocurable fluid material, and a photocurable fluid material layer having a predetermined thickness is formed on the upper surface of the solidified layer. After forming the light irradiation again, by repeating the operation of forming a solidified layer of the shape of the molding target cross-section continuous to the predetermined cross-section, the solidification layer of a predetermined cross-sectional shape is laminated on the base, respectively, the desired In a three-dimensional model manufacturing method for forming a three-dimensional solid, before or during the lowering operation of the base, or after the lowering operation, the container is temporarily raised by a predetermined amount, and then the container is lowered to the height before the raising. , The liquid A three-dimensional model manufacturing method characterized by obtaining a required amount of lowering of a base with respect to a surface.
【請求項3】光硬化性流動物質を容器内に収容すると共
に該物質中に上下動可能な基盤を浸漬し、該物質表面に
光照射を行ないつつその照射箇所を水平移動させて造形
対象の所定断面上の光硬化性流動物質の固化層を形成
し、次いで前記基盤を光硬化性流動物質液面に対して一
定量下降させて前記固化層上面に所定厚さの光硬化性流
動物質層を形成後再度光照射を行ない、前記所定断面に
連続する造形対象断面の形状の固化層を形成する操作を
繰り返すことにより、前記基盤上にそれぞれ所定の断面
形状の固化層を積層して所望の立体形式の固体を形成す
る立体モデル製造法において、 前記基盤下降操作の前に、前記光硬化性流動物質を前記
固化層表面に塗布し、その後前記基盤下降操作を行なっ
て前記固化層上面に周囲の光硬化性流動物質を導入する
ことを特徴とする立体モデル製造法。
3. A photocurable fluid material is accommodated in a container, and a vertically movable base is immersed in the material, and the surface of the material is irradiated with light while the irradiated portion is horizontally moved to form a molding object. Forming a solidified layer of the photocurable fluid material on a predetermined cross section, and then lowering the substrate by a certain amount with respect to the liquid surface of the photocurable fluid material, and forming a photocurable fluid material layer of a predetermined thickness on the upper surface of the solidified layer; After forming the light irradiation again, by repeating the operation of forming a solidified layer of the shape of the molding target cross-section continuous to the predetermined cross-section, the solidification layer of a predetermined cross-sectional shape is laminated on the base, respectively, the desired In the three-dimensional model manufacturing method for forming a three-dimensional solid, before the substrate lowering operation, the photocurable fluid material is applied to the surface of the solidified layer, and then the substrate lowering operation is performed to surround the solidified layer upper surface. Photo-curable fluid material A three-dimensional model manufacturing method characterized by introducing
【請求項4】光硬化性流動物質を容器内に収容すると共
に該物質中に上下動可能な基盤を浸漬し、該物質表面に
光照射を行ないつつその照射箇所を水平移動させて造形
対象の所定断面形状の光硬化性流動物質の固化層を形成
し、次いで前記基盤を光硬化性流動物質液面に対して一
定量下降させて前記固化層上面に所定厚さの光硬化性流
動物質層を形成後再度光照射を行ない、前記所定断面に
連続する造形対象断面の形状の固化層を形成する操作を
繰り返すことにより、前記基盤上にそれぞれ所定の断面
形状の固化層を積層して所望の立体形式の固体を形成す
る立体モデル製造法において、 前記基盤下降操作の後に、スクリーン手段を前記固化層
との間に所定の間隙を保持しつつ前記固化層上及び周囲
の前記光硬化性流動物質表面に展開して前記固化層周囲
の光硬化性流動物質を固化層上面に導入することを特徴
とする立体モデル製造法。
4. A photo-curable fluid material is accommodated in a container, and a vertically movable base is immersed in the material, and while the surface of the material is irradiated with light, the irradiated portion is horizontally moved to form a molding object. A solidified layer of a photocurable fluid material having a predetermined cross-sectional shape is formed, and then the substrate is lowered by a predetermined amount with respect to the liquid surface of the photocurable fluid material, and a photocurable fluid material layer having a predetermined thickness is formed on the upper surface of the solidified layer. After forming the light irradiation again, by repeating the operation of forming a solidified layer of the shape of the molding target cross-section continuous to the predetermined cross-section, the solidification layer of a predetermined cross-sectional shape is laminated on the base, respectively, the desired In the three-dimensional model manufacturing method for forming a three-dimensional solid, after the base lowering operation, the photocurable fluid material on and around the solidified layer while holding a predetermined gap between the screen means and the solidified layer Before deploying on the surface A method for producing a three-dimensional model, comprising introducing a photocurable fluid material around the solidified layer to the upper surface of the solidified layer.
【請求項5】光硬化性流動物質を容器内に収容すると共
に該物質中に上下動可能な基盤を浸漬し、該物質表面に
光照射を行ないつつその照射箇所を水平移動させて造形
対象の所定断面形状の光硬化性流動物質の固化層を形成
し、次いで前記基盤を光硬化性流動物質液面に対して一
定量下降させて前記固化層上面に所定厚さの光硬化性流
動物質層を形成後再度光照射を行ない、前記所定断面に
連続する造形対象断面の形状の固化層を形成する操作を
繰り返すことにより、前記基盤上にそれぞれ所定の断面
形状の固化層を積層して所望の立体形式の固体を形成す
る立体モデル製造法において、 前記基盤下降操作の後に、メッシュスクリーンを前記固
化層との間に所定の間隙を保持しつつ前記固化層上及び
前記光硬化性流動物質中に展開すると共に、該メッシュ
スクリーン表面を掃引手段を用いて掃引し、前記固化層
周囲の光硬化性流動物質を固化層上面に導入することを
特徴とする立体モデル製造法。
5. A photo-curable fluid material is accommodated in a container, and a vertically movable base is immersed in the material, and while the surface of the material is irradiated with light, the irradiated portion is horizontally moved to form a molding object. A solidified layer of a photocurable fluid material having a predetermined cross-sectional shape is formed, and then the substrate is lowered by a predetermined amount with respect to the liquid surface of the photocurable fluid material, and a photocurable fluid material layer having a predetermined thickness is formed on the upper surface of the solidified layer. After forming the light irradiation again, by repeating the operation of forming a solidified layer of the shape of the molding target cross-section continuous to the predetermined cross-section, the solidification layer of a predetermined cross-sectional shape is laminated on the base, respectively, the desired In the three-dimensional model manufacturing method for forming a three-dimensional solid, after the base lowering operation, a mesh screen is held on the solidified layer and in the photocurable fluid material while maintaining a predetermined gap between the solidified layer and the mesh screen. Unfold A method for producing a three-dimensional model, wherein the surface of the mesh screen is swept using a sweeping means, and the photocurable fluid material around the solidified layer is introduced onto the upper surface of the solidified layer.
【請求項6】光硬化性流動物質を容器内に収容すると共
に該物質中に上下動可能な基盤を浸漬し、該物質表面に
光照射を行ないつつその照射箇所を水平移動させて造形
対象の所定断面形状の光硬化性流動物質の固化層を形成
し、次いで前記基盤を光硬化性流動物質液面に対して一
定量下降させて前記固化層上面に所定厚さの光硬化性流
動物質層を形成後再度光照射を行ない、前記所定断面に
連続する造形対象断面の形状の固化層を形成する操作を
繰り返すことにより、前記基盤上にそれぞれ所定の断面
形状の固化層を積層して所望の立体形式の固体を形成す
る立体モデル製造法において、 前記基盤の下降操作前または下降操作中、または下降操
作後に、前記容器内の光硬化性流動物質をポンプ手段を
用いて前記固化層上に供給することを特徴とする立体モ
デル製造法。
6. A photocurable fluid material is accommodated in a container, and a vertically movable base is immersed in the material, and the surface of the material is irradiated with light while the irradiated portion is horizontally moved to form a molding object. A solidified layer of a photocurable fluid material having a predetermined cross-sectional shape is formed, and then the substrate is lowered by a predetermined amount with respect to the liquid surface of the photocurable fluid material, and a photocurable fluid material layer having a predetermined thickness is formed on the upper surface of the solidified layer. After forming the light irradiation again, by repeating the operation of forming a solidified layer of the shape of the molding target cross-section continuous to the predetermined cross-section, the solidification layer of a predetermined cross-sectional shape is laminated on the base, respectively, the desired In a three-dimensional model manufacturing method for forming a three-dimensional solid, before or during the lowering operation or after the lowering operation of the base, the photocurable fluid substance in the container is supplied onto the solidified layer using a pump unit. Features to 3D model manufacturing method.
JP2042683A 1990-02-26 1990-02-26 3D model manufacturing method Expired - Lifetime JP2619545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2042683A JP2619545B2 (en) 1990-02-26 1990-02-26 3D model manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2042683A JP2619545B2 (en) 1990-02-26 1990-02-26 3D model manufacturing method

Publications (2)

Publication Number Publication Date
JPH03246025A JPH03246025A (en) 1991-11-01
JP2619545B2 true JP2619545B2 (en) 1997-06-11

Family

ID=12642830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2042683A Expired - Lifetime JP2619545B2 (en) 1990-02-26 1990-02-26 3D model manufacturing method

Country Status (1)

Country Link
JP (1) JP2619545B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358673A (en) * 1990-02-15 1994-10-25 3D Systems, Inc. Applicator device and method for dispensing a liquid medium in a laser modeling machine
KR0142904B1 (en) * 1992-05-28 1998-07-15 히데따까 나루까와 Photo-solidification modeling apparatus with improved recoating process and photohardening molding method
JP3694970B2 (en) * 1996-04-01 2005-09-14 ナブテスコ株式会社 Stereolithography apparatus and stereolithography method
JP2006255959A (en) * 2005-03-15 2006-09-28 Hokkaido Photo-fabrication apparatus and photo-fabrication method
JP2008213161A (en) * 2007-02-28 2008-09-18 Jsr Corp Photofabrication method
JP2009166448A (en) * 2008-01-21 2009-07-30 Sony Corp Optical shaping apparatus and optical shaping method
US8454880B2 (en) * 2008-02-14 2013-06-04 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and system for layerwise production of a tangible object
EP3643479B1 (en) * 2018-10-24 2021-01-06 Ivoclar Vivadent AG Method and device for building a shaped body by stereolithographic curing of building material by photopolymerization

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE113746T1 (en) * 1986-06-03 1994-11-15 Cubital Ltd DEVICE FOR DEVELOPING THREE-DIMENSIONAL MODELS.
JPH01115620A (en) * 1987-10-30 1989-05-08 Inoue Japax Res Inc Manufacture device of three-dimensional model

Also Published As

Publication number Publication date
JPH03246025A (en) 1991-11-01

Similar Documents

Publication Publication Date Title
US6193922B1 (en) Method for making a three-dimensional body
US6821473B2 (en) Method and apparatus for forming three-dimensional laminated product from photo-curable liquid
US5139711A (en) Process of and apparatus for making three dimensional objects
US5096530A (en) Resin film recoating method and apparatus
US7700016B2 (en) Method and apparatus for fabricating three dimensional models
JP6968836B2 (en) Slot die additive manufacturing equipment and manufacturing method
CA2386616C (en) Rapid-prototyping method and apparatus
CN201070835Y (en) Resin liquid level control and coating device for photo-curing rapid-shaping equipment
CN104325643B (en) A kind of method and its device for making 3D products
JP2619545B2 (en) 3D model manufacturing method
CA2715694A1 (en) Method and system for layerwise production of a tangible object
JP3330094B2 (en) 3D shape forming method
CN105014970A (en) Forming equipment of photo-cured spatial model and forming method using forming equipment of photo-cured spatial model
JPH0788966A (en) Method for forming three-dimensional shape
JP2000025118A (en) Three-dimensionally shaping device, three-dimensionally shaping method, and medium having three-dimensional shaping control program recorded therein
JPH0976354A (en) Stereoscopic shaping apparatus
CN109203468A (en) A kind of rapid photocuring 3D printing device
JP2000202915A (en) Sqeegee device for stereo lithographing apparatus, and method therefor
CN204820358U (en) Photocuring three -dimensional scale model's former
JPH0295831A (en) Forming method and apparatus of three dimensional shape
KR100226015B1 (en) Apparatus and method for rapid prototyping using photopolymer droplets
JPH03239531A (en) Manufacture of solid model
JP2000218705A (en) Stereo-lithographic apparatus
JP3694970B2 (en) Stereolithography apparatus and stereolithography method
JPH10128855A (en) Stereo-lithographing device