JPS6035510A - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JPS6035510A
JPS6035510A JP58143653A JP14365383A JPS6035510A JP S6035510 A JPS6035510 A JP S6035510A JP 58143653 A JP58143653 A JP 58143653A JP 14365383 A JP14365383 A JP 14365383A JP S6035510 A JPS6035510 A JP S6035510A
Authority
JP
Japan
Prior art keywords
double layer
electric double
electrode body
polarizable electrode
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58143653A
Other languages
Japanese (ja)
Other versions
JPS6313333B2 (en
Inventor
棚橋 一郎
敦 西野
昭彦 吉田
康弘 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58143653A priority Critical patent/JPS6035510A/en
Publication of JPS6035510A publication Critical patent/JPS6035510A/en
Publication of JPS6313333B2 publication Critical patent/JPS6313333B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、小型大容量の湿式電気二重層キャパシタに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a small-sized, large-capacity wet electric double layer capacitor.

(従来例の構成とその問題点) 第1図は従来のコイン型電気二重層キャパシタの構成を
示すもので、分極性電極体IK4電性電極2を形成し、
上記分極性電極体1をセパレータ3を介して相対向させ
、電解液を含浸し、ガスケット4とケース5を用いて封
ロケーノノグしたものとなっている。また分極性電極体
1として活性炭繊維を用い、導電性電極2としてアルミ
ニウム、チタン等の金属層まだは導電性樹脂層を形成し
たものは、導電性電極2を有した分極性電極体1を所望
の径の円状に打ちぬくことが可能であり、コイン型電気
二重層キャパシタが実現した。しかしながら、第2図及
び第3図は分極性電極体の打ち抜きパターンで、シート
状の分極性電極体6から円形の分極性電極体1を打抜く
と、打ち抜き数を非常に大きくして第2図よりも効率の
良い第3図のパターンでも91%以上の利用効率を得る
ことができない。このことは、二重層キャパシタのコス
トダウンという点で大きな問題となっている。
(Conventional structure and its problems) FIG. 1 shows the structure of a conventional coin-type electric double layer capacitor, in which a polarizable electrode body IK4 conductive electrode 2 is formed,
The polarizable electrode bodies 1 are opposed to each other with a separator 3 in between, impregnated with an electrolytic solution, and sealed using a gasket 4 and a case 5. In addition, when activated carbon fiber is used as the polarizable electrode body 1 and a metal layer such as aluminum or titanium or a conductive resin layer is formed as the conductive electrode 2, the polarizable electrode body 1 having the conductive electrode 2 is desired. It was possible to punch out a circular shape with a diameter of , and a coin-shaped electric double layer capacitor was realized. However, FIGS. 2 and 3 show the punching patterns of the polarizable electrode body, and when the circular polarizable electrode body 1 is punched out from the sheet-like polarizable electrode body 6, the number of punches is very large and the second Even with the pattern shown in FIG. 3, which is more efficient than the one shown in the figure, it is not possible to obtain a utilization efficiency of 91% or more. This poses a major problem in terms of reducing the cost of double layer capacitors.

(発明の目的) 本発明は、コイル型電気二重層キャパシタにおいて、そ
の原料の利用効率を高くすることを目的とするものであ
る。
(Objective of the Invention) An object of the present invention is to improve the utilization efficiency of raw materials in a coil type electric double layer capacitor.

(発明の構成) 本発明は、導電性電極を有する/−ト状の分極性電極体
から有効に正六角形の分極性電極体を打ち抜き、これら
をセパレータを介して相互に相対向させ両極を配置し、
電解液を注入後封ロケーシングした構成を有するもので
ある。
(Structure of the Invention) The present invention effectively punches out regular hexagonal polarizable electrode bodies from a T-shaped polarizable electrode body having conductive electrodes, and arranges both poles by facing each other through a separator. death,
It has a structure in which the electrolyte is injected and then the casing is sealed.

(実施例の説明) 具体的実施例を述べる前に、電気二重層キャパシタの動
作原理を簡単に説明する。
(Description of Examples) Before describing specific examples, the operating principle of an electric double layer capacitor will be briefly explained.

第4図は電気二重層キャパシタの基本原理をモデルで示
しだもので、分極性電極体として活性炭繊維7を用い、
集電能を有する導電性電極としてアルミニウム8を用い
ている。また、電解液にはプロピレンカーボネートに過
塩素酸テトラエチルアンモニウムを溶解した有機電解液
9を用いたものを示す。
Figure 4 shows a model of the basic principle of an electric double layer capacitor, using activated carbon fiber 7 as a polarizable electrode body.
Aluminum 8 is used as a conductive electrode having current collecting ability. Further, an organic electrolyte 9 in which tetraethylammonium perchlorate is dissolved in propylene carbonate is used as the electrolyte.

このように、活性炭繊維を電解液に対して平行に配置し
、電界を加えると、界面に電荷が蓄積され、この界面に
蓄積された電荷が取り出せれば、電気二重層キャパシタ
となる。
In this way, when activated carbon fibers are arranged parallel to an electrolytic solution and an electric field is applied, charges are accumulated at the interface, and if the charges accumulated at this interface can be extracted, an electric double layer capacitor is formed.

ここで、ηを単位面積当たりの電荷量、dを媒質の誘電
率、δを固体表面からイオン中Jシマでの平均距離、φ
を二重層電位とすると(])式が成立する。
Here, η is the amount of charge per unit area, d is the dielectric constant of the medium, δ is the average distance from the solid surface to the ion at J sima, φ
When is the double layer potential, the equation (]) holds true.

η=T丁φ ・・・・・・・・・・ (1)(])式よ
り、界面に蓄積きれる電荷量が二重層形成面積に比例す
ることがわかる。
η=Tφ (1) From equation (1), it can be seen that the amount of charge that can be accumulated at the interface is proportional to the area where the double layer is formed.

即ち、コイン型二重層キャバ7夕において、その電極を
円形にするのがケース内で最大に電極面積をかせげる。
That is, in a coin-shaped double-layered case, making the electrode circular allows the electrode area to be maximized within the case.

しかしながら、原料のシート状分極性電極から円形を連
続して打ち抜く時その利用効率が良くない。
However, when circular shapes are continuously punched out from the raw material sheet-like polarizable electrode, the utilization efficiency is not good.

次に具体的な計算により、打ち抜きパターン形状が原料
の利用効率にどのように影響するかを明らかにする。
Next, through specific calculations, we will clarify how the shape of the punching pattern affects the efficiency of raw material utilization.

まず第3図に示すように円形を最密充填してゆく場合を
考える。
First, consider the case where a circle is packed in the closest density as shown in FIG.

半径10の円を縦、横n個ずつ打ち抜くとすると、横は
2ncy+、縦はJT (n −1) + zcz o
長方形態/−トが必要となり、そこから打ち抜かれる円
n2個の総面積はn2・π確2となる。ここで利用効率
をElとすると、 となる。ここでnを無限大とした場合、となり、90.
69%以上の利用効率を得ることは不可能である。
If we punch out a circle with a radius of 10 by n pieces vertically and horizontally, then the horizontal part is 2ncy + and the vertical part is JT (n -1) + zcz o
A rectangular shape is required, and the total area of n2 circles punched from it is n2·π2. Letting the utilization efficiency be El, it becomes as follows. If n is set to infinity, then 90.
It is not possible to obtain a utilization efficiency of more than 69%.

次に第5図に示すように本発明の分極性電極体として正
六角形を最密充填して行く場合を考える。
Next, consider the case where regular hexagons are closest packed as the polarizable electrode body of the present invention as shown in FIG.

1辺が1−の正六角形を縦、横にn個ずつ打抜くとする
と、縦は1+(n4−] )X0.5 (−’a、横は
)n tx必要となり、そこから打ち抜かれる正六角形
02個のE2とすると、 となりnを無限大とした時 となりnを大きくすればするほど利用効率が100チに
近ずくことがわかる。たとえばn = Zooとした場
合の第3図及び第5図における利用効率はそれぞれ90
55%及び9966%となる。
If we punch out n pieces vertically and horizontally from a regular hexagon with a side of 1-, the length will be 1 + (n4-] )X0.5 (-'a, the width) n tx, and the regular hexagons to be punched from there will be When E2 is 02 squares, the following equation is obtained, and when n is set to infinity, it can be seen that the larger n is, the closer the utilization efficiency is to 100. For example, when n = Zoo, the utilization efficiency in Figures 3 and 5 is 90, respectively.
55% and 9966%.

(実施例1) 第6図(a)及び(b)は本発明の電気二重層キャパシ
タの一実施例の分極性電極体及びセパレータの平面図、
(C)はその構成断面図を示し、1は分極性電框体、2
は導電性電極、3はセパレータ、4はガ” スケノド、
5はケースである。
(Example 1) FIGS. 6(a) and 6(b) are plan views of a polarizable electrode body and a separator of an embodiment of the electric double layer capacitor of the present invention,
(C) shows a cross-sectional view of its configuration, where 1 is a polarizable electric frame, 2
is a conductive electrode, 3 is a separator, 4 is a conductive electrode,
5 is a case.

分極性電極体1として活性炭繊維を用い、その表面上に
プラズマ溶射法によりアルミニウムを溶射して導電性電
極2を形成する。その後、−辺10篩の正六角形の電極
を第5図のパターンで打ち抜いたりまたは切断したりし
て形成し、電解液としてはプロピレンカーボネートに過
堪素酸テトラエチルアンモニウムを溶解した有機電解液
を用い、封ロケーノノダし本発明のキャパシタを構成す
る。
Activated carbon fiber is used as the polarizable electrode body 1, and a conductive electrode 2 is formed on the surface of the activated carbon fiber by spraying aluminum by a plasma spraying method. Thereafter, regular hexagonal electrodes with 10 sides on each side were punched out or cut in the pattern shown in Figure 5, and an organic electrolyte solution containing tetraethylammonium perfluorate dissolved in propylene carbonate was used as the electrolyte solution. The capacitor of the present invention is constructed by sealing the capacitor.

なおセパレータ3は分極性電極体1等に比べ安価であり
さらに短絡防止のため円形のものを用いる。
Note that the separator 3 is less expensive than the polarizable electrode body 1 and the like, and is circular in order to prevent short circuits.

ここで、上記のようなキャパシタヲ10,000 個作
成する時に必要な原料活性炭繊維量と、電極を第3図の
ようなパターンで直径201111の円形に打ち抜いた
時に必要な量とを比較し表1に示す。
Here, we compared the amount of raw activated carbon fiber required to create 10,000 capacitors as described above with the amount required when punching out circular electrodes with a diameter of 201111 mm in the pattern shown in Figure 3. Shown in 1.

表1 を25俤もダウンさせることができ、このコストダウン
は生産量が大きくなるに従がって大きくなる。
Table 1 can be reduced by as much as 25 yen, and this cost reduction increases as the production volume increases.

また電極の形体が正六角形(X辺10削)と円形(半径
1k )のものとの面積比は、前者が後者の約827%
となる。従って容量値が従来の827%程度に減少する
が、原料活性炭繊維は従来の752係しか必要なく、コ
ストダウンに太きく寄与し得ることがわかる。
Furthermore, the area ratio between the electrodes having a regular hexagonal shape (X side 10 cut) and a circular electrode shape (radius 1k) is approximately 827% of the latter.
becomes. Therefore, although the capacity value is reduced to about 827% of the conventional value, only 752 units of the raw material activated carbon fiber is required compared to the conventional one, which can greatly contribute to cost reduction.

表2に本発明のキャパシタの特性を従来例と共に示す。Table 2 shows the characteristics of the capacitor of the present invention together with the conventional example.

表2 (実施例2) 実施例1と同様な構成を有し電解液に希硫酸を用いた場
合の特性を表3に示す。表:うより、希硫酸のような無
機電解液を用いると、耐圧は有機電解液系の2■という
値は得られず、水の分解電圧である1、2vが限界とな
るが、大容量値が得られ、しかもインピーダンスも低減
でき、強放電の用途に適したものとなる。
Table 2 (Example 2) Table 3 shows the characteristics when the structure was similar to that of Example 1 and dilute sulfuric acid was used as the electrolyte. Table: When using an inorganic electrolyte such as dilute sulfuric acid, the breakdown voltage cannot reach the 2V value of an organic electrolyte system, and the limit is 1 or 2V, which is the water decomposition voltage, but large capacity It is possible to obtain a high value and also reduce impedance, making it suitable for strong discharge applications.

表3 (実施例3) 第7図は実施例1と同様な系において、分極性電極体1
を2枚積層した構成のキャパシタを組み立てだ場合のも
のでおり、2は導電性電極、3はセパレータを示すこと
は前記の各図と同じである。
Table 3 (Example 3) Figure 7 shows a polarizable electrode body 1 in the same system as in Example 1.
This figure shows a case where a capacitor having a structure in which two layers are laminated is assembled, and 2 is a conductive electrode and 3 is a separator, which is the same as in the previous figures.

その特性を表4に示す。Its characteristics are shown in Table 4.

表4 表4と表2を比較すると、分極性電極体の量に比例し容
量値が増大することがわかる。インピーダンスは電解液
の内部抵抗に支配されており、表2と表4であまり大差
はない。
Table 4 Comparing Tables 4 and 2, it can be seen that the capacitance value increases in proportion to the amount of polarizable electrode body. The impedance is controlled by the internal resistance of the electrolyte, and there is not much difference between Tables 2 and 4.

(発明の効果) 以上説明したように、本発明によれば、分極性電極体を
正六角形とするため原料の利用効率が大量生産において
100%に近くなり、従来のものと比較し電極面積は、
82.7%になるが、コストが75.2%となり、小型
大容量二重層キャパシタのコストダウンに大きく寄与す
ることができる。
(Effects of the Invention) As explained above, according to the present invention, since the polarizable electrode body is made into a regular hexagon, the utilization efficiency of raw materials approaches 100% in mass production, and the electrode area is reduced compared to the conventional one. ,
However, the cost is 75.2%, which can greatly contribute to reducing the cost of small-sized, large-capacity double layer capacitors.

【図面の簡単な説明】 第1図は従来のコイン型電気二重層キヤ・くシタの構成
を示す図、第2図及び第3図は分極性電極体の打ち抜き
パターンを示す図、第4図は電気二重層キャパシタの基
本原理をモデルで示しだ説明図、第5図は本発明の分極
性電極体パターンを示す図、第6図は本発明の電気二重
層キャパシタの一実施例の構成を示す図、第7図は本発
明の他の実施例を示す図である。 l ・・・・・・・・・分極性電極体、 2・・・・・
・・・・導電性電極、3 ・・・・・・・・・セパレー
タ、 4 ・・・・・・・・・ガスケット、5 ・・・
・・・・・・ケース、 6凹曲・シーI・状の分極性電
極体、 7曲・間活性炭繊維、 8・・・・・・・・・
アルミニウム電極、 9・・・・・・・・・有機電解液
。 特許出願人 松下電器産業株式会社 ”−(;パ 第1図 第2図 第3図 第4図 第5図 第6図 (b) (C) 第7図
[Brief explanation of the drawings] Fig. 1 shows the structure of a conventional coin-shaped electric double layer capacitor, Figs. 2 and 3 show punching patterns of polarizable electrode bodies, Fig. 4 is an explanatory diagram showing the basic principle of an electric double layer capacitor as a model, FIG. 5 is a diagram showing a polarizable electrode body pattern of the present invention, and FIG. The figure shown in FIG. 7 is a diagram showing another embodiment of the present invention. l...Polarizable electrode body, 2...
... Conductive electrode, 3 ... Separator, 4 ... Gasket, 5 ...
・・・・・・Case, 6 concave curves, sea I shape polarizable electrode body, 7 curves, activated carbon fibers, 8・・・・・・・・・
Aluminum electrode, 9... Organic electrolyte. Patent Applicant: Matsushita Electric Industrial Co., Ltd. (;P Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 (b) (C)

Claims (4)

【特許請求の範囲】[Claims] (1) 導電性電極を有するシート状の分極性電極体か
ら、正六角形の分極性電極体を形成し、これらをセパレ
ータを介して相互に相対向させ両極を配置し、電解液を
注人後封ロケーシングした構成を有することを特徴とす
る電気二重層キャIくシタ。
(1) A regular hexagonal polarizable electrode body is formed from a sheet-like polarizable electrode body having conductive electrodes, these are placed facing each other with a separator in between, and both electrodes are arranged, and an electrolyte is poured into the body. An electric double layer capacitor characterized by having a sealed casing structure.
(2) 分極性電極体として活性炭繊維を用いることを
特徴とする特許請求の範囲第(1)項記載の電気二重層
キャパシタ。
(2) The electric double layer capacitor according to claim (1), characterized in that activated carbon fiber is used as the polarizable electrode body.
(3) 導電性電極として溶射法、蒸着法のいずれか一
つにより、アルミニウム、銅などの金属層を分極性電極
体に形成したことを特徴とする特許請求の範囲第(1)
項及び第(2)項記載の電気二重層キャパシタ。
(3) Claim (1) characterized in that a metal layer such as aluminum or copper is formed on a polarizable electrode body as a conductive electrode by either a thermal spraying method or a vapor deposition method.
The electric double layer capacitor described in Items 1 and 2).
(4) 導電性電極として、スクリーン印刷法、スプレ
ー法、デツプ法のいずれかの方法で導電性樹脂層を分極
性電極体に形成したことを特徴とする特許請求の範囲第
(1〕項及び第(2)項記載の電気二重層キャパシタ。
(4) As a conductive electrode, a conductive resin layer is formed on a polarizable electrode body by any one of a screen printing method, a spray method, and a dip method. The electric double layer capacitor according to item (2).
JP58143653A 1983-08-08 1983-08-08 Electric double layer capacitor Granted JPS6035510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58143653A JPS6035510A (en) 1983-08-08 1983-08-08 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58143653A JPS6035510A (en) 1983-08-08 1983-08-08 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPS6035510A true JPS6035510A (en) 1985-02-23
JPS6313333B2 JPS6313333B2 (en) 1988-03-25

Family

ID=15343789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58143653A Granted JPS6035510A (en) 1983-08-08 1983-08-08 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPS6035510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222035A (en) * 1988-03-08 1990-01-24 Osaka Prefecture Optical shaping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222035A (en) * 1988-03-08 1990-01-24 Osaka Prefecture Optical shaping
JPH0533901B2 (en) * 1988-03-08 1993-05-20 Oosakafu

Also Published As

Publication number Publication date
JPS6313333B2 (en) 1988-03-25

Similar Documents

Publication Publication Date Title
US8411413B2 (en) High voltage EDLC cell and method for the manufacture thereof
DE2254565A1 (en) CAPACITOR
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
KR101199707B1 (en) Electrolyte solution for double layered capacitors and double layered capacitor containing said electrolyte solution
RU93008795A (en) DOUBLE ELECTRIC LAYER CAPACITOR
JPS6035510A (en) Electric double layer capacitor
JPS6046529B2 (en) capacitor
JPH08250380A (en) Polarizable electrode and its manufacture
JP2011512662A (en) Multitrack supercapacitor
JPS61203614A (en) Electric doule-layer capacitor
CN202650842U (en) Stacked capacitor with graphene conductive layer
CN117153574A (en) Interconnect stripe for supercapacitor module
JP2005085870A (en) Metallized film capacitor
JP4297761B2 (en) Electric double layer capacitor
JPH04286108A (en) Electric double layer capacitor
CN207052452U (en) A kind of low noise Metallized polyester film
US9312076B1 (en) Very high energy-density ultracapacitor apparatus and method
JPS61102023A (en) Electric double-layer capacitor
US4828738A (en) Solid electrolytic capacitor
JPS6049620A (en) Electric doulbe layer capacitor
CN214541918U (en) Capacitor
JP2009259930A (en) Solid electrolytic capacitor
JP2000348976A (en) Electric double-layer capacitor
JPS60211821A (en) Electric couble layer capacitor
JPS61203625A (en) Electric double-layer capacitor