JPS6313333B2 - - Google Patents

Info

Publication number
JPS6313333B2
JPS6313333B2 JP58143653A JP14365383A JPS6313333B2 JP S6313333 B2 JPS6313333 B2 JP S6313333B2 JP 58143653 A JP58143653 A JP 58143653A JP 14365383 A JP14365383 A JP 14365383A JP S6313333 B2 JPS6313333 B2 JP S6313333B2
Authority
JP
Japan
Prior art keywords
electrode body
polarizable electrode
double layer
electric double
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58143653A
Other languages
Japanese (ja)
Other versions
JPS6035510A (en
Inventor
Ichiro Tanahashi
Atsushi Nishino
Akihiko Yoshida
Yasuhiro Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58143653A priority Critical patent/JPS6035510A/en
Publication of JPS6035510A publication Critical patent/JPS6035510A/en
Publication of JPS6313333B2 publication Critical patent/JPS6313333B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、小型大容量の湿式電気二重層キヤパ
シタに関するものである。 (従来例の構成とその問題点) 第1図は従来のコイン型電気二重層キヤパシタ
の構成を示すもので、分極性電極体1に導電性電
極2を形成し、上記分極性電極体1をセパレータ
3を介して相対向させ、電解液を含浸し、ガスケ
ツト4とケース5を用いて封口ケーシングしたも
のとなつている。また分極性電極体1として活性
炭繊維を用い、導電性電極2としてアルミニウ
ム、チタン等の金属層または導電性樹脂層を形成
したものは、導電性電極2を有した分極性電極1
を所望の径の円状に打ちぬくことが可能であり、
コイン型電気二重層キヤパシタが実現した。しか
しながら、第2図及び第3図は分極性電極体の打
ち抜きパターンで、シート状の分極性電極体6か
ら円形の分極性電極体1を打抜くと、打ち抜き数
を非常に大きくして第2図よりも効率の良い第3
図のパターンでも91%以上の利用効率を得ること
ができない。このことは、二重層キヤパシタのコ
ストダウンという点で大きな問題となつている。 (発明の目的) 本発明は扁平型電気二重層キヤパシタにおい
て、その原料の利用効率を高くすることを目的と
するものである。 (発明の構成) 本発明は、導電性電極を有するシート状の分極
性電極体から有効に正六角形の分極性電極体を打
ち抜き、これらをセパレータを介して相互に相対
向させ両極を配置し、電解液を注入後封口ケーシ
ングした構成を有するものである。 (実施例の説明) 具体的実施例を述べる前に、電気二重層キヤパ
シタの動作原理を簡単に説明する。 第4図は電気二重層キヤパシタの基本原理をモ
デルで示したもので、分極性電極体として活性炭
繊維7を用い、集電能を有する導電性電極として
アルミニウム8を用いている。また、電解液には
プロピレンカーボネートに過塩素酸テトラエチル
アンモニウムを溶解した有機電解液9を用いたも
のを示す。 このように、活性炭繊維を電解液に対して平行
に配置し、電界を加えると、界面に電荷が蓄積さ
れ、この界面に蓄積された電荷が取り出せれば、
電気二重層キヤパシタとなる。 ここで、ηを単位面積当たりの電荷量、dを媒
質の誘電率、δを固体表面からイオン中心までの
平均距離、φを二重層電位とすると(1)式が成立す
る。 η=d/4πδφ ……(1) (1)式より、界面に蓄積される電荷量が二重層形
成面積に比例することがわかる。 即ち、コイン型二重層キヤパシタにおいて、そ
の電極を円形にするのがケース内で最大に電極面
積をかせげる。しかしながら、原料のシート状分
極性電極から円形を連続して打ち抜く時その利用
効率が良くない。 次に具体的な計算により、打ち抜きパターン形
状が原料の利用効率にどのように影響するかを明
らかにする。 まず第3図に示すように円形を最密充填してゆ
く場合を考える。 半径1cmの円を縦、横n個ずつ打ち抜くとする
と、横は2ncm、縦は√3(n−1)+2cmの長方
形原シートが必要となり、そこから打ち抜かれる
円n2個の総面積はn2・πcm2となる。ここで利用効
率をE1とすると、 となる。ここでnを無限大とした場合、 となり、90.69%以上の利用効率を得ることは不
可能である。 次に第5図に示すように本発明の分極性電極体
として正六角形を最密充填して行く場合を考え
る。1辺が1cmの正六角形を縦、横にn個ずつ打
抜くとすると、縦はn+(n+1)×0.5cm、横は
√3ncm必要となり、そこから打ち抜かれる正六
角形n2個の総面積は、
(Industrial Application Field) The present invention relates to a small-sized, large-capacity wet type electric double layer capacitor. (Structure of conventional example and its problems) Fig. 1 shows the structure of a conventional coin-type electric double layer capacitor, in which a conductive electrode 2 is formed on a polarizable electrode body 1; They are made to face each other with a separator 3 in between, are impregnated with an electrolytic solution, and are sealed using a gasket 4 and a case 5. In addition, in the case where activated carbon fiber is used as the polarizable electrode body 1 and a metal layer such as aluminum or titanium or a conductive resin layer is formed as the conductive electrode 2, the polarizable electrode 1 with the conductive electrode 2
It is possible to punch out a circular shape with a desired diameter,
A coin-type electric double layer capacitor has been realized. However, FIGS. 2 and 3 show the punching patterns of the polarizable electrode body, and when the circular polarizable electrode body 1 is punched out from the sheet-like polarizable electrode body 6, the number of punches is very large and the second The third model is more efficient than the one shown in the diagram.
Even with the pattern shown in the figure, it is not possible to obtain a usage efficiency of 91% or higher. This poses a major problem in terms of reducing the cost of double layer capacitors. (Object of the Invention) An object of the present invention is to improve the utilization efficiency of raw materials in a flat electric double layer capacitor. (Structure of the Invention) The present invention effectively punches regular hexagonal polarizable electrode bodies from a sheet-like polarizable electrode body having conductive electrodes, and arranges both poles by facing each other through a separator. It has a structure in which the electrolyte is injected and then the casing is sealed. (Description of Examples) Before describing specific examples, the operating principle of the electric double layer capacitor will be briefly explained. FIG. 4 shows a model of the basic principle of an electric double layer capacitor, in which activated carbon fiber 7 is used as a polarizable electrode body, and aluminum 8 is used as a conductive electrode having current collecting ability. Further, an organic electrolyte 9 in which tetraethylammonium perchlorate is dissolved in propylene carbonate is used as the electrolyte. In this way, when activated carbon fibers are placed parallel to the electrolyte and an electric field is applied, charges are accumulated at the interface, and if the charges accumulated at this interface can be taken out,
It becomes an electric double layer capacitor. Here, when η is the amount of charge per unit area, d is the dielectric constant of the medium, δ is the average distance from the solid surface to the ion center, and φ is the double layer potential, equation (1) holds true. η=d/4πδφ (1) From equation (1), it can be seen that the amount of charge accumulated at the interface is proportional to the double layer formation area. That is, in a coin-shaped double layer capacitor, making the electrode circular allows the electrode area to be maximized within the case. However, when circular shapes are continuously punched out from the raw material sheet-like polarizable electrode, the utilization efficiency is not good. Next, through specific calculations, we will clarify how the shape of the punching pattern affects the efficiency of raw material utilization. First, consider the case where a circle is packed in the closest density as shown in FIG. If we punch out n circles each with a radius of 1 cm vertically and horizontally, we will need a rectangular original sheet with a width of 2 nm and a height of √3(n-1) + 2 cm, and the total area of the two circles punched out from it is n. 2・πcm 2 . Here, if the utilization efficiency is E 1 , becomes. Here, if n is set to infinity, Therefore, it is impossible to obtain a utilization efficiency of 90.69% or more. Next, consider the case where regular hexagons are closest packed as the polarizable electrode body of the present invention as shown in FIG. If we punch out n pieces vertically and horizontally from a regular hexagon with a side of 1 cm, we need n + (n + 1) × 0.5 cm for the length and √3 ncm for the width, and the total area of the n 2 regular hexagons punched from there is ,

【式】であ る。ここで利用効率をE2とすると、 となりnを無限大とした時 となりnを大きくすればするほど利用効率が100
%に近ずくことがわかる。たとえばn=100とし
た場合の第3図及び第5図における利用効率はそ
れぞれ90.55%及び99.66%となる。 (実施例 1) 第6図a及びbは本発明の電気二重層キヤパシ
タの一実施例の分極性電極体及びセパレータの平
面図、cはその構成断面図を示し、1は分極性電
極体、2は導電性電極、3はセパレータ、4はガ
スケツト、5はケースである。 分極性電極体1として活性炭繊維を用い、その
表面上にプラズマ溶射法によりアルミニウムを溶
射して導電性電極2を形成する。その後、一辺10
mmの正六角形の電極を第5図のパターンで打ち抜
いたりまたは切断したりして形成し、電解液とし
てはプロピレンカーボネートに過塩素酸テトラエ
チルアンモニウムを溶解した有機電解液を用い、
封口ケーシングし本発明のキヤパシタを構成す
る。なおセパレータ3は分極性電極体1等に比べ
安価でありさらに短絡防止のため円形のものを用
いる。 ここで、上記のようなキヤパシタを10000個作
成する時に必要な原料活性炭繊維量と、電極を第
3図のようなパターンで直径20mmの円形に打ち抜
いた時に必要な量とを比較し表1に示す。
[Formula]. Here, if the utilization efficiency is E 2 , then Then, when n is set to infinity So, the larger n is, the more the usage efficiency is 100
It can be seen that it approaches %. For example, when n=100, the utilization efficiencies in FIGS. 3 and 5 are 90.55% and 99.66%, respectively. (Example 1) FIGS. 6a and 6b are plan views of a polarizable electrode body and a separator of an embodiment of the electric double layer capacitor of the present invention, c is a cross-sectional view of the configuration, 1 is a polarizable electrode body, 2 is a conductive electrode, 3 is a separator, 4 is a gasket, and 5 is a case. Activated carbon fiber is used as the polarizable electrode body 1, and a conductive electrode 2 is formed on the surface of the activated carbon fiber by spraying aluminum by a plasma spraying method. Then 10 per side
mm regular hexagonal electrodes are punched out or cut in the pattern shown in Fig. 5, and an organic electrolyte in which tetraethylammonium perchlorate is dissolved in propylene carbonate is used as the electrolyte.
The sealed casing constitutes the capacitor of the present invention. Note that the separator 3 is less expensive than the polarizable electrode body 1 and the like, and is circular in order to prevent short circuits. Here, we compared the amount of raw activated carbon fiber required to make 10,000 capacitors as described above with the amount required when punching out electrodes in a circle with a diameter of 20 mm in the pattern shown in Figure 3, and the amount is shown in Table 1. show.

【表】 表1より正六角形の電極を用いた方が原料コス
トを25%もダウンさせることができ、このコスト
ダウンは生産量が大きくなるに従がつて大きくな
る。 また電極の形体が正六角形(1辺10mm)と円形
(半径10mm)のものとの面積比は、前者が後者の
約82.7%となる。従つて容量値が従来の82.7%程
度に減少するが、原料活性炭繊維は従来の75.2%
しか必要なく、コストダウンに大きく寄与し得る
ことがわかる。 表2に本発明のキヤパシタの特性を従来例と共
に示す。
[Table] Table 1 shows that using regular hexagonal electrodes can reduce raw material costs by as much as 25%, and this cost reduction increases as the production volume increases. Furthermore, the area ratio between the electrodes having a regular hexagonal shape (10 mm on a side) and a circular shape (radius 10 mm) is about 82.7% of the latter. Therefore, the capacity value is reduced to about 82.7% of the conventional value, but the raw material activated carbon fiber is 75.2% of the conventional value.
It can be seen that this method is only necessary and can greatly contribute to cost reduction. Table 2 shows the characteristics of the capacitor of the present invention together with the conventional example.

【表】 (実施例 2) 実施例1と同様な構成を有し電解液に希硫酸を
用いた場合の特性を表3に示す。表3より、希硫
酸のような無機電解液を用いると、耐圧は有機電
解液系の2Vという値は得られず、水の分解電圧
である1.2Vが限界となるが、大容量値が得られ、
しかもインピーダンスも低減でき、強放電の用途
に適したものとなる。
[Table] (Example 2) Table 3 shows the characteristics when the structure was similar to that of Example 1 and dilute sulfuric acid was used as the electrolyte. According to Table 3, when an inorganic electrolyte such as dilute sulfuric acid is used, the breakdown voltage cannot reach the 2V value of an organic electrolyte system, and the limit is 1.2V, which is the decomposition voltage of water, but a large capacity value can be obtained. is,
Furthermore, impedance can be reduced, making it suitable for strong discharge applications.

【表】 (実施例 3) 第7図は実施例1と同様な系において、分極性
電極体1を2枚積層した構成のキヤパシタを組み
立てた場合のものであり、2は導電性電極、3は
セパレータを示すことは前記の各図と同じであ
る。その特性を表4に示す。
[Table] (Example 3) Figure 7 shows a case where a capacitor having a structure in which two polarizable electrode bodies 1 are laminated is assembled in the same system as in Example 1, where 2 is a conductive electrode, 3 is a conductive electrode, and 3 is a conductive electrode. indicates a separator, which is the same as in each of the previous figures. Its characteristics are shown in Table 4.

【表】 表4と表2を比較すると、分極性電極体の量に
比例し容量値が増大することがわかる。インピー
ダンスは電解液の内部抵抗に支配されており、表
2と表4であまり大差はない。 (発明の効果) 以上説明したように、本発明によれば、分極性
電極体を正六角形とするため原料の利用効率が大
量生産において100%に近くになり、従来のもの
と比較し電極面積は、82.7%になるが、コストが
75.2%となり、小型大容量二重層キヤパシタのコ
ストダウンに大きく寄与することができる。
[Table] Comparing Tables 4 and 2, it can be seen that the capacitance value increases in proportion to the amount of polarizable electrode body. The impedance is controlled by the internal resistance of the electrolyte, and there is not much difference between Tables 2 and 4. (Effects of the Invention) As explained above, according to the present invention, since the polarizable electrode body is made into a regular hexagon, the utilization efficiency of raw materials is close to 100% in mass production, and the electrode area is is 82.7%, but the cost is
75.2%, which can greatly contribute to reducing the cost of small, large-capacity double-layer capacitors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のコイン型電気二重層キヤパシタ
の構成を示す図、第2図及び第3図は分極性電極
体の打ち抜きパターンを示す図、第4図は電気二
重層キヤパシタの基本原理をモデルで示した説明
図、第5図は本発明の分極性電極体パターンを示
す図、第6図は本発明の電気二重層キヤパシタの
一実施例の構成を示す図、第7図は本発明の他の
実施例を示す図である。 1……分極性電極体、2……導電性電極、3…
…セパレータ、4……ガスケツト、5……ケー
ス、6……シート状の分極性電極体、7……活性
炭繊維、8……アルミニウム電極、9……有機電
解液。
Figure 1 is a diagram showing the configuration of a conventional coin-shaped electric double layer capacitor, Figures 2 and 3 are diagrams showing the punching pattern of a polarizable electrode body, and Figure 4 is a model of the basic principle of an electric double layer capacitor. 5 is a diagram showing the polarizable electrode body pattern of the present invention, FIG. 6 is a diagram showing the configuration of an embodiment of the electric double layer capacitor of the present invention, and FIG. 7 is a diagram showing the structure of an embodiment of the electric double layer capacitor of the present invention. It is a figure which shows another Example. 1... Polarizable electrode body, 2... Conductive electrode, 3...
... Separator, 4 ... Gasket, 5 ... Case, 6 ... Sheet-shaped polarizable electrode body, 7 ... Activated carbon fiber, 8 ... Aluminum electrode, 9 ... Organic electrolyte.

Claims (1)

【特許請求の範囲】 1 導電性電極を有するシート状の分極性電極体
から、正六角形の分極性電極体を形成し、これら
をセパレータを介して相互に相対向させ両極を配
置し、電解液を注入後封口ケーシングした構成を
有することを特徴とする電気二重層キヤパシタ。 2 分極性電極体として活性炭繊維を用いること
を特徴とする特許請求の範囲第1項記載の電気二
重層キヤパシタ。 3 導電性電極として溶射法、蒸着法のいずれか
一つにより、アルミニウム、銅などの金属層を分
極性電極体に形成したことを特徴とする特許請求
の範囲第1項及び第2項記載の電気二重層キヤパ
シタ。 4 導電性電極として、スクリーン印刷法、スプ
レー法、デツプ法のいずれかの方法で導電性樹脂
層を分極性電極体に形成したことを特徴とする特
許請求の範囲第1項及び第2項記載の電気二重層
キヤパシタ。
[Scope of Claims] 1. A regular hexagonal polarizable electrode body is formed from a sheet-like polarizable electrode body having a conductive electrode, and both electrodes are arranged so as to face each other with a separator interposed therebetween. What is claimed is: 1. An electric double layer capacitor characterized by having a structure in which a sealed casing is formed after injection. 2. The electric double layer capacitor according to claim 1, characterized in that activated carbon fiber is used as the polarizable electrode body. 3. The conductive electrode according to claims 1 and 2, characterized in that a metal layer of aluminum, copper, etc. is formed on the polarizable electrode body by either thermal spraying or vapor deposition. Electric double layer capacitor. 4. Claims 1 and 2, characterized in that, as the conductive electrode, a conductive resin layer is formed on the polarizable electrode body by any one of a screen printing method, a spray method, and a dip method. electric double layer capacitor.
JP58143653A 1983-08-08 1983-08-08 Electric double layer capacitor Granted JPS6035510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58143653A JPS6035510A (en) 1983-08-08 1983-08-08 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58143653A JPS6035510A (en) 1983-08-08 1983-08-08 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPS6035510A JPS6035510A (en) 1985-02-23
JPS6313333B2 true JPS6313333B2 (en) 1988-03-25

Family

ID=15343789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58143653A Granted JPS6035510A (en) 1983-08-08 1983-08-08 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPS6035510A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222035A (en) * 1988-03-08 1990-01-24 Osaka Prefecture Optical shaping

Also Published As

Publication number Publication date
JPS6035510A (en) 1985-02-23

Similar Documents

Publication Publication Date Title
Halper et al. Supercapacitors: A brief overview
EP1043744B1 (en) Capacitor with dual electric layer
EP0078404B1 (en) Electric energy storage devices
TW430834B (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
KR101199707B1 (en) Electrolyte solution for double layered capacitors and double layered capacitor containing said electrolyte solution
JPH08250380A (en) Polarizable electrode and its manufacture
CN1992111B (en) Electrochemical device and method for manufacturing same, and jig for manufacturing electrochemical device
JPS6313333B2 (en)
CN202650842U (en) Stacked capacitor with graphene conductive layer
JPS61203614A (en) Electric doule-layer capacitor
JP3085250B2 (en) Electric double layer capacitor
JPH04286108A (en) Electric double layer capacitor
US9312076B1 (en) Very high energy-density ultracapacitor apparatus and method
JP2005093779A (en) Electric double layer capacitor
JPS63261817A (en) Electric double-layer capacitor
JPS6049620A (en) Electric doulbe layer capacitor
JPS61102023A (en) Electric double-layer capacitor
JPS60211821A (en) Electric couble layer capacitor
JPH0383319A (en) Electric double-layer capacitor
JPH011218A (en) energy storage device
JP2003109873A (en) Electric double layer capacitor
Kadam et al. Development of three electrode system for optimizing the parameters of hybrid capacitor
JP2000348976A (en) Electric double-layer capacitor
JPS6310574B2 (en)