JPS60211821A - Electric couble layer capacitor - Google Patents

Electric couble layer capacitor

Info

Publication number
JPS60211821A
JPS60211821A JP59068794A JP6879484A JPS60211821A JP S60211821 A JPS60211821 A JP S60211821A JP 59068794 A JP59068794 A JP 59068794A JP 6879484 A JP6879484 A JP 6879484A JP S60211821 A JPS60211821 A JP S60211821A
Authority
JP
Japan
Prior art keywords
double layer
electric double
layer capacitor
activated carbon
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59068794A
Other languages
Japanese (ja)
Other versions
JPH0211007B2 (en
Inventor
棚橋 一郎
敦 西野
昭彦 吉田
康弘 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59068794A priority Critical patent/JPS60211821A/en
Publication of JPS60211821A publication Critical patent/JPS60211821A/en
Publication of JPH0211007B2 publication Critical patent/JPH0211007B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は小型大容量の湿式電気二重層キャパシタに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a small-sized, large-capacity wet type electric double layer capacitor.

従来例の構成とその問題点 第1図に従来の電気二重層キャパシタの一構成例を示す
Conventional Structure and Its Problems FIG. 1 shows an example of the structure of a conventional electric double layer capacitor.

分極性電極体1として活性炭繊維布を用い、捷だ導電性
電極2としてアルミニウム、チタン等の金属層、まだは
導電性樹脂層を形成した構成を有する。これらをセパレ
ータ3を介して重ね合わせ、電解液を圧入した後、ガス
ケット4で正、負極を絶縁した状態でコイン型ケース6
内に収納し、封口したものである。ここで、金属の導電
性電極2は、プラズマ溶射法、アーク溶射法により、ま
た導電性樹脂を用いる場合は、主にカーボンを導電性粒
子とした導電性樹脂をスクリーン印刷法やスプレィ法、
ディップ法のいずれかにょ多形成されている。
It has a structure in which an activated carbon fiber cloth is used as the polarizable electrode body 1, and a metal layer such as aluminum or titanium, and a conductive resin layer are formed as the twisted conductive electrode 2. After stacking these with the separator 3 in between and press-fitting the electrolyte, the coin-shaped case 6 is placed with the positive and negative electrodes insulated with the gasket 4.
It was stored inside and sealed. Here, the metal conductive electrode 2 is formed by a plasma spraying method, an arc spraying method, or when a conductive resin is used, a conductive resin containing conductive particles mainly made of carbon is formed by a screen printing method, a spray method,
Polymers are formed in either of the dip methods.

導電性樹脂を用いた場合は、金属層を用いた場合より、
内部インピーダンスが大きくなり、強放電の用途には適
さないキャパシタになる。
When using conductive resin, it is more difficult to use than when using metal layer.
The internal impedance increases, making the capacitor unsuitable for strong discharge applications.

従来、この種のキャパシタには、(1)水系電解液と、
(2)非水系電解液を用いたものがちン(2)の非水系
、すなわち有機電解液は、水系の電解液より導電率は低
いが耐電圧が高くなる。溶媒には、プロピレンカーボネ
ート、γ−ブチルラクトン、N−N−ジメチルホルムア
ミド、アセトニトリル等を用い、過塩素酸テトラエチル
アンモニウムのような、テトラアルキルアンモニウムの
過塩素酸塩や、テトラアルキルアンモニウムの67ノ化
リン酸塩またはホウフッ化塩、さらに、リチウム、ナト
リウム、カリウムの過塩素酸塩等の溶質を用いている。
Conventionally, this type of capacitor includes (1) an aqueous electrolyte;
(2) Using a non-aqueous electrolyte The non-aqueous, ie, organic electrolyte of (2) has a lower electrical conductivity than an aqueous electrolyte, but has a higher withstand voltage. Propylene carbonate, γ-butyllactone, N-N-dimethylformamide, acetonitrile, etc. are used as the solvent, and tetraalkylammonium perchlorates such as tetraethylammonium perchlorate or tetraalkylammonium 67 compounds are used as solvents. Solutes such as phosphate or fluoroborate salts and perchlorates of lithium, sodium, and potassium are used.

特に、現在実用化されている電気二重層キャパシタは、
分極性電極として活性炭を用いている。
In particular, the electric double layer capacitors currently in practical use are
Activated carbon is used as a polarizable electrode.

分極性電極として活性炭を用いる場合、キャパ7タ特性
は次の3項目により大きく左右される。
When activated carbon is used as a polarizable electrode, the capacitor characteristics are largely influenced by the following three items.

■比表面積 ■細孔径 @細孔容積 壕だ、電気二重層キャパシタの容量は0式で表わされる
■Specific surface area ■Pore diameter @ Pore volume The capacity of an electric double layer capacitor is expressed by the formula 0.

す、単位面積あたりの電荷 d、媒質の誘電率 δ、固体表面から電解質イオン間の平均距離φ、二重層
電位 しだがって、単セルあたりに蓄積される電荷量をQとし
、二重層形成面積をSとすると、Qは■式で表わせる。
The charge per unit area is d, the dielectric constant of the medium is δ, the average distance between the solid surface and the electrolyte ions is φ, and the double layer potential. Therefore, the amount of charge accumulated per single cell is Q, and the double layer formation If the area is S, then Q can be expressed by the formula (■).

したがって、電気二重層キャパシタはその二重層形成面
積が太きければ大きい程、蓄積される電荷量も大きくな
る。したがって条件■比表面積は、大きい程良い。しか
しながら、比表面積を増大させるには、賦活を進めなく
てはならず、機械的強度は逆に大きく減少してしまうと
いう欠点がある。
Therefore, in an electric double layer capacitor, the larger the double layer formation area, the larger the amount of charge stored. Therefore, the condition (1): The larger the specific surface area, the better. However, in order to increase the specific surface area, it is necessary to advance the activation, which has the disadvantage that the mechanical strength is significantly reduced.

一般に比表面積の大きいもの程、細孔容積@も大きくな
る。しかしながら、いくら比表面積が大きくても、第2
図に示すように細孔径■が小さなものでは、効率良く二
重層を形成することができなくなる。図中、6は分極性
電極、6aは細孔、6bは電解質イオンである。毛管ぞ
縮の理論から、効率良く二重層を形成するには第3図に
示すように細孔径8が電解質イオン径704倍以上必要
となる。特にo’c以下の低温になると、有機溶媒では
その粘度が上昇し、水系電解液は凍結しはじめるため、
電解質イオンの移動度が大幅に減少し、二重層が形成さ
れにくくなるばかりでなく、一度形成された二重層を容
易に放電させることができなくなる。
Generally, the larger the specific surface area, the larger the pore volume. However, no matter how large the specific surface area is, the second
As shown in the figure, if the pore diameter (2) is small, a double layer cannot be formed efficiently. In the figure, 6 is a polarizable electrode, 6a is a pore, and 6b is an electrolyte ion. According to the theory of capillary shrinkage, in order to form a double layer efficiently, the pore diameter 8 is required to be 704 times or more the electrolyte ion diameter, as shown in FIG. In particular, at low temperatures below O'C, the viscosity of organic solvents increases and aqueous electrolytes begin to freeze.
The mobility of electrolyte ions is greatly reduced, making it difficult to form a double layer, and once formed, the double layer cannot be easily discharged.

」二連の理由により、従来、特に活性炭繊維を分極性電
極に、捷だ電解液に有機電解液を用いた電気二重層キャ
パシタでは、正、負両極とも比表面積が2000td/
9 と非常に大きく、細孔径も2〜4 nmに大部分存
在する活性炭繊維を用いてきた。
''For two reasons, conventional electric double layer capacitors that use activated carbon fibers as polarizable electrodes and organic electrolyte as the separated electrolyte have a specific surface area of 2000 td/2 for both the positive and negative electrodes.
Activated carbon fibers have been used which are extremely large (9 nm) and have pore diameters mostly in the range of 2 to 4 nm.

しかしながら、このような大きな特徴を有する活性炭繊
維は、賦活収率が20%程度と非常に低いという欠点を
有している。
However, activated carbon fibers having such great characteristics have the disadvantage that the activation yield is very low at about 20%.

発明の目的 本発明は、単位体積あたりの電気二重層の形成効率を改
善した電気二重層キャパシタを得ることを目的とするも
のである。
OBJECT OF THE INVENTION The object of the present invention is to obtain an electric double layer capacitor with improved electric double layer formation efficiency per unit volume.

発明の構成 この目的を達成するために本発明は、正極側の分極性電
極体の比表面積を負極側の分極性電極体の比表面積より
小さくしたものである。
Structure of the Invention In order to achieve this object, the present invention is such that the specific surface area of the polarizable electrode body on the positive electrode side is smaller than the specific surface area of the polarizable electrode body on the negative electrode side.

実施例の説明 具体的な実施例を述へる前に本発明の正極側および負極
側に使用する活性炭、炭素、または黒鉛と電解質イオン
で形成される電気二重層について述べる。
DESCRIPTION OF EMBODIMENTS Before describing specific examples, an electric double layer formed of activated carbon, carbon, or graphite and electrolyte ions used in the positive and negative electrodes of the present invention will be described.

本発明の効果は、水系電解液よりも有機電解液系で、寸
だ活性炭粒子よりも活性炭繊維を用いた場合の方が顕著
である。
The effects of the present invention are more pronounced when an organic electrolyte is used than an aqueous electrolyte, and when activated carbon fibers are used rather than activated carbon particles.

その理由を以下に述べる。The reason for this is explained below.

プロピレンカーボネートや、γ−ブチルラクトンなどの
有機溶媒に過塩素テトラエチルアンモニラムや過塩素酸
リチウムなどの電解質を溶解させた場合、過塩素酸イオ
ン(C1O−)はそのイオン半径が2.36A であジ
リチウムイオン(Ll)はそのイオン半径が0.6Aと
小さいにもかかわらず、一般に、非プロトン性の極性溶
媒は、陰イオンに対するよりも陽イオンに強く溶媒和す
るため、溶媒和を含めたイオン径は、逆にカチオンの方
がアニオンよりも大きくなる。第4図にその状態を模式
的に示す。9は溶媒和したアニオン、10は溶媒和した
カチオン、11は正極活性炭繊維、11′は負極活性炭
繊維、6aは細孔である。同一出発物質から炭化賦活を
進めると第1表に示すようなものができる。したがって
コイン型のキャパシタを作成するには、このようなもの
を同一面積で打抜き作成するため、正極、すなわちアニ
オンと二重層を形成するには、第1表のステージ(2)
を使うと、賦活収率も良好で、抵抗も低く、しかも強度
も強くペストである。しかしながら、負極側にはステー
ジ(3)のような十分賦活が進行し、比表面積の大きな
、しかも溶媒和したカチオンが十分細孔内に浸入できる
程度に大きな細孔径を有している活性炭繊維を使用する
必要がある。
When an electrolyte such as tetraethylammonyl perchlorate or lithium perchlorate is dissolved in an organic solvent such as propylene carbonate or γ-butyllactone, the perchlorate ion (C1O-) has an ionic radius of 2.36A. Although dilithium ion (Ll) has a small ionic radius of 0.6A, aprotic polar solvents generally solvate cations more strongly than anions, so ions including solvation Conversely, the diameter is larger for cations than for anions. FIG. 4 schematically shows the state. 9 is a solvated anion, 10 is a solvated cation, 11 is a positive electrode activated carbon fiber, 11' is a negative electrode activated carbon fiber, and 6a is a pore. When carbonization is activated from the same starting material, the products shown in Table 1 are produced. Therefore, in order to create a coin-shaped capacitor, such a capacitor is punched out with the same area, so to form a double layer with the positive electrode, that is, the anion, stage (2) in Table 1 is required.
When used, the activation yield is good, the resistance is low, and the strength is strong. However, on the negative electrode side, activated carbon fibers as shown in stage (3) have been sufficiently activated and have a large specific surface area and a pore diameter large enough to allow solvated cations to penetrate into the pores. Must be used.

以下余白 粒状活性炭12と活性炭繊維11の細孔のようすを第5
図に模式的に示す。この図から判るように、活性炭粒子
は、マクロポア−13の内にミクロポアー14を有して
いるため、電解質の浸入が、活性炭繊維のように直接ミ
クロポアー14を有しているものよりも容易である。そ
こで、正、負極共に活性炭粒子を用いた場合、本発明の
効果が顕著に表われないと考えられる。
The pores of the granular activated carbon 12 and the activated carbon fibers 11 are shown below.
Schematically shown in the figure. As can be seen from this figure, activated carbon particles have micropores 14 within macropores 13, so electrolyte can penetrate more easily than activated carbon fibers, which have micropores 14 directly. . Therefore, when activated carbon particles are used for both the positive and negative electrodes, it is considered that the effects of the present invention will not be noticeable.

以上述べたように、本発明は、細孔径の大きさをコント
ロールしやすい活性炭繊維のような分極性電極体と、カ
チオンに強く溶媒和する有機電解液系で非常に効果的で
ある。すなわち、負極側分極性電極に強く溶媒和したカ
チオンでも細孔に浸入でき二重層が形成可能なものを用
いる必要がある。しかしながら、正極側分極性電極には
、アニオンが浸入できる程度の負極側より炭化賦活収率
が高く、強度も強く、電気抵抗も低いものを使用し、こ
れを負極側分極性電極体と組み合わせると最も効率良く
二重層を形成でき、原料を有効に使用できまた生産性も
向上できる。
As described above, the present invention is very effective with a polarizable electrode body such as an activated carbon fiber whose pore size can be easily controlled, and an organic electrolyte system that strongly solvates cations. That is, it is necessary to use a material that is capable of penetrating into pores even with strongly solvated cations in the negative polarizable electrode and forming a double layer. However, for the positive polarizable electrode, we use a material that has a higher carbonization activation yield, stronger strength, and lower electrical resistance than the negative electrode to which anions can penetrate, and when combined with the negative polarizable electrode body, A double layer can be formed most efficiently, raw materials can be used effectively, and productivity can be improved.

(実施例1) フェノール系、アクリロニトリル、レーヨン系の繊維を
それぞれ炭化、炭化賦活し、第2表の■〜@に示す特徴
を有する炭素繊維、活性炭繊維を得た。集電体は、プラ
ズマ溶射法によりアルミニウム層を300μm程度形成
した。第2表■〜@を第3表に示す組み合わせで、第6
図に示す、正。
(Example 1) Phenol-based, acrylonitrile-based, and rayon-based fibers were carbonized and carbonized, respectively, to obtain carbon fibers and activated carbon fibers having the characteristics shown in ■ to @ in Table 2. The current collector was formed by forming an aluminum layer with a thickness of about 300 μm using a plasma spraying method. In the combination of Table 2 ■ ~ @ shown in Table 3, the 6th
As shown in the figure, positive.

負極の分極性電極体の異なるコイン型キャパシタを作製
し、その緒特性も同表に示した。第6図中、16は正極
ケース、16は集電体(アルミニウム)16aを有する
正極側分極性電極、17は負極ケース、18は集電体(
アルミニウム)18aを有する負極側分極性電極、19
はセパレータ、20はガスケットである。電解液には、
電気化学的に安定な過塩素酸テトラエチルアンモニウム
を、プロピレンカーボネート、γ−ブチルラクトンの1
:1混合溶媒に1モル溶解した有機電解液を用いた。電
極はそれぞれ14間径の円形に打抜き使用しだ0 第2表の特徴をもつ炭素繊維、活性炭繊維の第3表の電
極組み合わせにより、第3表中111.2. s。
Coin-shaped capacitors with different polarizable negative electrode bodies were fabricated, and their characteristics are also shown in the same table. In FIG. 6, 16 is a positive electrode case, 16 is a positive polarizable electrode having a current collector (aluminum) 16a, 17 is a negative electrode case, and 18 is a current collector (
negative polarizable electrode having aluminum) 18a, 19
is a separator, and 20 is a gasket. The electrolyte contains
Electrochemically stable tetraethylammonium perchlorate is mixed with propylene carbonate and γ-butyl lactone.
:1 An organic electrolyte solution in which 1 mole was dissolved in a mixed solvent was used. The electrodes are each punched into a circular shape with a diameter of 14. The electrode combinations shown in Table 3 of carbon fibers and activated carbon fibers having the characteristics shown in Table 2 are used. s.

4、8.9.10.11.12.13.15.17.1
8がいずれも良好なキャパシタ特性を示す。すなわちノ
σ7のように正、負極とも賦活の十分進んだものを用い
なくても十分容量の大きな、しかも低温特性の良好な、
低インピーダンスキャパシタか得られる。
4, 8.9.10.11.12.13.15.17.1
No. 8 shows good capacitor characteristics. In other words, it has a sufficiently large capacity without using highly activated positive and negative electrodes like σ7, and has good low-temperature characteristics.
You can get a low impedance capacitor.

万5,6は、負極側に溶媒和したカチオンか容易に浸入
できず、低温特性か極めて悪くなる。
In the fifth and sixth cases, solvated cations cannot easily enter the negative electrode side, resulting in extremely poor low-temperature characteristics.

(実施例2) 負極側分極性電極として、比表面積か14002?i/
2、細孔径が20〜1 ooAの大きさに80飴以上存
在する活性炭粒子100部に対し1部のポリフロンをバ
インダーとして加えてチタンネットにプレスしたものを
用い、正極には、表2のC9dの活性炭繊維を用い、第
6図に示しだキャパシタを構成した。第4表にそのキャ
パシタ特性を示す。第4表より本実施例においても良好
な特性を示すことが判る。
(Example 2) As a negative polarizable electrode, the specific surface area is 14002? i/
2. For 100 parts of activated carbon particles with a pore diameter of 20 to 1 ooA and 80 or more particles, 1 part of Polyflon was added as a binder and pressed onto a titanium net, and the positive electrode was C9d in Table 2. A capacitor shown in FIG. 6 was constructed using activated carbon fibers. Table 4 shows the capacitor characteristics. From Table 4, it can be seen that this example also exhibits good characteristics.

(実施例3) 第3表1!;4の組み合わせで、第7図、第8図に示し
た大型キャパシタを作製した。縦が10cm1横が5c
mの大きさである。図中、21は正極リード、22は正
極、23はセパレータ、24は負極リード、25は負極
、26はポリエチレンラミネート樹脂、第8図は第7図
をa −a’線で切断した場合の断面図である。本キャ
パシタの特性を第6表に示す。本実施例において電解液
には、プロピレンカーボネート、γ−ブチルラクトンの
1:1混合溶媒に、過塩素酸リチウムを1モル溶解させ
たものを用いた。
(Example 3) Table 3 1! ; With the combination of 4, large capacitors shown in FIGS. 7 and 8 were manufactured. Height: 10cm, Width: 5c
The size is m. In the figure, 21 is a positive electrode lead, 22 is a positive electrode, 23 is a separator, 24 is a negative electrode lead, 25 is a negative electrode, 26 is a polyethylene laminate resin, and Figure 8 is a cross section of Figure 7 taken along line a-a'. It is a diagram. Table 6 shows the characteristics of this capacitor. In this example, the electrolytic solution used was one in which 1 mole of lithium perchlorate was dissolved in a 1:1 mixed solvent of propylene carbonate and γ-butyl lactone.

第6表 発明の効果 以上のように本発明は、正極、負極分極性電極にそれぞ
れ、アニオン、カチオンと効率良く電気二重層を形成し
うる電極を用いているため、低インピーダンスで小型大
容量の電気二重層キャパシタを得ることができる。
Table 6 Effects of the Invention As described above, the present invention uses electrodes that can efficiently form an electric double layer with anions and cations as the positive electrode and the negative polarizable electrode, respectively, so the present invention has a low impedance, small size and large capacity. An electric double layer capacitor can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電気二重層キャパシタの一例を承月扮断
面正面図、第2図〜第6図は、分極性電極の細孔と電解
質イオンの状態を示す模式図、第6図は本発明の一実施
例による電気二重層キャパシタを示す断面図、第7図は
本発明の他の実施例による電気二重層キャパシタを示す
平面図、第8図は第7図のa −a’線で切断した断面
図である。 16 ・・・正極側分極性電極、18 ・・負極側分極
性電極、22・・・・正極、26・・ ・負極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第5図 第7図 α′ 第8図 6
Figure 1 is a cross-sectional front view of an example of a conventional electric double layer capacitor, Figures 2 to 6 are schematic diagrams showing the pores of a polarizable electrode and the state of electrolyte ions, and Figure 6 is a front view of a conventional electric double layer capacitor. FIG. 7 is a cross-sectional view showing an electric double layer capacitor according to an embodiment of the invention, FIG. 7 is a plan view showing an electric double layer capacitor according to another embodiment of the invention, and FIG. It is a cut sectional view. 16...Positive polarizable electrode, 18...Negative polarizable electrode, 22...Positive electrode, 26...Negative electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 5 Figure 7 α' Figure 8 6

Claims (4)

【特許請求の範囲】[Claims] (1)分極性電極体と電解質界面で形成される電気二重
層を有し、正極側の分極性電極体の比表面積を負極側の
分極性電極体の比表面積より小さくしたことを特徴とす
る電気二重層キャパシタ。
(1) It has an electric double layer formed at the polarizable electrode body and the electrolyte interface, and is characterized in that the specific surface area of the polarizable electrode body on the positive electrode side is smaller than the specific surface area of the polarizable electrode body on the negative electrode side. Electric double layer capacitor.
(2)正極側の分極性電極体の細孔径が10〜3QAに
10%以上分布し、かつ負極側の分極性電極体の細孔径
が20〜40Aに70%以上分布していることを特徴と
する特許請求の範囲第1項記載の電気二重層キャパシタ
(2) The pore diameter of the polarizable electrode body on the positive electrode side is distributed over 10% to 3QA, and the pore diameter of the polarizable electrode body on the negative electrode side is distributed over 70% over 20 to 40A. An electric double layer capacitor according to claim 1.
(3)分極性電極体として、繊維状1紙状、フェルト状
、多孔質状の活性炭または炭素を用いることを特徴とす
る特許請求の範囲第1項記載の電気二重層キャパシタ。
(3) The electric double layer capacitor according to claim 1, wherein activated carbon or carbon in the form of fibrous paper, felt, or porous is used as the polarizable electrode body.
(4)電解液に有機電解液を用いることを特徴とする特
許請求の範囲第1項記載の電気二重層キャパシタ。
(4) The electric double layer capacitor according to claim 1, wherein an organic electrolyte is used as the electrolyte.
JP59068794A 1984-04-05 1984-04-05 Electric couble layer capacitor Granted JPS60211821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59068794A JPS60211821A (en) 1984-04-05 1984-04-05 Electric couble layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59068794A JPS60211821A (en) 1984-04-05 1984-04-05 Electric couble layer capacitor

Publications (2)

Publication Number Publication Date
JPS60211821A true JPS60211821A (en) 1985-10-24
JPH0211007B2 JPH0211007B2 (en) 1990-03-12

Family

ID=13383978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59068794A Granted JPS60211821A (en) 1984-04-05 1984-04-05 Electric couble layer capacitor

Country Status (1)

Country Link
JP (1) JPS60211821A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100195A1 (en) * 2003-05-09 2004-11-18 Tdk Corporation Electrochemical capacitor
WO2006054747A1 (en) * 2004-11-19 2006-05-26 Ube Industries, Ltd. Electric double layer capacitor
WO2007032064A1 (en) * 2005-09-14 2007-03-22 Kitagawa Seiki Kabushiki Kaisha Electrode for electric double layer capacitor and process for producing the same
US9607776B2 (en) 2013-10-24 2017-03-28 Corning Incorporated Ultracapacitor with improved aging performance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100195A1 (en) * 2003-05-09 2004-11-18 Tdk Corporation Electrochemical capacitor
KR100752945B1 (en) * 2003-05-09 2007-08-30 티디케이가부시기가이샤 Electrochemical capacitor
US7310219B2 (en) 2003-05-09 2007-12-18 Tdk Corporation Electrochemical capacitor
WO2006054747A1 (en) * 2004-11-19 2006-05-26 Ube Industries, Ltd. Electric double layer capacitor
JPWO2006054747A1 (en) * 2004-11-19 2008-06-05 宇部興産株式会社 Electric double layer capacitor
JP4803386B2 (en) * 2004-11-19 2011-10-26 宇部興産株式会社 Electric double layer capacitor
WO2007032064A1 (en) * 2005-09-14 2007-03-22 Kitagawa Seiki Kabushiki Kaisha Electrode for electric double layer capacitor and process for producing the same
US9607776B2 (en) 2013-10-24 2017-03-28 Corning Incorporated Ultracapacitor with improved aging performance
US10211001B2 (en) 2013-10-24 2019-02-19 Corning Incorporated Ultracapacitor with improved aging performance

Also Published As

Publication number Publication date
JPH0211007B2 (en) 1990-03-12

Similar Documents

Publication Publication Date Title
JP3496338B2 (en) Electric double layer capacitor
US20080003166A1 (en) Methods of forming nanoporous carbon material and electrodes and electrochemical double layer capacitors therefrom
JP2000124079A (en) Electric double-layer capacitor
JP2006332446A (en) Electric double layer capacitor
JP3591055B2 (en) Electric double layer capacitor, method of manufacturing the same, and method of manufacturing electrodes therefor
JP2002231585A (en) Electric double-layered capacitor
JP2014064030A (en) Electrochemical capacitor
JPS60211821A (en) Electric couble layer capacitor
KR20140138739A (en) Electrode material, and capacitor and secondary battery using said electrode material
JP2000106327A (en) Electric double layer capacitor
JPS62200715A (en) Electric double-layer capacitor
JPH08162375A (en) Electrical double-layer capacitor and manufacture of polarizable electrode used therefor
JPH0770448B2 (en) Method of manufacturing polarizable electrodes
JP2003243260A (en) Electric double layer capacitor
JP2002260970A (en) Activated carbonaceous structure and electric double- layer capacitor using the same
JP2000299259A (en) Electric double layer capacitor and manufacture thereof
JPH0974052A (en) Method for manufacturing polarizable electrode
JP2005093779A (en) Electric double layer capacitor
JPS61102023A (en) Electric double-layer capacitor
JPS6378513A (en) Electric double-layer capacitor
JP2667837B2 (en) Electric Double Layer Capacitor
JP2002289481A (en) Activated carbonaceous structure and electric double layer capacitor using the same
JPS63316422A (en) Electric double layer capacitor
JPH01103818A (en) Electric double-layer capacitor
JPS6258131B2 (en)