JPH0994883A - Method and apparatus for optically shaping three-dimensional shaped article - Google Patents

Method and apparatus for optically shaping three-dimensional shaped article

Info

Publication number
JPH0994883A
JPH0994883A JP7255945A JP25594595A JPH0994883A JP H0994883 A JPH0994883 A JP H0994883A JP 7255945 A JP7255945 A JP 7255945A JP 25594595 A JP25594595 A JP 25594595A JP H0994883 A JPH0994883 A JP H0994883A
Authority
JP
Japan
Prior art keywords
resin
workpiece table
container
stereolithography
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7255945A
Other languages
Japanese (ja)
Inventor
Yoshinari Ikeda
良成 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7255945A priority Critical patent/JPH0994883A/en
Publication of JPH0994883A publication Critical patent/JPH0994883A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth

Abstract

PROBLEM TO BE SOLVED: To shape a shaped article free from a defect while preventing the generation of voids caused by the adhesion of air bubbles in an optical shaping process. SOLUTION: A processed article table 4 is immersed and set in the liquid in the uncured photo-setting resin 2 housed in a processing container 1 and, in this state, a resin cured layer is formed by the irradiation of laser beam through the light pervious window plate 3 of a container and a table is alternately and repeatedly moved by a moving stage 5 to accumulate and form a three- dimensional article 11. In this case, a light pervious window plate 3 for the incidence of laser beam is arranged to the side wall surface of the processing container 1 housing the liquid photo-setting resin and the processed article table 4 is set in the container in a vertical posture so that the surface thereof is turned toward the window plate to perform optical shaping. By this constitution, air bubbles generated on the surface of the table when the processed article table 4 is immersed in the liquid of the photo-setting resin are floated to be degassed to the surface of the liquid and the generation of voids caused by the adhesion of air bubbles is prevented to shape a defect free shaped article.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光硬化性樹脂を材
料として、造形物の形状に関するデータを基に、紫外線
レーザ光の照射により樹脂を硬化させて立体形状の造形
物を造形する光造形方法,および光造形装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical molding method in which a photocurable resin is used as a material, and the resin is cured by irradiation of an ultraviolet laser beam on the basis of data on the shape of the molded article to form a three-dimensional molded article. A method and a stereolithography apparatus.

【0002】[0002]

【従来の技術】立体形状の造形物加工方法として頭記の
光造形法が既に知られており、この光造形法を応用した
各種方式の光造成装置が、例えば1989年発行の「素
形材」Vol 30,No10,P6〜12に掲載されている
「光造形法による模型の製作技術」(著者:斉藤 勝
政)で詳しく紹介されている。
2. Description of the Related Art The stereolithography method described above has already been known as a method for processing a three-dimensional shaped object, and various types of stereolithography equipment to which this stereolithography method is applied are disclosed in, for example, "Shape material" issued in 1989. It is introduced in detail in "Modeling Technology by Stereolithography" (Author: Katsumasa Saito) published in Vol 30, No 10, P6-12.

【0003】ここで、レーザ光のスキャナとしてX−Y
プロッタを採用した下面照射方式による光造形装置を図
4に示し、この光造形装置を例に、従来における規制液
面法の光造形法を説明する。図4において、1は未硬化
状態にある液状の光硬化性樹脂(紫外線硬化性樹脂)2
を満たした加工容器であり、該容器1の底面には後述す
るレーザ光を入射する透明な透光窓板3を備えている。
また、4は前記容器1の中に浸漬配備した加工物テーブ
ルであり、該加工物テーブル4はZ軸移動ステージ5で
Z軸方向に移動制御される。一方、レーザ光学系は紫外
線レーザ光源6と、X−YプロッタのX軸ステージ,Y
軸ステージにミラー7a,7b,および集光レンズ7c
を備えたX−Yプロッタ式のスキャナ7と、該スキャナ
7とレーザ光源6との間の光路に配備したシャッタ8か
らなり、前記の透光窓板3を通して容器1の下面側から
レーザ光を照射する。
Here, as a laser beam scanner, XY is used.
FIG. 4 shows a stereolithography apparatus that employs a bottom surface irradiation method that employs a plotter, and the conventional stereolithography method of a regulated liquid level method will be described by using this stereolithography apparatus as an example. In FIG. 4, reference numeral 1 denotes a liquid photocurable resin (ultraviolet curable resin) 2 in an uncured state.
And a transparent light-transmitting window plate 3 into which a laser beam described later is incident is provided on the bottom surface of the container 1.
Reference numeral 4 denotes a workpiece table that is immersed in the container 1, and the workpiece table 4 is moved and controlled in the Z-axis direction by a Z-axis moving stage 5. On the other hand, the laser optical system includes an ultraviolet laser light source 6, an X-axis stage of an XY plotter, and a Y-axis.
Mirrors 7a and 7b, and condenser lens 7c on the axis stage
An XY plotter type scanner 7 provided with a shutter 8 and a shutter 8 arranged in an optical path between the scanner 7 and the laser light source 6, and transmits a laser beam from the lower surface side of the container 1 through the transparent window plate 3. Irradiate.

【0004】かかる構成で、当初にテーブル4を光硬化
性樹脂2を満たした加工容器1の中へ上方から浸漬し、
窓板3との間に数十μm程度の隙間(液状の光硬化性樹
脂で満たされている)を隔てて窓板3と平行にセットし
ておく。ここで、作成する立体形状の造形物を輪切りし
た各層の断面データ(数値モデル)を格納したCADデ
ータ9を基に、ワークステーションであるパソコン10
からの指令によりスキャナ7,シャッタ8を連係させて
駆動制御し、レーザ光源6から出射した紫外線レーザ光
を前記窓板3とテーブル4との間に挟まれた光硬化性樹
脂2に向けラスタスキャンさせながら照射してテーブル
4の下面に造形物の断面データに対応したパターンの第
1層の樹脂硬化層を形成する。なお、この樹脂硬化層は
テーブル4の下面に結着する。次に、Z軸移動ステージ
5を1ピッチ分上昇させて第1の樹脂硬化層と窓板3と
の間の隙間に液状の光硬化性樹脂を浸入させた後、再び
前記と同様な操作で第2層の断面データに対応してレー
ザ光を照射し、第2の樹脂硬化層を前記第1の樹脂硬化
層の下面に形成する。以下、この操作を繰り返しなが各
樹脂硬化層の積み重ねにより加工物テーブル4の下面に
所望の立体形状造形物11が堆積形成される。なお、光
造形した造形物11は加工物テーブル4から取り外した
後に、その表面に付着している未硬化の光硬化性樹脂を
洗い流して完成する。
With such a structure, the table 4 is initially immersed in the processing container 1 filled with the photocurable resin 2 from above,
The window plate 3 and the window plate 3 are set in parallel with each other with a gap of about several tens of μm (filled with a liquid photo-curable resin). Here, based on the CAD data 9 in which the cross-sectional data (numerical model) of each layer obtained by cutting the three-dimensional shaped object to be created is stored, the personal computer 10 that is a workstation is used.
The scanner 7 and the shutter 8 are linked and drive-controlled by a command from the laser beam source, and the ultraviolet laser light emitted from the laser light source 6 is directed to the photocurable resin 2 sandwiched between the window plate 3 and the table 4 for raster scanning. While irradiating, the resin cured layer of the first layer having a pattern corresponding to the cross-sectional data of the modeled object is formed on the lower surface of the table 4. The cured resin layer is attached to the lower surface of the table 4. Next, the Z-axis moving stage 5 is raised by one pitch to allow the liquid photo-curable resin to penetrate into the gap between the first resin cured layer and the window plate 3, and then the same operation as described above is performed again. Laser light is irradiated corresponding to the cross-sectional data of the second layer to form a second resin cured layer on the lower surface of the first resin cured layer. Hereinafter, by repeating this operation, the desired three-dimensional shaped objects 11 are deposited and formed on the lower surface of the workpiece table 4 by stacking the cured resin layers. In addition, after removing the optical modeling object 11 from the workpiece table 4, the uncured photo-curable resin adhering to the surface thereof is washed off and completed.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記した従
来の光造形法では次記のような問題点がある。 1)図4で述べたように、加工容器1に収容した光硬化
性樹脂2に対してレーザ光を下面側から照射する方式の
ものでは、加工物テーブル4は容器1の上方から降ろし
て液状の光硬化性樹脂2に浸漬して造形位置セッティン
グするが、テーブル4が槽内の液状光硬化性樹脂2に浸
る際にテーブルの表面に気泡が付着することがしばしば
発生する。しかも、テーブル4の表面に気泡が付着する
と、その箇所にレーザ光を照射しても光硬化性樹脂2が
硬化せず、このために光造形された造形物11にボイド
などの欠陥が生じる。
The conventional stereolithography method described above has the following problems. 1) As described with reference to FIG. 4, in the system of irradiating the photocurable resin 2 housed in the processing container 1 with the laser beam from the lower surface side, the workpiece table 4 is lowered from above the container 1 and is in a liquid state. When the table 4 is dipped in the liquid photocurable resin 2 in the tank, the air bubbles often adhere to the surface of the table. Moreover, when bubbles adhere to the surface of the table 4, the photo-curable resin 2 does not cure even when the location is irradiated with laser light, which causes defects such as voids in the optically modeled product 11.

【0006】2)また、造形物11の形状が複雑でその
高さ方向の途中箇所に側方へ張り出すオーバーハング部
分11aを造形する場合に、図示のように容器内に光硬
化性樹脂2を一杯に満たした状態で先記の光造形を行う
と、次記のような欠陥が生じる。すなわち、前記したオ
ーバーハング部分の造形箇所はテーブル4から離れてお
り、かつ造形箇所の背後は光硬化性樹脂で満たされてい
る。このために、下面側からレーザ光を照射すると、レ
ーザ光はオーバーハング箇所を通過してその背後域の光
硬化性樹脂も硬化させる。この結果、所定の層厚さ以上
に樹脂が硬化されてしまって正確な形状の造形物加工が
困難となる。特にμmオーダの微細なモデルを光造形す
る場合には寸法誤差が大きくなる。
2) Further, when the overhanging portion 11a protruding laterally is formed at an intermediate position in the height direction of the molded article 11, the photocurable resin 2 is placed in the container as shown in the figure. If the above-mentioned stereolithography is performed in a state in which the above is fully filled, the following defects occur. That is, the molding portion of the above-mentioned overhang portion is separated from the table 4, and the back of the molding portion is filled with the photocurable resin. For this reason, when the laser light is irradiated from the lower surface side, the laser light passes through the overhang portion and also cures the photocurable resin in the area behind it. As a result, the resin is hardened beyond a predetermined layer thickness, which makes it difficult to process a modeled object having an accurate shape. Particularly, when a fine model of the order of μm is formed by photolithography, the dimensional error becomes large.

【0007】3)光造形法で作成した造形物11を加工
物テーブル4から取り外す場合に、あらかじめテーブル
4に離型剤を塗布しておく方法も知られているが、離型
剤を塗布しただけでは造形物をテーブルから簡単に引き
外すことができず、実際にはカッターナイフなどを使っ
てテーブル4から無理矢理に剥離するようにしている。
このために、カッターナイフの刃先が当たって造形物1
1に傷が付いたり,変形したりするなどの欠陥が生じる
おそれがある。
3) A method is known in which a mold release agent is applied to the table 4 in advance when removing the modeled article 11 created by the optical molding method from the workpiece table 4, but the mold release agent is applied. It is impossible to easily remove the modeled object from the table by itself, but in reality, a cutter knife or the like is used to forcibly separate it from the table 4.
For this reason, the cutting edge of the cutter knife hits the shaped object 1
There is a possibility that defects such as scratches or deformation may occur in 1.

【0008】本発明は上記の点にかんがみなされたもの
であり、その目的は前記1)〜3)の課題を解決し、欠
陥発生なしに寸法精度の高い造形物が作成できるように
した光造形方法,および光造形装置を提供することにあ
る。
The present invention has been made in view of the above points, and an object thereof is to solve the problems of 1) to 3) described above, and to perform a stereolithography with high dimensional accuracy without producing defects. A method and a stereolithography apparatus are provided.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は次記のような光造形方法,光造形装置を用
いて立体造形物の光造形を行うものとする。 1)課題1)項の問題点解決には、加工物テーブルを容
器内で縦向き姿勢に保持し、該テーブルに対してレーザ
光を側方から照射して光造形を行うものとし、その光造
形装置には、液状光硬化性樹脂を収容した加工容器の側
壁面にレーザ光入射用の透光窓板を備えるとともに、該
窓板にテーブル面を向けて容器内に加工物テーブルを縦
向き姿勢に配置した構成とする。
In order to achieve the above object, the present invention performs stereolithography of a three-dimensional object by using the stereolithography method and stereolithography apparatus as described below. 1) In order to solve the problem of item 1), the workpiece table is held in a vertical posture in the container, and the table is irradiated with laser light from the side to perform stereolithography. The modeling apparatus is provided with a translucent window plate for laser light incidence on the side wall surface of the processing container containing the liquid photocurable resin, and the workpiece table is vertically oriented in the container with the table surface facing the window plate. It is arranged in a posture.

【0010】2)課題2)項の問題点解決には、加工容
器内の底部に貯留した光硬化性樹脂の液面高さを、樹脂
硬化層の1層分の厚さに対応するレベルに保持して光造
形を行うものとし、その光造形装置には、底面にレーザ
光入射用の透光窓板を備えた加工容器に対して、外部か
ら液状光硬化性樹脂を供給する樹脂補給手段,容器内に
貯留した光硬化性樹脂の液面レベル計測手段を含む液面
レベル制御手段を備えた構成とする。
2) In order to solve the problem of item 2), the liquid level of the photocurable resin stored at the bottom of the processing container is set to a level corresponding to the thickness of one cured resin layer. It is assumed that the stereolithography is carried out by holding it, and the stereolithography apparatus has a resin replenishing means for externally supplying a liquid photocurable resin to a processing container having a transparent window plate for laser light incidence on the bottom surface. The liquid level control means including the liquid level measuring means for the photocurable resin stored in the container is provided.

【0011】3)課題3)の問題点解決には、加工物テ
ーブルにセットした非金属基板の端面にあらかじめ金属
薄膜を形成しておき、該金属薄膜上に立体造形物を光造
形した後に造形物と一緒に基板を加工物テーブルから取
り外し、次いでエッチング法により前記金属薄膜を溶解
除去して基板から造形物を離型させるものとする。前記
1)項の発明によれば、加工物テーブルを縦向き姿勢に
配置したので、該テーブルを加工容器内に上方から挿入
して液状光硬化性樹脂の中に浸漬させる際に、テーブル
面に気泡が生じても、その気泡はテーブル面に付着残留
することなく直ちに浮上して樹脂液面から脱気する。し
たがって、気泡が光造形に影響を及ぼすことがなく、気
泡に起因する造形物のボイドなどの欠陥が防止できる。
3) In order to solve the problem 3), a metal thin film is formed in advance on the end surface of the non-metal substrate set on the workpiece table, and a three-dimensional object is stereolithographically formed on the metal thin film. The substrate is removed together with the object from the workpiece table, and then the metal thin film is dissolved and removed by an etching method to release the modeled object from the substrate. According to the invention of the above item 1), since the workpiece table is arranged in the vertical position, when the table is inserted into the processing container from above and immersed in the liquid photocurable resin, the table surface is Even if a bubble is generated, the bubble does not adhere to and remains on the table surface and immediately floats and is degassed from the resin liquid surface. Therefore, the bubbles do not affect the stereolithography, and defects such as voids of the modeled object due to the bubbles can be prevented.

【0012】一方、前記2)項の発明では、光造形工程
の進行に合わせて加工容器の底部に貯留した光硬化性樹
脂は、常に光樹脂硬化層の1層分に対応する液面高さを
維持するように液面レベルが制御される。したがって、
造形物のオーバーハング部分を造成する際にレーザ光を
下面側から照射しても、所定の層厚さ以上に光硬化性樹
脂が余分に硬化されることがなく、これにより正確な形
状の造形物を形成できる。
On the other hand, in the invention of the above item 2), the photocurable resin stored in the bottom portion of the processing container in accordance with the progress of the stereolithography step always has a liquid level height corresponding to one photocured resin layer. The liquid level is controlled so as to maintain Therefore,
Even if laser light is irradiated from the bottom side when forming the overhanging part of the modeled object, the photo-curable resin will not be excessively hardened beyond the specified layer thickness, and this will enable accurate modeling of the shape. Can form things.

【0013】さらに、前記3)項の発明によれば、光造
形を行った後にエッチング法で加工物テーブルの基板
(例えばガラス基板)の端面にあらかじめ被着しておい
た金属薄膜を溶融除去させることで、基板から造形物を
離型させる際に、カッターナイフなどを使用せずに造形
物を簡単に取り外すことができる。
Further, according to the invention of the above item 3), the metal thin film previously deposited on the end face of the substrate (eg, glass substrate) of the workpiece table is melted and removed by the etching method after performing the stereolithography. Thus, when the molded article is released from the substrate, the molded article can be easily removed without using a cutter knife or the like.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施例を前記項目
別に分けて説明する。なお、各実施例の図中で図4に対
応する同一部材には同じ符号が付してある。 〔実施例1〕図1は本発明の請求項1,2に対応する光
造形装置の実施例を示すものであり、光硬化性樹脂2を
満たした加工容器1に対して、レーザ光入射用の透光窓
板3が容器の側面に設けてあり、かつ該窓板3とテーブ
ル面を向かい合わせるように加工物テーブル4が縦向き
(垂直)姿勢に配備されている。そして、図中に示した
直角座標軸X−Y−Zに対して、加工物テーブル4は移
動ステージ5によりX軸方向にピッチ送りされ、また造
形物11の断面データを基にレーザ光を光学系のスキャ
ナ7によりY軸,Z軸方向スキャンし、前記の透光窓板
3を通じて光硬化性樹脂2に側方から照射して光造形を
行う。これにより、加工物テーブル4の垂直なテーブル
面に立体造形物11が堆積形成される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below for each item. In the drawings of each embodiment, the same members corresponding to FIG. 4 are denoted by the same reference numerals. [Embodiment 1] FIG. 1 shows an embodiment of an optical modeling apparatus corresponding to claims 1 and 2 of the present invention, which is used for laser light incidence on a processing container 1 filled with a photocurable resin 2. The transparent window plate 3 is provided on the side surface of the container, and the workpiece table 4 is arranged in a vertical (vertical) posture so that the window plate 3 and the table surface face each other. Then, the workpiece table 4 is pitch-fed in the X-axis direction by the moving stage 5 with respect to the Cartesian coordinate axis X-Y-Z shown in the drawing, and the laser beam is used as an optical system based on the cross-sectional data of the model 11. The scanner 7 scans in the Y-axis and Z-axis directions, and the photo-curable resin 2 is laterally irradiated through the transparent window plate 3 to perform stereolithography. As a result, the three-dimensional object 11 is deposited and formed on the vertical table surface of the workpiece table 4.

【0015】この場合に、加工容器1の上方から加工物
テーブル4を降ろして来て液状光硬化性樹脂2の中に浸
漬させる際に、そのテーブル面に生じた気泡はそのまま
付着残留することなく液中を浮上して槽外に脱気され
る。したがって、気泡の付着による光造形への影響を回
避してボイドなどの欠陥発生を防止できる。 〔実施例2〕図2は本発明の請求項3,4に対応する光
造形装置の実施例を示すものである。この実施例におい
ては、底面側にレーザ光入射用の透光窓板3を嵌め込ん
だ加工容器1に対して、光硬化性樹脂2は供給タンク1
2より供給弁13,供給ホース14を介して容器の底部
に供給するようにしており、かつ非接触式液面レベルセ
ンサ15,制御部16を介して容器1に供給した光硬化
性樹脂2の液面高さHが一定レベルとなるように制御
し、この状態でレーザ光のスキャンと加工物テーブル4
の上昇ピッチ送りを交互におこなって立体造形物11を
作成するようにしている。
In this case, when the workpiece table 4 is lowered from above the processing container 1 and immersed in the liquid photocurable resin 2, the bubbles generated on the table surface do not adhere and remain as they are. It floats in the liquid and is deaerated outside the tank. Therefore, it is possible to prevent the occurrence of defects such as voids by avoiding the influence on the stereolithography due to the adhesion of bubbles. [Embodiment 2] FIG. 2 shows an embodiment of an optical molding apparatus corresponding to claims 3 and 4 of the present invention. In this embodiment, the photocurable resin 2 is supplied to the processing container 1 in which a transparent window plate 3 for laser light incidence is fitted on the bottom side.
2 through the supply valve 13 and the supply hose 14 to the bottom of the container, and the photocurable resin 2 supplied to the container 1 through the non-contact type liquid level sensor 15 and the controller 16. The liquid level height H is controlled so as to be a constant level, and in this state, laser light scanning and the workpiece table 4 are performed.
The ascending pitch feed is alternately performed to create the three-dimensional model 11.

【0016】ここで、前記の液面高さHは、造形物11
の1層分の樹脂硬化層の厚さLに合わせて設定されてお
り、加工物テーブル4,あるいはテーブルの下面に堆積
された樹脂硬化層と透視窓板4との間に前記の層厚さL
に相応した間隔を設定して移動ステージ5でピッチ送り
した状態で、タンク12より容器2への光硬化性樹脂2
の補給を開始し、その液面レベルが所定の液面高さHに
達したところで、レベルセンサ15の検出信号で供給弁
13を閉じる。そして、この状態で加工容器1の下面側
からレーザ光を照射して次の層の樹脂硬化を行う。
Here, the above-mentioned liquid level height H is the molded article 11
Is set in accordance with the thickness L of the resin cured layer for one layer, and the layer thickness is set between the workpiece table 4 or the resin cured layer deposited on the lower surface of the table and the transparent window plate 4. L
In a state where the pitch corresponding to the above is set and the pitch is fed by the moving stage 5, the photo-curable resin 2 is transferred from the tank 12 to the container 2.
When the liquid level reaches a predetermined liquid level height H, the supply valve 13 is closed by the detection signal of the level sensor 15. Then, in this state, laser light is irradiated from the lower surface side of the processing container 1 to cure the resin of the next layer.

【0017】上記の方法によれば、レーザ光を照射する
際に加工容器1の底部には常に造形物11の1層分の厚
さに相応した液面高さHの光硬化性樹脂2に滞留してお
り、したがって造形物11にオーバーハング部分11a
を造形する場合でも、光硬化性樹脂2が余分な厚さに硬
化されることがなく、これにより寸法精度の高い光造形
が行える。
According to the above method, when the laser beam is irradiated, the photocurable resin 2 having the liquid level height H corresponding to the thickness of one layer of the modeled article 11 is always provided on the bottom of the processing container 1. Retained, and therefore the overhanging portion 11a
Even when molding is performed, the photo-curable resin 2 is not hardened to an excessive thickness, which enables optical molding with high dimensional accuracy.

【0018】〔実施例3〕図3(a)〜(d)は本発明
の請求項5に対応した方法の実施例を示すものであり、
加工物テーブル4に対して造形物11を成形する下面サ
イドにはガラス基板17が着脱可能にセットされてお
り、かつ該ガラス基板17の端面にはあらかじめスパッ
タ法,蒸着法などにより金属薄膜18を被着形成してお
く。
[Embodiment 3] FIGS. 3A to 3D show an embodiment of a method corresponding to claim 5 of the present invention.
A glass substrate 17 is detachably set on the side of the lower surface on which the model 11 is molded with respect to the workpiece table 4, and a metal thin film 18 is previously attached to the end surface of the glass substrate 17 by a sputtering method, a vapor deposition method, or the like. It is adhered and formed.

【0019】そして、図3(a)に示す光造形工程で金
属薄膜18の面上に造形物11を造形した後に、造形物
11と一緒に加工物テーブル4を加工容器1から上方に
引き上げ、続いてガラス基板17をテーブル4から取り
外す。この取り外し状態を図3(b)に示す。次に、図
3(c)のようにガラス基板17を下向けに金属薄膜1
8をエッチング液20を満たしたエッチング槽19の中
に浸漬し、ここで図3(d)のように金属薄膜18をエ
ッチング液20で溶融除去し、造形物11とガラス基板
17とを分離,離型させた上で造形物11を取り出す。
なお、ガラス基板17は改めて金属薄膜18を被着形成
した後、再び光造形工程に投入して繰り返し使用するも
のとする。
Then, after the modeling object 11 is modeled on the surface of the metal thin film 18 in the stereolithography step shown in FIG. 3A, the workpiece table 4 together with the modeling object 11 is pulled up from the machining container 1 and Then, the glass substrate 17 is removed from the table 4. This detached state is shown in FIG. Next, as shown in FIG. 3C, the glass substrate 17 is turned downward and the metal thin film 1 is placed.
8 is immersed in an etching bath 19 filled with an etching solution 20. Here, the metal thin film 18 is melted and removed by the etching solution 20 as shown in FIG. 3 (d), and the modeling object 11 and the glass substrate 17 are separated. The molded article 11 is taken out after being released from the mold.
It is to be noted that the glass substrate 17 is formed by depositing the metal thin film 18 again, and is then put into the stereolithography process again to be repeatedly used.

【0020】[0020]

【発明の効果】以上述べたように、本発明の光造形方
法,および光造形装置によれば、次記の効果を奏する。 1)請求項2の光造形装置を用い、請求項1の方法によ
り立体造形物を光造形することにより、加工物テーブル
を光硬化性樹脂の液中に浸漬する際に生じた気泡をテー
ブル面から浮上,離脱させて液面上に脱気させることが
でき、これにより気泡の付着に起因するボイド発生を回
避して高品質の造形物を光造形することができる。
As described above, the stereolithography method and stereolithography apparatus of the present invention have the following effects. 1) By using the stereolithography apparatus according to claim 2, stereolithography is stereolithographically performed according to the method according to claim 1, whereby bubbles generated when the workpiece table is immersed in the liquid of the photocurable resin are formed on the table surface. It is possible to levitate and separate from the above to deaerate on the liquid surface, thereby avoiding the generation of voids due to the adhesion of air bubbles, and it is possible to perform stereolithography of a high-quality molded object.

【0021】2)請求項4の光造形装置を用い、請求項
3の方法により立体造形物を光造形することにより、造
形物の形状が複雑で高さの途中箇所にオーバーハング部
分を造形する場合でも、レーザ光を照射する際に、樹脂
硬化層の層厚さ方向での余分な樹脂硬化のおそれなしに
寸法精度の高い造形物を光造形することができる。 3)請求項5の光造形方法を採用することにより、造形
物をカッターナイフなどを用いずに簡単,かつ確実に離
型でき、従来の離型方法で問題となっていた造形物の傷
つき,変形など欠陥が防げる。
2) By using the stereolithography apparatus of claim 4, the stereolithography object is stereolithographically shaped by the method of claim 3 to form an overhang portion at a midpoint of a complicated shape of the molding object. Even in this case, when the laser beam is irradiated, a modeled object with high dimensional accuracy can be stereo-molded without fear of excessive resin curing in the layer thickness direction of the resin cured layer. 3) By adopting the optical modeling method of claim 5, the molded object can be easily and reliably released without using a cutter knife or the like, and scratches on the molded object, which have been a problem in the conventional mold releasing method, Defects such as deformation can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に対応した光造形装置の構成
FIG. 1 is a configuration diagram of an optical modeling apparatus corresponding to a first embodiment of the present invention.

【図2】本発明の実施例2に対応した光造形装置の構成
FIG. 2 is a configuration diagram of an optical modeling apparatus corresponding to a second embodiment of the present invention.

【図3】本発明の実施例3に対応した光造形方法の工程
を表す図であり、(a)は光造形工程終了直後に造形物
を加工容器から引き上げた状態図、(b)は造形物と一
緒にガラス基板を加工物テーブルから外した状態図、
(c)はエッチング法による造形物の離型工程中の状態
図、(d)は離型後の状態図
3A and 3B are diagrams showing steps of a stereolithography method corresponding to Example 3 of the present invention, in which FIG. 3A is a state diagram in which a molded article is pulled up from a processing container immediately after the end of the stereolithography step, and FIG. State diagram with the glass substrate removed from the work table along with the object,
(C) is a state diagram during a mold release process of a molded article by an etching method, and (d) is a state diagram after mold release

【図4】従来における光造形装置全体の構成図FIG. 4 is a configuration diagram of an entire conventional stereolithography apparatus.

【符号の説明】[Explanation of symbols]

1 加工容器 2 液状の光硬化性樹脂 3 透光窓板 4 加工物テーブル 5 移動ステージ 7 スキャナ 11 立体造形物 11a オーバーハング部分 12 光硬化性樹脂の補給タンク 13 光硬化性樹脂の供給弁 15 液面レベルセンサ 16 制御部 17 ガラス基板 18 金属薄膜 20 エッチング液 1 Processing Container 2 Liquid Photocurable Resin 3 Transparent Window Plate 4 Workpiece Table 5 Moving Stage 7 Scanner 11 Three-dimensional Model 11a Overhang Part 12 Photocurable Resin Supply Tank 13 Photocurable Resin Supply Valve 15 Liquid Surface level sensor 16 Control part 17 Glass substrate 18 Metal thin film 20 Etching liquid

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光硬化性樹脂を材料に、紫外線レーザ光の
照射により樹脂を硬化させて立体形状の造形物を加工す
る光造形方法であり、加工容器内に収容した未硬化の液
状光硬化性樹脂に加工物テーブルを浸漬し、この状態で
造形物の断面データを基にしたレーザ光照射による樹脂
硬化層の形成,および加工物テーブルの移動を交互に繰
り返し行って加工物テーブルに立体形状の造形物を堆積
成形させるものにおいて、前記加工物テーブルを容器内
で縦向き姿勢に保持し、該テーブルに対してレーザ光を
側方から照射して光造形を行うことを特徴とする立体造
形物の光造形方法。
1. A method of stereolithography for curing a resin by irradiating an ultraviolet laser beam with a photocurable resin to process a three-dimensional shaped object, which is an uncured liquid photocurable contained in a processing container. The workpiece table is dipped in a flexible resin, and in this state, the resin cured layer is formed by laser light irradiation based on the cross-sectional data of the model, and the workpiece table is moved alternately repeatedly to form a solid shape on the workpiece table. In the one for deposit-molding a three-dimensional object, a three-dimensional object is formed by holding the workpiece table in a vertical position in a container and irradiating the table with laser light from the side. Stereolithography of objects.
【請求項2】請求項1記載の光造形方法の実施に使用す
る光造形装置であって、液状光硬化性樹脂を収容した加
工容器の側壁面にレーザ光入射用の透光窓板を備えると
ともに、該窓板にテーブル面を向けて容器内に加工物テ
ーブルを縦向き姿勢に配置したことを特徴とする立体造
形物の光造形装置。
2. A stereolithography apparatus used for carrying out the stereolithography method according to claim 1, wherein a side wall surface of a processing container containing a liquid photocurable resin is provided with a transparent window plate for laser light incidence. At the same time, the stereolithography apparatus for a three-dimensional object, characterized in that the workpiece table is arranged in a vertical position in the container with the table surface facing the window plate.
【請求項3】光硬化性樹脂を材料に、紫外線レーザ光の
照射により樹脂を硬化させて立体形状の造形物を加工す
る光造形方法であり、加工容器内に収容した未硬化の液
状光硬化性樹脂に加工物テーブルを浸漬し、造形物の断
面データを基に、容器下面側からのレーザ光照射による
樹脂硬化層の形成,および加工物テーブルの移動を交互
に繰り返し行って加工物テーブルに立体形状の造形物を
堆積成形させるものにおいて、容器内の底部に貯留した
光硬化性樹脂の液面高さを、樹脂硬化層の1層分の厚さ
に対応するレベルに保持して光造形を行うことを特徴と
する立体造形物の光造形方法。
3. An optical molding method, wherein a photo-curable resin is used as a material to cure the resin by irradiation with an ultraviolet laser beam to process a three-dimensional shaped object, which is an uncured liquid photo-curing housed in a processing container. Immerse the workpiece table in the resin, and based on the cross-section data of the model, form the resin cured layer by laser light irradiation from the bottom side of the container and move the workpiece table alternately and repeatedly to create the workpiece table. In the case of stacking and molding a three-dimensional shaped object, optical molding is performed by maintaining the liquid level of the photo-curable resin stored at the bottom of the container at a level corresponding to the thickness of one cured resin layer. A method for stereolithography of a three-dimensional object, comprising:
【請求項4】請求項3記載の光造形方法の実施に使用す
る光造形装置であって、底面にレーザ光入射用の透光窓
板を備えた加工容器に対し、外部から液状光硬化性樹脂
を供給する樹脂補給手段,容器内に貯留した光硬化性樹
脂の液面レベル計測手段を含む液面レベル制御手段を備
えたことを特徴とする立体造形物の光造形装置。
4. A stereolithography apparatus used for carrying out the stereolithography method according to claim 3, wherein a liquid photocurable liquid is externally applied to a processing container having a transparent window plate for laser light incidence on the bottom surface. An optical modeling apparatus for a three-dimensional object, comprising: a resin replenishing means for supplying a resin; and a liquid level control means including a liquid level measuring means for the photocurable resin stored in a container.
【請求項5】光硬化性樹脂を材料に、紫外線レーザ光の
照射により樹脂を硬化させて立体形状の造形物を加工す
る光造形方法であり、加工容器内に収容した未硬化の液
状光硬化性樹脂に加工物テーブルを浸漬し、造形物の断
面データを基に、容器下面側からのレーザ光照射による
樹脂硬化層の形成,および加工物テーブルの移動を交互
に繰り返し行って加工物テーブルに立体形状の造形物を
堆積成形させるものにおいて、前記加工物テーブルにセ
ットした非金属基板の端面にあらかじめ金属薄膜を形成
しておき、該金属薄膜上に立体造形物を光造形した後に
造形物と一緒に基板を加工物テーブルから取り外し、次
いでエッチング法により前記金属薄膜を溶解除去して基
板から造形物を離型させるようにしたことを特徴とする
立体造形物の光造形方法。
5. An optical molding method for curing a resin by irradiating an ultraviolet laser beam with a photo-curing resin as a material to process a three-dimensional shaped object, which is an uncured liquid photo-curing accommodated in a processing container. Immerse the workpiece table in the resin, and based on the cross-section data of the model, form the resin cured layer by laser light irradiation from the bottom side of the container and move the workpiece table alternately and repeatedly to create the workpiece table. In one in which a three-dimensional shaped object is deposited and formed, a metal thin film is formed in advance on the end surface of the non-metal substrate set on the workpiece table, and the three-dimensional object is optically shaped on the metal thin film and then the shaped object is formed. The substrate is removed from the workpiece table together, and then the metal thin film is dissolved and removed by an etching method to release the model from the substrate. Method.
JP7255945A 1995-10-03 1995-10-03 Method and apparatus for optically shaping three-dimensional shaped article Pending JPH0994883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7255945A JPH0994883A (en) 1995-10-03 1995-10-03 Method and apparatus for optically shaping three-dimensional shaped article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7255945A JPH0994883A (en) 1995-10-03 1995-10-03 Method and apparatus for optically shaping three-dimensional shaped article

Publications (1)

Publication Number Publication Date
JPH0994883A true JPH0994883A (en) 1997-04-08

Family

ID=17285766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7255945A Pending JPH0994883A (en) 1995-10-03 1995-10-03 Method and apparatus for optically shaping three-dimensional shaped article

Country Status (1)

Country Link
JP (1) JPH0994883A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188609A (en) * 2003-12-25 2005-07-14 Shikoku Res Inst Inc Diagnosing method for motor operated valve, and its device
CN104956672A (en) * 2013-04-30 2015-09-30 惠普发展公司,有限责任合伙企业 Three-dimensional object construction
CN107791511A (en) * 2016-09-05 2018-03-13 福特全球技术公司 Increasing material manufacturing method
WO2018092732A1 (en) * 2016-11-18 2018-05-24 セイコーエプソン株式会社 Resin molding device and resin molding method
JP2018079652A (en) * 2016-11-18 2018-05-24 セイコーエプソン株式会社 Resin molding apparatus and resin molding method
JP2018108710A (en) * 2017-01-06 2018-07-12 セイコーエプソン株式会社 Resin molding apparatus and resin molding method
JP2018118431A (en) * 2017-01-25 2018-08-02 セイコーエプソン株式会社 Resin molding apparatus and resin molding method
CN108454100A (en) * 2018-04-09 2018-08-28 常州轻工职业技术学院 The Stereolithography equipment of molding effect is improved based on total reflection principle
JP2019193995A (en) * 2018-05-02 2019-11-07 カンタツ株式会社 Laminate molding apparatus and control method of laminate molding apparatus
JP2020142426A (en) * 2019-03-06 2020-09-10 新東工業株式会社 Additional production system and container
KR102179647B1 (en) * 2019-05-28 2020-11-17 주식회사 덴티스 Three dimensional printer exclusively using sidewall of vat
KR102409886B1 (en) * 2021-01-08 2022-06-22 주식회사 코윈디에스티 Processing system for cutting plate glass using laser beam and etching solution and operating method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188609A (en) * 2003-12-25 2005-07-14 Shikoku Res Inst Inc Diagnosing method for motor operated valve, and its device
US10434725B2 (en) 2013-04-30 2019-10-08 Hewlett-Packard Development Company, L.P. Three-dimensional object construction
CN104956672A (en) * 2013-04-30 2015-09-30 惠普发展公司,有限责任合伙企业 Three-dimensional object construction
JP2016511713A (en) * 2013-04-30 2016-04-21 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3D object production
EP2929682A4 (en) * 2013-04-30 2016-10-19 Hewlett Packard Development Co Three-dimensional object construction
CN104956672B (en) * 2013-04-30 2017-07-04 惠普发展公司,有限责任合伙企业 Three dimensional object is constructed
CN107791511A (en) * 2016-09-05 2018-03-13 福特全球技术公司 Increasing material manufacturing method
WO2018092732A1 (en) * 2016-11-18 2018-05-24 セイコーエプソン株式会社 Resin molding device and resin molding method
JP2018079652A (en) * 2016-11-18 2018-05-24 セイコーエプソン株式会社 Resin molding apparatus and resin molding method
JP2018108710A (en) * 2017-01-06 2018-07-12 セイコーエプソン株式会社 Resin molding apparatus and resin molding method
JP2018118431A (en) * 2017-01-25 2018-08-02 セイコーエプソン株式会社 Resin molding apparatus and resin molding method
CN108454100A (en) * 2018-04-09 2018-08-28 常州轻工职业技术学院 The Stereolithography equipment of molding effect is improved based on total reflection principle
CN108454100B (en) * 2018-04-09 2024-04-02 常州工业职业技术学院 Light curing forming equipment for improving forming effect based on total reflection principle
JP2019193995A (en) * 2018-05-02 2019-11-07 カンタツ株式会社 Laminate molding apparatus and control method of laminate molding apparatus
JP2020142426A (en) * 2019-03-06 2020-09-10 新東工業株式会社 Additional production system and container
US11504908B2 (en) 2019-03-06 2022-11-22 Sintokogio, Ltd. Additive manufacturing system and container
KR102179647B1 (en) * 2019-05-28 2020-11-17 주식회사 덴티스 Three dimensional printer exclusively using sidewall of vat
KR102409886B1 (en) * 2021-01-08 2022-06-22 주식회사 코윈디에스티 Processing system for cutting plate glass using laser beam and etching solution and operating method thereof

Similar Documents

Publication Publication Date Title
JP3803735B2 (en) Light solidification modeling device that performs optical scanning simultaneously with recoating
EP0355945B1 (en) Reduced stereolithographic part distortion through isolation
Kruth Material incress manufacturing by rapid prototyping techniques
EP0338751B1 (en) Stereolithographic supports
JPH0994883A (en) Method and apparatus for optically shaping three-dimensional shaped article
JP2001145956A (en) Apparatus and method for laminate shaping of photosetting resin three-dimensional shaped article
JPH06246838A (en) Optically shaping device
JP2004042546A (en) Method for lamination-molding functional material
JPH08156109A (en) Optically shaping method
JPH04168036A (en) Automatic shaping device
JP3698340B2 (en) 3D shape creation method by film additive manufacturing method and 3D shape creation device by this method
JPH08207144A (en) Supporting stage for optical molding
JPH0493228A (en) Method for forming three-dimensional matter
JPH0295831A (en) Forming method and apparatus of three dimensional shape
JP2023531229A (en) Photocuring 3D printer and printing method
JP3378406B2 (en) Three-dimensional modeling method and apparatus used for it
JP2001315213A (en) Method and apparatus for optical solid molding
JPH07329190A (en) Manufacture of 3-dimensional object and manufacturing equipment
JPH06246837A (en) Optically shaping method and device
JPH07329188A (en) Photoforming application and manufacture of metal structure using said application
JPH0499618A (en) Formation of object having three-dimensional configuration
JPH08300490A (en) Three-dimensionally shaping device and method thereof
JP2001162687A (en) Photo-fabrication method
JP3306470B2 (en) Optical modeling
JPH0790604B2 (en) Stereolithography