JPH06246837A - Optically shaping method and device - Google Patents

Optically shaping method and device

Info

Publication number
JPH06246837A
JPH06246837A JP5037717A JP3771793A JPH06246837A JP H06246837 A JPH06246837 A JP H06246837A JP 5037717 A JP5037717 A JP 5037717A JP 3771793 A JP3771793 A JP 3771793A JP H06246837 A JPH06246837 A JP H06246837A
Authority
JP
Japan
Prior art keywords
layer
mixed material
material layer
uncured
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5037717A
Other languages
Japanese (ja)
Inventor
Hisatomo Oonishi
寿智 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Teijin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Seiki Co Ltd filed Critical Teijin Seiki Co Ltd
Priority to JP5037717A priority Critical patent/JPH06246837A/en
Publication of JPH06246837A publication Critical patent/JPH06246837A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To reduce shaping cost and enhance shaping accuracy by a method wherein use amount of high-cost photosetting resin is reduced, shrinkage and strain of a flowable material caused by setting are restrained, and a layer to be exposed to light is surely supported in a light exposing process. CONSTITUTION:As a flowable material, a mixture material 100 is prepared by mixing an uncured (or semi-cured) photosetting resin with a plurality of globes which are not shrunk under light exposure. An uncured lower mixture material layer 110B is formed by approximating the globes of the mixture material 100 to each other. Thereafter, a lower cured layer 111B is formed by selectively exposing the layer 110B to light. On the mixture material layer 110B including the cured layer 111B, an uncured upper mixture material layer 110A is formed. An upper cured layer 111A is formed by selectively exposing the upper mixture material layer 110A to light in the state that the upper mixture material layer 110A is supported by a plurality of globes of the lower mixture material layer 110B and the cured layer 111B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光造形方法および光造
形装置、特に流動性素材を光により選択的に固化させて
立体物を造る光造形方法および光造形装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereolithography method and a stereolithography apparatus, and more particularly to a stereolithography method and a stereolithography apparatus for selectively solidifying a fluid material by light to produce a three-dimensional object.

【0002】[0002]

【従来の技術】近時、製版技術の応用により3次元物体
を造形する光造形方法および光造形装置が開発されてい
る。この光造形は、流動性素材である未硬化又は半硬化
の光硬化樹脂(光硬化性の樹脂)を露光して硬化層を形
成するとともに、該硬化層を順次積層して3次元物体に
する造形法であり、電子計算機等を併用して各層断面形
状のデータを作成し、そのデータに基づいて光硬化樹脂
を選択的に露光することで、製品開発時の雛型や模型等
のような複雑な3次元物体を造形することができる。
2. Description of the Related Art Recently, an optical modeling method and an optical modeling apparatus for modeling a three-dimensional object have been developed by applying plate making technology. In this stereolithography, an uncured or semi-cured photocurable resin (photocurable resin), which is a fluid material, is exposed to form a cured layer, and the cured layers are sequentially laminated to form a three-dimensional object. This is a molding method, in which data for each layer cross-sectional shape is created using an electronic computer etc., and the photo-curing resin is selectively exposed based on the data, so that it can be used for models and models during product development. It is possible to model complex three-dimensional objects.

【0003】この種の光造形装置としては、例えば特開
平3−227222号公報に記載されたもの、あるいは
特開平2−212131号公報に記載されたものがあ
る。前者の場合、未硬化樹脂液を貯留した造形槽の液面
に対しレーザ光を走査してその液面近傍の未硬化樹脂液
を所定形状に硬化させ、その硬化層を造形槽中に沈めた
後、次の断面層をその上に接着しつつ積層するようにな
っている。
An example of this type of stereolithography apparatus is disclosed in Japanese Patent Application Laid-Open No. 3-227222 or in Japanese Patent Application Laid-Open No. 2-212131. In the former case, the liquid surface of the molding tank that stores the uncured resin liquid is scanned with laser light to cure the uncured resin liquid near the liquid surface into a predetermined shape, and the cured layer is submerged in the molding tank. After that, the next cross-section layer is laminated thereon while being adhered thereto.

【0004】また、後者の場合、、ゲル状の半硬化樹脂
をローラ部材によりシート状に延ばして光照射台(ワー
クテーブル)上に載置するようになっており、その光照
射台上の樹脂が選択的に露光されて所定形状の硬化層と
なり、その上に上層の硬化層が順次積層されることで3
次元物体が形成される。
In the latter case, the gel-like semi-cured resin is rolled into a sheet by a roller member and placed on a light irradiation table (work table). Is selectively exposed to form a hardened layer having a predetermined shape, and an upper hardened layer is sequentially laminated thereon, thereby
A dimensional object is formed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の光造形方法および光造形装置にあっては、造
形する物体全体を同一の光硬化樹脂で形成していたた
め、光硬化樹脂の消費量が多くなって造形コストが高く
なるばかりか、その樹脂の硬化時の収縮およびそれに伴
う歪みによって造形精度が低下するという問題があっ
た。さらに、硬化層がオーバーハングしていたり所謂飛
び島又は微細幅の部分を有するものである場合、その硬
化中の支持が不完全であるために硬化層の変形が生じ易
く、これによっても造形精度が低下していた。
However, in such a conventional stereolithography method and stereolithography apparatus, since the entire object to be sculptured is formed of the same photocurable resin, the amount of photocurable resin consumed is large. However, there is a problem that not only the molding cost increases and the molding cost increases, but also the molding accuracy decreases due to the shrinkage of the resin when it is cured and the resulting distortion. Furthermore, when the hardened layer is overhanging or has so-called flying islands or a portion with a minute width, the hardened layer is likely to be deformed due to incomplete support during hardening, and this also leads to modeling accuracy. Was falling.

【0006】また、硬化層を未硬化樹脂液中に沈めたり
シート状に延ばした半硬化樹脂の一部を硬化させて硬化
層を形成したりしていたため、硬化し造形物となる樹脂
に対して、造形後に造形槽又はワークテーブル上に残っ
てしまう光硬化樹脂が多くなり、その樹脂材料が劣化し
たり汚染されたりすることにより、高価な光硬化樹脂を
効率良く使用することができず、これによっても造形コ
スト高を招いていた。
In addition, since the cured layer is formed by immersing the cured layer in the uncured resin liquid or curing a part of the semi-cured resin that is stretched in the form of a sheet to form a cured layer. As a result, the photocurable resin that remains on the molding tank or the work table after modeling increases, and the resin material deteriorates or is contaminated, so that the expensive photocurable resin cannot be used efficiently, This also causes a high modeling cost.

【0007】そこで、本発明は、流動性素材に占める光
硬化樹脂の量を減らすとともにその固化に伴う収縮およ
び歪みを抑え、しかも露光時にその被露光層の支持を確
実に行なうようにして、造形精度の向上と造形コストの
低減とを図ることを目的とする。
Therefore, the present invention reduces the amount of the photocurable resin in the fluid material, suppresses the shrinkage and distortion due to its solidification, and ensures that the exposed layer is supported during the exposure. The purpose is to improve accuracy and reduce modeling cost.

【0008】[0008]

【課題を解決するための手段】上記目的達成のため、請
求項1記載の発明は、流動性素材を選択的に露光して該
素材の硬化層を形成するとともに、該硬化層を順次積層
して3次元物体を造形する光造形方法であって、前記流
動性素材として、未硬化又は半硬化の光硬化樹脂と前記
露光に対し非収縮の複数の球体とを混合した混合材料を
準備し、該混合材料の球体を互いに近接させて未硬化又
は半硬化の混合材料層を形成した後、該混合材料層を選
択的に露光して前記硬化層を形成し、次いで、該硬化層
を含む混合材料層の上層に前記未硬化又は半硬化の混合
材料層を形成して、前記硬化層を含む下層の混合材料層
により該上層の混合材料層を支持した状態で該上層の混
合材料層を選択的に露光し、上層の硬化層を形成するよ
うにしたことを特徴とするものである。
In order to achieve the above object, the invention according to claim 1 is characterized in that a fluid material is selectively exposed to form a hardened layer of the material, and the hardened layers are sequentially laminated. A method of stereolithography for shaping a three-dimensional object by preparing a mixed material in which an uncured or semi-cured photocurable resin and a plurality of non-shrinkable spheres are mixed as the fluid material, After the spheres of the mixed material are brought close to each other to form an uncured or semi-cured mixed material layer, the mixed material layer is selectively exposed to form the cured layer, and then a mixture containing the cured layer is formed. The uncured or semi-cured mixed material layer is formed on the upper layer of the material layer, and the upper mixed material layer is selected with the lower mixed material layer including the cured layer supporting the upper mixed material layer. Specially exposed to form the upper hardened layer. It is an.

【0009】また、請求項2記載の発明は、上部開口お
よび昇降可能な底壁部を有する造形槽と、該造形槽の上
部開口に沿って移動するとともに、未硬化の光硬化樹脂
と該樹脂への露光に対し非収縮の複数の球体とを混合し
た混合材料を、該上部開口内に供給し、造形槽の底壁部
と平行に前記球体同士を近接させた混合材料層を形成す
る材料供給手段と、前記上部開口内の混合材料層を選択
的に露光する露光手段と、前記造形槽の底壁部を上部開
口に対して所定移動量単位で下降させ、前記上部開口内
に前記未硬化混合材料層に対応する空間を形成する昇降
手段と、を備え、前記露光手段により形成した硬化層を
含む下層の混合材料層の上層に、材料供給手段によって
未硬化の混合材料層を形成し、該未硬化の混合材料層を
前記下層の混合材料層に支持させた状態で選択的に露光
し、上層の硬化層を形成するようにしたことを特徴とす
るものである。
According to a second aspect of the present invention, a molding tank having an upper opening and a bottom wall portion capable of moving up and down, a molding tank that moves along the upper opening of the molding tank, and an uncured photocurable resin and the resin. A material for forming a mixed material layer in which a mixture of a plurality of non-shrinkable spheres for exposure to light is supplied into the upper opening to bring the spheres close to each other in parallel to the bottom wall of the molding tank. A supply means, an exposure means for selectively exposing the mixed material layer in the upper opening, and a bottom wall portion of the modeling tank are lowered by a predetermined movement unit with respect to the upper opening, and An elevating means for forming a space corresponding to the cured mixed material layer, and an uncured mixed material layer is formed by a material supplying means on an upper layer of the lower mixed material layer including the cured layer formed by the exposing means. And mixing the uncured mixed material layer with the lower mixed material layer. Selectively exposed in a state of being supported on the layer, it is characterized in that so as to form an upper layer of the hardened layer.

【0010】[0010]

【作用】請求項1記載の発明では、未硬化又は半硬化の
光硬化樹脂とその露光に対し非収縮の球体とを混合した
混合材料が準備され、該混合材料の球体が互いに近接す
るよう未硬化又は半硬化の混合材料層が形成され、次い
で、該混合材料層が選択的に露光されて硬化層が形成さ
れ、次いで、該硬化層を含む混合材料層の上層に前記未
硬化又は半硬化の混合材料層が形成される。したがっ
て、混合材料層の露光時の収縮とそれに伴う歪みが抑制
され、しかも上層の未硬化又は半硬化の混合材料層が前
記硬化層を含む下層の混合材料層(その中に近接して平
面配置された球体)により露光時に確実に支持されるか
ら、上層の硬化層が精度良く形成される。また、混合材
料には複数の球体が含まれているので、高価な光硬化樹
脂の消費量も少なくなる。
According to the first aspect of the present invention, there is prepared a mixed material in which an uncured or semi-cured photo-curing resin and a non-shrinkable sphere are exposed, and the sphere of the mixed material is kept close to each other. A cured or semi-cured mixed material layer is formed, then the mixed material layer is selectively exposed to form a cured layer, and then the uncured or semi-cured layer is formed on the mixed material layer including the cured layer. A mixed material layer is formed. Therefore, the shrinkage of the mixed material layer at the time of exposure and the strain associated therewith are suppressed, and the upper uncured or semi-cured mixed material layer is the lower mixed material layer including the cured layer (planar arrangement in close proximity thereto). The upper hardened layer is formed with high precision because it is reliably supported by the exposed spheres during exposure. Further, since the mixed material contains a plurality of spheres, the consumption of expensive photocurable resin is reduced.

【0011】請求項2記載の発明では、材料供給手段が
造形槽の上部開口に沿って移動しながら該上部開口内に
混合材料を供給することで、造形槽の底壁部と平行に混
合材料の球体同士を近接させた混合材料層が形成され、
該混合材料層が露光手段によって選択的に露光される
と、その露光パターンに対応する硬化層が形成される。
また、昇降手段の作動により造形槽の底壁部が上部開口
に対し相対的に下降すると、前記上部開口内に前記未硬
化混合材料層の厚さに対応する空間が形成され、前記硬
化層を含む下層の混合材料層の上層に、材料供給手段に
よって次の未硬化の混合材料層が形成される。したがっ
て、混合材料が露光に対して非収縮の球体を含み、露光
時に上層の未硬化又は半硬化の混合材料層が前記硬化層
を含む下層の混合材料層(その中に近接して平面配置さ
れた球体)により確実に支持されるから、各層の硬化層
が順次精度良く形成される。また、混合材料には複数の
球体が含まれているので、高価な光硬化樹脂の消費量も
少なくなる。
According to the second aspect of the invention, the material supplying means supplies the mixed material into the upper opening of the molding tank while moving along the upper opening of the molding tank, so that the mixed material is parallel to the bottom wall of the molding tank. A mixed material layer in which the spheres of are brought close to each other is formed,
When the mixed material layer is selectively exposed by the exposure means, a cured layer corresponding to the exposure pattern is formed.
Further, when the bottom wall portion of the modeling tank is lowered relative to the upper opening by the operation of the elevating means, a space corresponding to the thickness of the uncured mixed material layer is formed in the upper opening, and the hardened layer is formed. The next uncured mixed material layer is formed by the material supply means on the upper layer of the lower mixed material layer. Therefore, the mixed material includes spheres that do not contract upon exposure, and the upper uncured or semi-cured mixed material layer upon exposure is a lower mixed material layer including the cured layer (planarly arranged in close proximity thereto). Since it is reliably supported by the spherical bodies, the hardened layers of the respective layers are sequentially formed with high accuracy. Further, since the mixed material contains a plurality of spheres, the consumption of expensive photocurable resin is reduced.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。図1〜図4は請求項1記載記載の発明に
係る光造形方法を実施する装置の一実施例を示す図であ
るとともに、請求項2記載の発明に係る光造形装置の一
実施例を示す図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 4 are views showing an embodiment of an apparatus for carrying out the stereolithography method according to the invention described in claim 1, and also showing an embodiment of the stereolithography apparatus according to the invention as claimed in claim 2. It is a figure.

【0013】まず、その構成を説明する。図1〜図4に
おいて、10は円形の上部開口11および昇降可能な円形の
底壁部12を有する造形槽であり、20はその造形槽10の上
方に設けられた材料供給ユニット(材料供給手段)であ
る。造形槽10の底壁部12は、平坦な造形ステージとなっ
ており、昇降スピンドル13を含む昇降手段(詳細は図示
していない)によって昇降駆動され、造形作業中には所
定移動量単位で下降し(上部開口11に対して相対的に下
降し)、造形作業終了時には必要量だけ上昇するように
なっている。この底壁部12の下降量は後述する混合材料
層110の厚さに対応するもので、この下降により上部開
口11内に混合材料層110を形成するための凹状空間が形
成されるようになっている。
First, the structure will be described. 1 to 4, 10 is a modeling tank having a circular upper opening 11 and a circular bottom wall portion 12 that can be moved up and down, and 20 is a material supply unit (material supplying means) provided above the modeling tank 10. ). The bottom wall 12 of the modeling tank 10 is a flat modeling stage, and is vertically moved by an elevating means (not shown in detail) including an elevating spindle 13, and is lowered by a predetermined movement amount unit during modeling work. However, it is designed to descend relative to the upper opening 11 and to rise by a necessary amount at the end of modeling work. The descending amount of the bottom wall portion 12 corresponds to the thickness of the mixed material layer 110 described later, and by this descending, a concave space for forming the mixed material layer 110 is formed in the upper opening 11. ing.

【0014】材料供給ユニット20は、所定の流動性素材
100を貯留するホッパー部21と、上部開口11に沿って造
形槽10上を図2の左右方向に摺動(移動)可能なスライ
ド板部22と、スライド板部22を摺動させる図示しない摺
動機構とを有している。ホッパー部21に貯留される流動
性素材100は、図4に示すように、例えば公知の光硬化
樹脂の未硬化樹脂液101とその未硬化樹脂液101を硬化さ
せるための露光に対し非収縮の特性を有する複数のガラ
スビーズ102(球体)とを混合した混合材料であり、そ
の光硬化樹脂は、例えば紫外線領域の光(又は赤外線領
域の光、可視光等であってもよい)で硬化する性質のも
ので流動性をきわめて低くした状態になっている。ま
た、そのガラスビーズ102は直径が例えば30μm程度
のもの(要求される造形精度に応じて適宜径の異なるも
のを選択できる)である。
The material supply unit 20 is made of a predetermined fluid material.
A hopper portion 21 that stores 100, a slide plate portion 22 that can slide (move) in the left-right direction on the modeling tank 10 along the upper opening 11 and a slide plate portion (not shown) that slides the slide plate portion 22. And a moving mechanism. As shown in FIG. 4, the fluid material 100 stored in the hopper portion 21 is, for example, an uncured resin liquid 101 of a known photocurable resin and a non-shrinkable material for exposure to cure the uncured resin liquid 101. A mixed material in which a plurality of glass beads 102 (spheres) having characteristics are mixed, and the photo-curable resin is cured by, for example, light in the ultraviolet region (or light in the infrared region, visible light, etc.). It is of a nature and has a very low fluidity. Further, the glass beads 102 have a diameter of, for example, about 30 μm (those having a different diameter can be selected depending on the required modeling accuracy).

【0015】材料ホッパー部21内の下部には歯車ポンプ
23が設けられており、歯車ポンプ23は外周にトロコイド
歯形が形成された一対の回転子231、232を有している。
両回転子231、232はトロコイド歯形を互いに噛合させる
回転位相を保ちながら図1の矢印方向に回転するもの
で、そのトロコイド歯形とホッパー部21の内壁面との間
でガラスビーズ102を整列させながら、造形槽10の底壁
部12と平行な方向においてガラスビーズ102同士が近接
(密着配列)するように混合材料100を上部開口11内に
供給し、造形槽10の上部開口11内に所定厚さの未硬化の
混合材料層110を形成する。なお、スライド板部22の下
面には図示しないテフロンコーティング等が施されてお
り、スライド板部22はホッパー部21を支持するその中央
部分で造形槽10の上部開口11を密閉することができるよ
うになっている。また、上部開口11内の凹状空間に過供
給される混合材料100の余剰分は回転子231、232の間の
隙間を通して図1の矢印方向(上方)に排出される。
A gear pump is provided in the lower portion of the material hopper portion 21.
23 is provided, and the gear pump 23 has a pair of rotors 231 and 232 having trochoidal tooth profiles formed on the outer circumference.
Both rotors 231 and 232 rotate in the direction of the arrow in FIG. 1 while maintaining the rotational phase in which the trochoidal tooth shapes are meshed with each other, and while aligning the glass beads 102 between the trochoidal tooth shapes and the inner wall surface of the hopper portion 21. The mixed material 100 is supplied into the upper opening 11 so that the glass beads 102 are close to each other (closely arranged) in a direction parallel to the bottom wall portion 12 of the molding tank 10, and a predetermined thickness is provided in the upper opening 11 of the molding tank 10. An uncured mixed material layer 110 is formed. The lower surface of the slide plate portion 22 is coated with Teflon coating or the like (not shown), so that the slide plate portion 22 can close the upper opening 11 of the modeling tank 10 at its central portion supporting the hopper portion 21. It has become. Further, the excess amount of the mixed material 100 that is excessively supplied to the concave space in the upper opening 11 is discharged through the gap between the rotors 231 and 232 in the arrow direction (upward) of FIG.

【0016】一方、スライド板部22の両端側にはホッパ
ー部21を挟む2つの円形の露光用窓22a、22bが設けら
れており、露光用窓22a、22bは造形槽10の上部開口11
と同一径の円形の穴になっている。そして、図1に示す
ように、スライド板部22の露光用窓22a、22bのうち何
れか一方が上部開口11上に位置するとき、図示しない露
光手段から照射される光により、上部開口11内の混合材
料層110が選択的に露光され、その露光パターンに対応
する硬化層111が形成される。
On the other hand, two circular exposure windows 22a and 22b sandwiching the hopper portion 21 are provided at both ends of the slide plate portion 22, and the exposure windows 22a and 22b are provided at the upper opening 11 of the molding tank 10.
It has a circular hole with the same diameter as. Then, as shown in FIG. 1, when one of the exposure windows 22a and 22b of the slide plate portion 22 is located on the upper opening 11, the inside of the upper opening 11 is exposed by the light emitted from the exposing means (not shown). The mixed material layer 110 is selectively exposed to light to form a cured layer 111 corresponding to the exposure pattern.

【0017】具体的には、前記露光手段は例えばレーザ
走査装置であり、レーザ光源と、その光源から出射され
たレーザ光を整形する光学系と、そのレーザ光を偏向・
走査する反射光学系と、を有し、レーザ光を偏向(造形
槽10に向かって投光)しつつ未硬化の混合材料層110の
表面部に集光させ、その光を第1の走査方向(図2の左
右方向)およびこれと直交する第2の走査方向(図2の
上下方向)に走査するようになっている。レーザ光源か
ら出射されるレーザ光は、前記光硬化樹脂101の性質に
適合する光、例えば紫外線領域の光(赤外線領域の光又
は可視光等でもよい)である。また、光走査による描画
パターンは、造形物を複数の硬化層111(各層パターン
形状が同一でも異なってもよい。また、図1中では以後
の説明の都合上、最上部の上下2層にA、Bを付して区
別できるようにしている。)の積層体である3次元物体
としたとき、硬化層111のそれぞれの形状に対応するも
のであり、造形槽10内の未硬化の混合材料層110(例え
ば110A)がこの描画パターンに対応して選択的に露光
され硬化することで、必要形状の硬化層111が順次形成
される。また、硬化層111は、最下層形成時に底壁部12
に接着され、それより上層の硬化層111は下層の硬化層1
11上に順次積層される。
Specifically, the exposure means is, for example, a laser scanning device, and includes a laser light source, an optical system for shaping the laser light emitted from the light source, and a deflector for deflecting the laser light.
And a reflection optical system for scanning, and while converging the laser light (projecting toward the modeling tank 10) onto the surface portion of the uncured mixed material layer 110, the light is scanned in the first scanning direction. Scanning is performed in the (left-right direction in FIG. 2) and the second scanning direction (up-down direction in FIG. 2) orthogonal thereto. The laser light emitted from the laser light source is light that matches the properties of the photocurable resin 101, for example, light in the ultraviolet region (may be light in the infrared region or visible light). Further, the drawing pattern by optical scanning may have a plurality of hardened layers 111 (the shape of each layer pattern may be the same or different from each other. In addition, in FIG. , B are added so that they can be distinguished from each other.) When the three-dimensional object is a laminated body, it corresponds to each shape of the hardened layer 111, and is an uncured mixed material in the modeling tank 10. The layer 110 (for example, 110A) is selectively exposed and cured corresponding to this drawing pattern, whereby the cured layer 111 having a required shape is sequentially formed. Further, the hardened layer 111 is formed on the bottom wall portion 12 when the lowermost layer is formed.
The upper hardened layer 111 is bonded to the lower hardened layer 1
11 are sequentially stacked.

【0018】すなわち、本実施例では、前記露光手段に
よって形成した硬化層111を含む下層の混合材料層、例
えば図1に示す混合材料層110Bの上層に、材料供給ユ
ニット20によって未硬化の混合材料層110Aを形成し、
その未硬化の混合材料層110Aを、前記下層の混合材料
層110Bの複数のガラスビーズ102および硬化層111Bに
支持させた状態で選択的に露光し、上層の硬化層111A
を形成するようになっている。
That is, in the present embodiment, the mixed material layer which is uncured by the material supply unit 20 is provided on the lower mixed material layer including the hardened layer 111 formed by the exposure means, for example, the upper layer of the mixed material layer 110B shown in FIG. Forming layer 110A,
The uncured mixed material layer 110A is selectively exposed while being supported by the plurality of glass beads 102 and the cured layer 111B of the lower mixed material layer 110B, and the upper cured layer 111A is exposed.
Are formed.

【0019】なお、詳細を図示しないが、本実施例にお
いては、前記昇降手段、露光手段および材料供給ユニッ
ト20を制御する制御装置が設けられており、この制御装
置には公知の3次元CAD(computer aided design)
システムが接続されている。この3次元CADシステム
は、設計された3次元物体について微小間隔を隔てた複
数の断面形状のデータを作成することができ、各断面形
状データを硬化層111のそれぞれの描画パターンデータ
とし、その断面の間隔を混合材料層110(硬化層111)の
層厚データとして制御装置に送信するようになってい
る。制御装置はこの3次元CADシステムから送信され
てきた断面形状データに基づき、前記露光手段による描
画(露光)、材料供給ユニット20の作動(摺動および歯
車ポンプ23の作動)、並びに底壁部12の昇降駆動のため
のデータを作成してこれらを制御するようになってお
り、この制御時には露光手段を前記直交する2つの走査
方向(以下、X、Y方向という)に駆動する走査駆動信
号、レーザ光源の駆動信号、層厚データに対応する昇降
手段の駆動信号、材料供給手段20の摺動機構の駆動信号
および歯車ポンプ23の駆動信号等を生成して、それぞれ
所定タイミングで出力するようになっている。
Although not shown in detail, in this embodiment, a control device for controlling the elevating means, the exposing means and the material supply unit 20 is provided, and this control device has a known three-dimensional CAD ( computer aided design)
The system is connected. This three-dimensional CAD system can create data of a plurality of cross-sectional shapes of a designed three-dimensional object with a minute interval, and each cross-sectional shape data is used as drawing pattern data of the hardened layer 111, and the cross section Is transmitted to the control device as layer thickness data of the mixed material layer 110 (cured layer 111). The control device draws (exposure) by the exposure means, operates the material supply unit 20 (operates the slide and gear pump 23), and the bottom wall 12 based on the cross-sectional shape data transmitted from the three-dimensional CAD system. The data for driving the ascending / descending drive is created and controlled, and at the time of this control, a scanning drive signal for driving the exposure unit in the two orthogonal scanning directions (hereinafter, referred to as X and Y directions), The drive signal of the laser light source, the drive signal of the elevating means corresponding to the layer thickness data, the drive signal of the sliding mechanism of the material supply means 20, the drive signal of the gear pump 23, etc. are generated and output at predetermined timings. Has become.

【0020】次に、請求項2記載の発明に係る光造形方
法の一実施例と共に、その作用を説明する。まず、前記
3次元CADシステムによって予め3次元物体の設計が
されると、この3次元CADシステムにより、造形する
物体について微小間隔を隔てた複数の断面形状データ等
が作成され、造形時にはそのデータが複数の硬化層111
の描画パターンおよび層厚のデータとして制御装置に送
られる。
Next, an operation of the stereolithography method according to the second aspect of the present invention will be described together with an embodiment thereof. First, when a three-dimensional object is designed in advance by the three-dimensional CAD system, a plurality of cross-sectional shape data at minute intervals are created for the object to be modeled by this three-dimensional CAD system. Multiple hardened layers 111
Is sent to the control device as data of the drawing pattern and layer thickness.

【0021】一方、制御装置では、送られてきた描画パ
ターンデータおよび層厚データ等に基づいて、露光手段
をX、Y方向に駆動する走査駆動信号、レーザ光源の駆
動信号、層厚データに対応する昇降手段の駆動信号、材
料供給手段20の摺動機構の駆動信号および歯車ポンプ23
の駆動信号等が生成され、これらの信号がそれぞれ所定
タイミングで出力される。
On the other hand, the control device responds to the scanning drive signal for driving the exposure means in the X and Y directions, the drive signal of the laser light source, and the layer thickness data based on the sent drawing pattern data and layer thickness data. Drive signal of the lifting means, drive signal of the sliding mechanism of the material supply means 20, and the gear pump 23.
Drive signals and the like are generated, and these signals are output at predetermined timings.

【0022】この状態において、まず、材料供給ユニッ
ト20がその露光用窓22a、22bのうち何れか一方を造形
槽10の上部開口11上に位置させるよう位置決めされると
ともに、底壁部12が所定位置に駆動され、造形層10の上
部開口11内に混合材料層110の1層の厚さ分の凹状空間
が形成される。次いで、材料供給ユニット20が一方向に
摺動するとともに歯車ポンプ23が作動し、歯車ポンプ23
の2つの回転子231、232が図1の矢印方向に回転するこ
とで、トロコイド歯形とホッパー部21の内壁面との間で
ガラスビーズ102が整列されるとともに、造形槽10の底
壁部12と平行な方向においてガラスビーズ102同士が当
接(近接)するように流動性素材(混合材料)100が上
部開口11内に供給され、造形槽10の上部開口11内に所定
厚さの未硬化の混合材料層110が形成される。このと
き、図4(a)に示すように、未硬化の混合材料層110は
その複数のガラスビーズ102の間に光硬化樹脂の未硬化
樹脂液101が付着した一定層厚の層になっており、底壁
部12に沿う平坦なものとなっている。
In this state, first, the material supply unit 20 is positioned so that one of the exposure windows 22a and 22b is positioned above the upper opening 11 of the modeling tank 10, and the bottom wall portion 12 is predetermined. Driven to the position, a concave space having a thickness of one layer of the mixed material layer 110 is formed in the upper opening 11 of the modeling layer 10. Next, the material supply unit 20 slides in one direction and the gear pump 23 operates, so that the gear pump 23
By rotating the two rotors 231 and 232 of FIG. 1 in the directions of the arrows in FIG. 1, the glass beads 102 are aligned between the trochoidal tooth profile and the inner wall surface of the hopper portion 21, and the bottom wall portion 12 of the modeling tank 10 is aligned. The fluid material (mixed material) 100 is supplied into the upper opening 11 so that the glass beads 102 come into contact (close proximity) with each other in a direction parallel to, and uncured to a predetermined thickness in the upper opening 11 of the modeling tank 10. Mixed material layer 110 is formed. At this time, as shown in FIG. 4A, the uncured mixed material layer 110 becomes a layer having a constant layer thickness in which the uncured resin liquid 101 of the photocurable resin is adhered between the plurality of glass beads 102. And is flat along the bottom wall 12.

【0023】次いで、露光手段のレーザ光源から連続的
にあるいは前記駆動信号に応じて断続的にレーザ光が出
射されると、そのレーザ光が露光手段により偏向されて
造形槽10に投光されつつ未硬化の混合材料層110の表面
部に集光され、更に前記X、Y方向に走査される。した
がって、前記露光手段の光走査によって未硬化の混合材
料層110の表面部で所定描画パターンの選択的露光がな
され、上部開口11内の未硬化の混合材料層110が必要形
状の硬化層111に硬化する。このとき、混合材料100が複
数のガラスビーズ102を互いに当接するよう平面配列し
た状態となっているから、光硬化樹脂101の硬化による
収縮があったとしても硬化層111全体としての収縮(層
厚変化や造形パターンの歪み)が抑制される。したがっ
て、描画パターンに対応する好ましい形状の硬化層111
が形成される。
Next, when laser light is emitted from the laser light source of the exposure means continuously or intermittently in response to the drive signal, the laser light is deflected by the exposure means and projected onto the modeling tank 10. The light is focused on the surface of the uncured mixed material layer 110 and further scanned in the X and Y directions. Therefore, the optical scanning of the exposing means selectively exposes the surface of the uncured mixed material layer 110 in a predetermined drawing pattern, and the uncured mixed material layer 110 in the upper opening 11 becomes a cured layer 111 having a required shape. Harden. At this time, since the mixed material 100 is arranged in a plane so that the plurality of glass beads 102 are in contact with each other, even if there is shrinkage due to curing of the photocurable resin 101, shrinkage of the cured layer 111 as a whole (layer thickness Change and distortion of the printing pattern) are suppressed. Therefore, the hardened layer 111 having a preferable shape corresponding to the drawing pattern is formed.
Is formed.

【0024】この硬化層111が最下層であるときは、硬
化層111は硬化と同時に底壁部12に接着される。このよ
うな1回の露光動作が終了し、底壁部12上に所定形状の
硬化層111が形成されると、前記昇降手段の作動により
底壁部12が硬化層111の層厚分だけ下降、して上述と同
様に造形槽10の上部開口11内に混合材料層110の層厚分
の凹状空間が形成され、上層の混合硬化層111の形成作
業が開始される。
When the hardened layer 111 is the lowermost layer, the hardened layer 111 is bonded to the bottom wall portion 12 simultaneously with hardening. When such a single exposure operation is completed and the hardened layer 111 having a predetermined shape is formed on the bottom wall portion 12, the bottom wall portion 12 is lowered by the thickness of the hardened layer 111 by the operation of the elevating means. Then, similarly to the above, a concave space having the layer thickness of the mixed material layer 110 is formed in the upper opening 11 of the modeling tank 10, and the work of forming the upper mixed hardened layer 111 is started.

【0025】そして、これ以後、最上層の硬化層111ま
で同様な作業が繰り返され、上層の硬化層111が下層の
硬化層111上に順次積層されることで、複数の硬化層111
からなる3次元物体が造形される。このような混合材料
層110の積層段階においては、材料供給ユニット20が前
記一方向又その反対方向(他方向)に摺動するとともに
歯車ポンプ23が作動し、歯車ポンプ23の2つの回転子23
1、232が図1の矢印方向に回転することで、トロコイド
歯形とホッパー部21の内壁面との間でガラスビーズ102
が整列されるとともに、造形槽10の底壁部12と平行な方
向においてガラスビーズ102同士が当接するように流動
性素材(混合材料)100が上部開口11内に供給され、造
形槽10の上部開口11内に所定厚さの未硬化の混合材料層
110が形成される。
After that, the same operation is repeated up to the uppermost hardened layer 111, and the upper hardened layer 111 is sequentially laminated on the lower hardened layer 111, whereby a plurality of hardened layers 111 are formed.
A three-dimensional object consisting of is formed. In the step of stacking the mixed material layer 110, the material supply unit 20 slides in the one direction or the opposite direction (the other direction) and the gear pump 23 operates, so that the two rotors 23 of the gear pump 23 are rotated.
By rotating 1 and 232 in the direction of the arrow in FIG. 1, the glass beads 102 are formed between the trochoidal tooth profile and the inner wall surface of the hopper portion 21.
Are aligned, and the fluid material (mixed material) 100 is supplied into the upper opening 11 so that the glass beads 102 come into contact with each other in a direction parallel to the bottom wall portion 12 of the modeling tank 10, and the upper portion of the modeling tank 10 An uncured mixed material layer having a predetermined thickness in the opening 11
110 is formed.

【0026】このとき、例えば図4(b)に示すよう
に、上層の未硬化の混合材料層110Aを形成するガラス
ビーズ102のそれぞれは、下層の混合材料層110Bのガラ
スビーズ102の幾つかに同時に当接してこれらに支持さ
れる状態となり、上層の未硬化の混合材料層110Aを形
成する光硬化樹脂の未硬化樹脂液101はこれら複数のガ
ラスビーズに付着し、かつ、上層の混合材料層110Aの
ガラスビーズ102より上方には突出しない状態となって
いる。したがって、上層の未硬化の混合材料層110Aが
下層の混合材料層110Bにより確実に支持された平坦な
一定厚さの層として形成される。
At this time, for example, as shown in FIG. 4B, each of the glass beads 102 forming the upper uncured mixed material layer 110A is replaced with some of the glass beads 102 of the lower mixed material layer 110B. At the same time, the uncured resin liquid 101 of the photo-curing resin forming the upper uncured mixed material layer 110A is brought into contact with and supported by these, and the uncured resin liquid 101 adheres to the plurality of glass beads, and the upper mixed material layer. The glass beads 102 of 110A are not projected above. Therefore, the upper uncured mixed material layer 110A is formed as a flat constant-thickness layer reliably supported by the lower mixed material layer 110B.

【0027】したがって、露光手段の光走査によって未
硬化の混合材料層110Aの表面部で所定描画パターンの
選択的露光がなされ、上部開口11内の上層の混合材料層
110Aが必要形状の硬化層111Aに硬化するとき、混合材
料層110Aがそのガラスビーズ102同士を互いに当接さ
せ、かつ、その層全体が下層の混合材料層110Bに確実
に支持された状態となっていることから、光硬化樹脂10
1の硬化による収縮があったとしても硬化層111A全体と
しての収縮が抑制されるとともに、不完全な支持による
硬化層111Aの変形が防止され、下層の混合材料層110B
の形成時と同様に、描画パターンに対応する好ましい形
状の硬化層111Aが得られる。その結果、造形する3次
元物体を設計された所望形状に作製することができる。
Therefore, the surface of the uncured mixed material layer 110A is selectively exposed in a predetermined drawing pattern by the optical scanning of the exposure means, and the upper mixed material layer in the upper opening 11 is exposed.
When 110A is cured into the required shape of the hardened layer 111A, the mixed material layer 110A brings the glass beads 102 into contact with each other, and the entire layer is securely supported by the lower mixed material layer 110B. Therefore, the photocurable resin 10
Even if there is shrinkage due to hardening of 1, hardening of the hardened layer 111A as a whole is suppressed, deformation of the hardened layer 111A due to incomplete support is prevented, and the lower mixed material layer 110B.
The hardened layer 111A having a preferable shape corresponding to the drawing pattern is obtained in the same manner as in the formation of. As a result, a three-dimensional object to be molded can be manufactured into a designed desired shape.

【0028】このように、本実施例では、流動性素材10
0として、未硬化の光硬化樹脂101と前記露光に対し非収
縮の複数のガラスビーズ102(球体)とを混合した混合
材料を準備し、材料供給ユニット20を造形槽10の上部開
口11に沿って移動しながらその上部開口11内に混合材料
100を供給することにより、混合材料100のガラスビーズ
102同士を底壁部12と平行に近接させた未硬化の混合材
料層110を形成した後、露光手段により未硬化の混合材
料層110を選択的に露光してその露光パターンに対応す
る硬化層111を形成し、次いで、昇降手段により底壁部1
2を下降させて上部開口11内に上層の混合材料層110の厚
さに対応する空間を形成し、硬化層111を含む下層の混
合材料層110Bの上層に、材料供給ユニット20によって
混合材料100を供給することにより、下層の混合材料層1
10Bの上層に次の未硬化の混合材料層110Aを形成し
て、硬化層111Bを含む下層の混合材料層110Bにより上
層の未硬化の混合材料層110Aを確実に支持した状態
で、上層の混合材料層110Aを露光手段により選択的に
露光し、上層の硬化層111Aを形成している。
As described above, in this embodiment, the fluid material 10
As 0, a mixed material prepared by mixing an uncured photo-curable resin 101 and a plurality of glass beads 102 (spheres) that do not contract with respect to the exposure is prepared, and a material supply unit 20 is provided along the upper opening 11 of the modeling tank 10. Mixed material in its upper opening 11 while moving
Glass beads of 100 mixed materials by feeding 100
After forming the uncured mixed material layer 110 in which 102 are brought close to each other in parallel with the bottom wall portion 12, the uncured mixed material layer 110 is selectively exposed by an exposure means to form a cured layer corresponding to the exposure pattern. 111, and then the bottom wall part 1
2 is lowered to form a space corresponding to the thickness of the upper mixed material layer 110 in the upper opening 11, and the mixed material 100 is mixed by the material supply unit 20 on the upper layer of the lower mixed material layer 110B including the hardening layer 111. By supplying the lower mixed material layer 1
The next uncured mixed material layer 110A is formed on the upper layer of 10B, and the upper uncured mixed material layer 110A is surely supported by the lower mixed material layer 110B including the cured layer 111B. The material layer 110A is selectively exposed by an exposing means to form an upper hardened layer 111A.

【0029】したがって、非収縮の複数のガラスビーズ
102を平面配列した混合材料層110(混合材料)が露光に
よる歪みのきわめて少ないものとなり、しかも上層の未
硬化の混合材料層110Aが下層に硬化層111Bの存在しな
い部分でも複数のガラスビーズ102を密着配列した下層
の混合材料層110Bによって確実に支持されるから、そ
の硬化層形成領域がオーバーハングしていたり所謂飛び
島又は微細幅の部分を有するものであったりしても、未
硬化の混合材料層110Aの支持が確実になされ、上層の
硬化層111Aの変形がきわめて生じ難くなる。この結
果、各硬化層111が精度良く形成され、造形する3次元
物体の造形精度を飛躍的に向上させることができる。
Therefore, a plurality of non-shrink glass beads
The mixed material layer 110 (mixed material) in which 102 are arranged in a plane has extremely little distortion due to exposure, and moreover, the uncured mixed material layer 110A in the upper layer has a plurality of glass beads 102 even in the portion where the hardened layer 111B does not exist in the lower layer. Since it is surely supported by the lower mixed material layer 110B closely arranged, even if the hardened layer forming region is overhung or has a so-called flying island or a portion of a minute width, the uncured mixed The material layer 110A is reliably supported, and the upper hardened layer 111A is hardly deformed. As a result, the hardened layers 111 are accurately formed, and the modeling accuracy of the three-dimensional object to be modeled can be dramatically improved.

【0030】また、各混合材料層110(混合材料100)に
はガラスビーズ102が多数含まれているので、硬化層111
に消費される光硬化樹脂101の消費量が少なくなり、造
形物体全体として高価な光硬化樹脂101の消費量を大幅
に減らすことができる。この結果、造形コストを低減さ
せることができる。さらに、造形物体として直接消費さ
れない混合材料100にもガラスビーズ102が多数含まれる
から、造形物体が大きかったり混合材料層110の面積に
対し硬化層111の面積が少なかったりする造形作業にお
いても、造形作業に使用する光硬化樹脂101はきわめて
少ない量で足りることになる。したがって、光硬化樹脂
101の劣化や汚染による材料の損失を大幅に減少させる
ことができ、上述の造形物体への消費量の減少と相俟っ
て造形コストの大幅な低減を図ることができる。
Further, since each mixed material layer 110 (mixed material 100) contains a large number of glass beads 102, the hardened layer 111.
The consumption amount of the photo-curable resin 101 consumed in the above is reduced, and the consumption amount of the photo-curable resin 101 which is expensive for the entire modeling object can be significantly reduced. As a result, the modeling cost can be reduced. Furthermore, since a large number of glass beads 102 are included in the mixed material 100 that is not directly consumed as a shaped object, even in a shaping operation in which the shaped object is large or the area of the hardened layer 111 is smaller than the area of the mixed material layer 110, the shaping is performed. A very small amount of the photo-curable resin 101 used for the work is sufficient. Therefore, photocurable resin
Material loss due to deterioration and contamination of 101 can be significantly reduced, and in combination with the above-described reduction in the consumption of the modeling object, the modeling cost can be significantly reduced.

【0031】なお、本実施例においては、流動性素材10
0を光硬化樹脂の未硬化樹脂液101と複数のガラスビーズ
102との混合材料としたが、ガラスビーズ102に代えて鋼
球や他の硬質材料からなる球体を用いること化できる。
要はその球体が露光に際してほぼ非収縮となる性質を有
するものであればよい。また、請求項1記載の発明によ
る光造形方法では、未硬化の光硬化樹脂液に代えて、例
えばゲル状に半硬化させた光硬化樹脂と上述のような球
体とを混合した流動性素材を準備し、その球体を互いに
同一平面上で当接する密着配列した混合材料層を形成し
て、その混合材料層を順次露光しながら積層して3次元
物体を造形することもできる。このようにしても、光硬
化樹脂の消費量を大幅に減少させて造形コストの低減を
図ることができるからである。また、その場合、各混合
材料層をキャリアシートに保持させ得る半硬化状態とし
て、取り扱いを容易化することができるのはいうまでも
ない。
In this embodiment, the fluid material 10
0 is an uncured resin liquid 101 of a photocurable resin and a plurality of glass beads
Although the mixed material with 102 is used, the glass beads 102 may be replaced with steel balls or spheres made of other hard material.
The point is that the sphere should have a property of being substantially non-contracting upon exposure. Further, in the stereolithography method according to the invention of claim 1, instead of the uncured photocurable resin liquid, for example, a fluid material obtained by mixing a photocurable resin semi-cured in a gel state and the above-mentioned spheres is used. It is also possible to form a three-dimensional object by preparing and forming a mixed material layer in which the spheres are in contact with each other on the same plane and arranged in close contact, and sequentially laminating the mixed material layers while sequentially exposing them. Even in this case, the consumption of the photo-curable resin can be significantly reduced, and the modeling cost can be reduced. Further, in that case, it goes without saying that handling can be facilitated by setting each mixed material layer in a semi-cured state in which it can be held on the carrier sheet.

【0032】[0032]

【発明の効果】請求項1記載の発明によれば、未硬化又
は半硬化の光硬化樹脂とその露光に対し非収縮の球体と
を混合した混合材料を準備し、該混合材料の球体が互い
に近接するよう未硬化又は半硬化の混合材料層を形成
し、次いで、該混合材料層を選択的に露光して硬化層を
形成し、次いで、該硬化層を含む混合材料層の上層に前
記未硬化又は半硬化の混合材料層を形成して該上層野混
合材料層を下層の混合材料層により確実に支持するよう
にしているので、高価な光硬化樹脂を少量しか含まない
流動性素材を用いつつ、混合材料の露光時の収縮および
歪みを少なくし、しかも、下層に硬化層の存在しない未
硬化の混合材料層を、その下層の混合材料層における複
数の球体および硬化層によって確実に支持することがで
きる。この結果、造形コストを大幅に減少させることが
できるとともに、造形精度を格段に向上させることがで
きる。
According to the invention of claim 1, a mixed material is prepared in which an uncured or semi-cured photo-curing resin and a non-shrinking sphere are exposed, and the spheres of the mixed material are mutually An uncured or semi-cured mixed material layer is formed in close proximity, and then the mixed material layer is selectively exposed to form a cured layer, and then the uncured mixed material layer including the cured layer is formed on the mixed material layer. Since a hardened or semi-hardened mixed material layer is formed to ensure that the upper mixed material layer is supported by the lower mixed material layer, a fluid material containing only a small amount of expensive photocurable resin is used. At the same time, the shrinkage and distortion of the mixed material at the time of exposure are reduced, and moreover, the uncured mixed material layer having no cured layer as the lower layer is reliably supported by the plurality of spheres and the cured layer in the lower mixed material layer. be able to. As a result, the modeling cost can be significantly reduced, and the modeling accuracy can be significantly improved.

【0033】請求項2記載の発明によれば、材料供給手
段を造形槽の上部開口に沿って移動させながら該上部開
口内に混合材料を供給して、造形槽の底壁部と平行に混
合材料の球体同士を近接させた混合材料層を形成し、該
混合材料層を露光手段によって選択的に露光してその露
光パターンに対応する硬化層を形成するとともに、昇降
手段により造形槽の底壁部を下降させ、前記上部開口内
に上層の未硬化混合材料層の厚さに対応する空間を形成
し、前記硬化層を含む下層の混合材料層の上層に材料供
給手段によって上層の未硬化の混合材料層を形成するよ
うにしているので、高価な光硬化樹脂を少量しか含まな
い流動性素材を用いつつ、混合材料の露光時の収縮およ
び歪みを少なくし、しかも、下層に硬化層の存在しない
未硬化の混合材料層をその下層の混合材料層における複
数の球体および硬化層によって確実に支持することがで
きる。この結果、造形コストを大幅に減少させることが
できるとともに、造形精度を格段に向上させることがで
きる。
According to the second aspect of the present invention, while the material supplying means is moved along the upper opening of the modeling tank, the mixed material is supplied into the upper opening and mixed in parallel with the bottom wall of the modeling tank. A mixed material layer in which spheres of the material are brought close to each other is formed, and the mixed material layer is selectively exposed by the exposure means to form a cured layer corresponding to the exposure pattern, and the bottom wall of the modeling tank is also moved by the elevating means. And a space corresponding to the thickness of the uncured mixed material layer of the upper layer is formed in the upper opening, and the uncured upper layer is uncured by the material supply means on the upper layer of the lower mixed material layer including the cured layer. Since the mixed material layer is formed, the flowable material containing only a small amount of expensive photo-curable resin is used, and the shrinkage and distortion during exposure of the mixed material are reduced, and the existence of the hardened layer in the lower layer. Uncured mixed material It can be reliably supported by a plurality of spheres and cured layer of the composite material layer thereunder. As a result, the modeling cost can be significantly reduced, and the modeling accuracy can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項2記載の発明に係る光造形装置の一実施
例の正面断面図である。
FIG. 1 is a front sectional view of an embodiment of a stereolithography apparatus according to a second aspect of the invention.

【図2】その一実施例の平面図である。FIG. 2 is a plan view of the embodiment.

【図3】その一実施例の斜視図である。FIG. 3 is a perspective view of the embodiment.

【図4】その一実施例における造形工程の一部の説明図
であり、(a)はその最下層の混合材料層を形成する段階
を示し、(b)はその混合材料層を積層する段階を示して
いる。
4A and 4B are explanatory views of a part of a molding process in the one embodiment, FIG. 4A shows a step of forming a lowermost mixed material layer, and FIG. 4B shows a step of laminating the mixed material layer. Is shown.

【符号の説明】[Explanation of symbols]

10 造形槽 11 上部開口 12 底壁部 20 材料供給ユニット(材料供給手段) 100 混合材料(流動性素材) 110 複数の混合材料層 110A 上層の混合材料層(未硬化の混合材料層) 110B 下層の混合材料層(硬化層を含む混合材料
層) 111 硬化層 111A 上層の硬化層 111B 下層の硬化層
10 modeling tank 11 upper opening 12 bottom wall 20 material supply unit (material supply means) 100 mixed material (fluid material) 110 multiple mixed material layers 110A upper mixed material layer (uncured mixed material layer) 110B lower layer Mixed material layer (mixed material layer including hardened layer) 111 Hardened layer 111A Upper hardened layer 111B Lower hardened layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】流動性素材を選択的に露光して該素材の硬
化層を形成するとともに、該硬化層を順次積層して3次
元物体を造形する光造形方法であって、 前記流動性素材として、未硬化又は半硬化の光硬化樹脂
と前記露光に対し非収縮の複数の球体とを混合した混合
材料(100)を準備し、 該混合材料(100)の球体を互いに近接させて未硬化又は
半硬化の下層の混合材料層(110B)を形成した後、 該混合材料層(110B)を選択的に露光して前記下層の硬
化層(111B)を形成し、 次いで、該硬化層(111B)を含む下層の混合材料層(110
B)の上層に、混合材料(100)の球体を互いに近接させた
未硬化又は半硬化の上層の混合材料層(110A)を形成し
て、 前記硬化層(111B)を含む下層の混合材料層(110B)によ
り該上層の混合材料層(110A)を支持した状態で該上層
の混合材料層(110A)を選択的に露光し、上層の硬化層
(111A)を形成するようにしたことを特徴とする光造形
方法。
1. A stereolithography method for selectively exposing a fluid material to form a hardened layer of the material, and sequentially stacking the hardened layers to model a three-dimensional object. As a mixed material (100) prepared by mixing an uncured or semi-cured photo-curable resin and a plurality of spheres that do not shrink for the exposure, the spheres of the mixed material (100) are brought close to each other and uncured. Alternatively, after the semi-cured lower mixed material layer (110B) is formed, the mixed material layer (110B) is selectively exposed to form the lower cured layer (111B), and then the cured layer (111B) is formed. ) Containing a mixed material layer (110
In the upper layer of B), an uncured or semi-cured upper mixed material layer (110A) in which spheres of the mixed material (100) are close to each other is formed, and a lower mixed material layer including the hardened layer (111B) is formed. The upper mixed material layer (110A) is selectively exposed while the upper mixed material layer (110A) is supported by (110B).
A stereolithography method characterized in that (111A) is formed.
【請求項2】上部開口(11)および昇降可能な底壁部(12)
を有する造形槽(10)と、 該造形槽(10)の上部開口(11)に沿って移動するととも
に、未硬化の光硬化樹脂と該樹脂への露光に対し非収縮
の複数の球体とを混合した混合材料(100)を、該上部開
口(11)内に供給し、造形槽(10)の底壁部と平行に前記球
体同士を近接させた混合材料層(110A、110B)を形成す
る材料供給手段(20)と、 前記上部開口(11)内の混合材料層(110A、110B)を選択
的に露光する露光手段と、 前記造形槽(10)の底壁部(12)を上部開口(11)に対して所
定移動量単位で下降させ、前記上部開口(11)内に前記混
合材料層(110A、110B)に対応する空間を形成する昇降
手段と、 を備え、 前記露光手段により形成した硬化層(111B)を含む下層
の混合材料層(110B)の上層に、材料供給手段(20)によ
って未硬化の混合材料層(110A)を形成し、該未硬化の
混合材料層(110A)を前記下層の混合材料層(110B)に支
持させた状態で選択的に露光し、上層の硬化層(111A)
を形成するようにしたことを特徴とする光造形装置。
2. An upper opening (11) and a bottom wall (12) capable of moving up and down.
A molding tank (10) having an uncured photocurable resin and a plurality of spheres that do not shrink when exposed to the resin while moving along the upper opening (11) of the molding tank (10). The mixed material (100) mixed is supplied into the upper opening (11) to form a mixed material layer (110A, 110B) in which the spheres are brought close to each other in parallel with the bottom wall of the modeling tank (10). A material supply means (20), an exposure means for selectively exposing the mixed material layer (110A, 110B) in the upper opening (11), and a bottom wall portion (12) of the modeling tank (10) are opened through the upper opening. Elevating means for lowering a predetermined movement amount unit with respect to (11) to form a space corresponding to the mixed material layer (110A, 110B) in the upper opening (11), formed by the exposing means. The uncured mixed material layer (110A) is formed by the material supplying means (20) on the lower mixed material layer (110B) including the cured layer (111B), and the uncured mixed material layer (110A) is formed. Mixed material layer of the lower layer selectively exposed in a state of being supported on (110B), the upper layer of the hardened layer (111A)
A stereolithography apparatus, which is characterized in that it is formed.
JP5037717A 1993-02-26 1993-02-26 Optically shaping method and device Pending JPH06246837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5037717A JPH06246837A (en) 1993-02-26 1993-02-26 Optically shaping method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5037717A JPH06246837A (en) 1993-02-26 1993-02-26 Optically shaping method and device

Publications (1)

Publication Number Publication Date
JPH06246837A true JPH06246837A (en) 1994-09-06

Family

ID=12505272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5037717A Pending JPH06246837A (en) 1993-02-26 1993-02-26 Optically shaping method and device

Country Status (1)

Country Link
JP (1) JPH06246837A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023342A1 (en) * 1995-12-22 1997-07-03 Ciba Specialty Chemicals Holding Inc. Process for the stereolithographic preparation of three-dimensional objects using a radiation-curable liquid formulation which contains fillers
WO1997045249A1 (en) * 1996-05-29 1997-12-04 Dsm N.V. Optical forming apparatus for forming three-dimensional objects
JP4856762B2 (en) * 2006-11-10 2012-01-18 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Apparatus and method for producing a three-dimensional object using a coating apparatus for powdered modeling material
WO2015151313A1 (en) * 2014-03-31 2015-10-08 株式会社東芝 Method for manufacturing lamination-fabricated object, and mixed material
JP2016047651A (en) * 2010-11-28 2016-04-07 ストラタシス リミテッド System and method for additive manufacturing of object
WO2019091709A1 (en) * 2017-11-09 2019-05-16 Bundesrepublik Deutschland, Vertreten Durch Die Bundesministerin Für Wirtschaft Und Energie, Diese Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Slurry application unit and method for layer application for slurry-based additive production

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023342A1 (en) * 1995-12-22 1997-07-03 Ciba Specialty Chemicals Holding Inc. Process for the stereolithographic preparation of three-dimensional objects using a radiation-curable liquid formulation which contains fillers
AU706533B2 (en) * 1995-12-22 1999-06-17 3D Systems, Inc. Process for the stereolithographic preparation of three-dimensional objects using a radiation-curable liquid formulation which contains fillers
KR100464869B1 (en) * 1995-12-22 2005-04-06 반티코 아게 Process for the stereolithographic preparation of three-dimensional ojbects using a radiation-curable liquid formulation which contains fillers
WO1997045249A1 (en) * 1996-05-29 1997-12-04 Dsm N.V. Optical forming apparatus for forming three-dimensional objects
JP4856762B2 (en) * 2006-11-10 2012-01-18 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Apparatus and method for producing a three-dimensional object using a coating apparatus for powdered modeling material
JP2016047651A (en) * 2010-11-28 2016-04-07 ストラタシス リミテッド System and method for additive manufacturing of object
US9688021B2 (en) 2010-11-28 2017-06-27 Stratasys Ltd. System and method for additive manufacturing of an object
US10894399B2 (en) 2010-11-28 2021-01-19 Stratasys Ltd. System and method for additive manufacturing of an object
US11623409B2 (en) 2010-11-28 2023-04-11 Stratasys Ltd. System and method for additive manufacturing of an object
WO2015151313A1 (en) * 2014-03-31 2015-10-08 株式会社東芝 Method for manufacturing lamination-fabricated object, and mixed material
JP2015196249A (en) * 2014-03-31 2015-11-09 株式会社東芝 Method of producing laminated molding
WO2019091709A1 (en) * 2017-11-09 2019-05-16 Bundesrepublik Deutschland, Vertreten Durch Die Bundesministerin Für Wirtschaft Und Energie, Diese Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Slurry application unit and method for layer application for slurry-based additive production

Similar Documents

Publication Publication Date Title
US20020093115A1 (en) Layer manufacturing method and apparatus using a programmable planar light source
US20020149137A1 (en) Layer manufacturing method and apparatus using full-area curing
JP6058819B2 (en) 3D object production
US9862139B2 (en) Three dimensional printing apparatus
TW499360B (en) Process for producing colored shaped article from curable resin, colored shaped article produced from curable resin, and shaping apparatus
WO2007023724A1 (en) Stereolithography apparatus and stereolithography method
JP5007174B2 (en) Stereolithography of 3D shaped objects
JPH08294742A (en) Method and device for making prototype containing part and support
JPH06246837A (en) Optically shaping method and device
JP2000313067A (en) Method and apparatus for optical three-dimensional shaping
JPH0224122A (en) Treatment for making optical shaped body transparent
KR102045213B1 (en) Three dimensional printing apparatus and printing method thereof
WO2021165881A1 (en) Systems, apparatuses, and methods for manufacturing three dimensional objects via continuously curing photopolymers, utilising a vessel containing an interface fluid
JPH0596631A (en) Method and apparatus for optical shaping
JPH0224121A (en) Optical shaping method
JP2617532B2 (en) Method and apparatus for forming a three-dimensional shape
JP4140891B2 (en) Optical three-dimensional modeling method and apparatus
JP3376163B2 (en) Three-dimensional printing apparatus and method
JPH04301431A (en) Apparatus for molding optically molded product
JPH02307728A (en) Three-dimensional molding apparatus
JPH04168036A (en) Automatic shaping device
JPH0224126A (en) Optical shaping method
JPH08238678A (en) Optically molding machine
TW201713489A (en) Three-dimensional printing system of bottom-illumination optical projection multi-material can further change composition of plural types of materials to achieve more changes
JPH01237122A (en) Optical shaping method for thick wall section