JPH0533304B2 - - Google Patents

Info

Publication number
JPH0533304B2
JPH0533304B2 JP61132417A JP13241786A JPH0533304B2 JP H0533304 B2 JPH0533304 B2 JP H0533304B2 JP 61132417 A JP61132417 A JP 61132417A JP 13241786 A JP13241786 A JP 13241786A JP H0533304 B2 JPH0533304 B2 JP H0533304B2
Authority
JP
Japan
Prior art keywords
evaporation
evaporated
deposited
source
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61132417A
Other languages
Japanese (ja)
Other versions
JPS62287068A (en
Inventor
Masayasu Tanjo
Yasuo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP13241786A priority Critical patent/JPS62287068A/en
Publication of JPS62287068A publication Critical patent/JPS62287068A/en
Publication of JPH0533304B2 publication Critical patent/JPH0533304B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、金属シートの表面に薄膜を形成す
るイオンビーム蒸着装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion beam evaporation apparatus for forming a thin film on the surface of a metal sheet.

〔従来の技術〕[Conventional technology]

従来より、金属シートの表面に薄膜を形成して
シート表面の改質(硬度向上、耐摩耗性向上、耐
食性向上、摩擦係数低減、色調光沢改善)を行つ
ている。
Conventionally, a thin film is formed on the surface of a metal sheet to modify the sheet surface (improve hardness, improve abrasion resistance, improve corrosion resistance, reduce coefficient of friction, and improve color and gloss).

このような薄膜の形成は、第3図に示すイオン
ビーム蒸着装置により行つている。図において、
40は鋼板等の金属シートからなる被蒸着部材で
あり、真空槽42内をローラ44により矢印方向
に水平移動する。また、真空槽42内には、被蒸
着部材40の下方において、被蒸着部材40の搬
送方向に蒸発源46,48とイオン源50,52
とが交互に並んで設けられている。蒸発源46,
48は、電子銃(図示せず)から電子ビームを照
射して容器46a,48a内の蒸着材料(例えば
Ti)54を電子ビーム加熱することで蒸着材料
54を蒸気化させるものである。また、イオン源
50,52は、例えばN等の元素のイオンを被蒸
着部材40に向けて加速して照射し、例えばイオ
ン注入を行うものである。
Formation of such a thin film is performed using an ion beam evaporation apparatus shown in FIG. In the figure,
Reference numeral 40 denotes a member to be deposited made of a metal sheet such as a steel plate, and is moved horizontally in the direction of the arrow within the vacuum chamber 42 by rollers 44 . Further, in the vacuum chamber 42, below the member to be evaporated 40, evaporation sources 46, 48 and ion sources 50, 52 are provided in the conveying direction of the member to be evaporated 40.
are arranged alternately. Evaporation source 46,
Reference numeral 48 irradiates an electron beam from an electron gun (not shown) to deposit vapor deposited materials (for example,
The deposition material 54 is vaporized by heating the Ti) 54 with an electron beam. Further, the ion sources 50 and 52 accelerate and irradiate ions of an element such as N toward the member 40 to be evaporated, thereby performing, for example, ion implantation.

次に、被蒸着部材40の下面に薄膜を形成する
動作を説明する。
Next, the operation of forming a thin film on the lower surface of the member to be deposited 40 will be explained.

まず、蒸発源46より蒸発した蒸着材料が被
蒸着部材40の下面に蒸着し、厚さ300Å程度
の蒸着層を形成する。
First, the evaporation material evaporated from the evaporation source 46 is deposited on the lower surface of the member 40 to be evaporated, forming a evaporation layer with a thickness of about 300 Å.

次に、イオン源50よりで形成した蒸着層
に向けて30KeV程度のエネルギをもつたNイ
オンを照射して蒸着層に注入し、被蒸着部材4
0の下面にTiNと被蒸着部材40の構成原子
とが混合したミキシング層を形成する。
Next, N ions having an energy of about 30 KeV are irradiated from the ion source 50 toward the vapor deposited layer, injected into the vapor deposited layer, and the member to be vapor deposited is
A mixing layer in which TiN and the constituent atoms of the member 40 to be deposited are mixed is formed on the lower surface of the substrate 0 .

さらに、、と同様にして、蒸発源48に
よる蒸着とイオン源52による低エネルギ(数
KeV)のイオン注入とによりで形成したミ
キシング層上にさらにTiN層を形成し、被蒸
着部材40に所望の厚さのTiN薄膜を形成す
る。
Furthermore, similarly to , evaporation by the evaporation source 48 and low energy (several
A TiN layer is further formed on the mixing layer formed by ion implantation (KeV), and a TiN thin film with a desired thickness is formed on the member 40 to be evaporated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このように構成されたイオンビーム蒸
着装置によると、蒸発源46,48およびイオン
源50,52が水平に搬送される被蒸着部材40
の下方に配設されているので、蒸発源46,48
から蒸発した蒸着材料54がイオン源50,52
内にごみとして落下し、イオン源50,52が汚
れやすく、イオン源50,52の洗浄に手間がか
かるという問題があつた。また、被蒸着部材40
を水平に搬送するので、蒸発源46,48ならび
にイオン源50,52の上方における被蒸着部材
40がたるまないように、可能な限り蒸発源46
ならびにイオン源52の前後におけるローラ44
の間隔を狭くする必要がある。そのため、蒸発源
46,48から蒸発した蒸着材料54がローラ4
4に付着し、ローラ44の清浄にも手間がかかる
という問題があつた。
However, according to the ion beam evaporation apparatus configured in this way, the evaporation sources 46 and 48 and the ion sources 50 and 52 are attached to the member to be evaporated 40 that is transported horizontally.
Since the evaporation sources 46 and 48
The vapor deposition material 54 evaporated from the ion sources 50, 52
There was a problem in that the ion sources 50, 52 were likely to become dirty due to the dust falling into the interior of the building, and cleaning the ion sources 50, 52 was time consuming. In addition, the member to be evaporated 40
Since the evaporation sources 46 and 48 and the ion sources 50 and 52 are transported horizontally, the evaporation sources 46 and 48 and the ion sources 50 and 52 should be
and rollers 44 before and after the ion source 52
It is necessary to narrow the interval between. Therefore, the evaporation material 54 evaporated from the evaporation sources 46 and 48 is transferred to the roller 4.
There was a problem that the particles adhered to the rollers 44 and cleaning the rollers 44 took time and effort.

この発明の目的は、イオン源に蒸発した蒸着材
料がごみとして落下しにくく、かつ搬送手段にも
付着しにくくなり、保守が容易に行なえるイオン
ビーム蒸着装置を提供することである。
An object of the present invention is to provide an ion beam evaporation apparatus in which evaporation material evaporated into an ion source is less likely to fall as dust and adhere to a conveyance means, and which can be easily maintained.

〔問題を解決するための手段〕[Means to solve the problem]

この発明のイオンビーム蒸着装置は、真空槽
と、この真空槽内でシート状の被蒸着部材を垂直
に搬送する搬送手段と、前記真空槽内において前
記被蒸着部材の側方に前記被蒸着部材に蒸発面が
対向した状態に設けられ、陰極となる蒸着材料お
よび陽極となる前記真空槽間のアーク放電による
発熱で蒸着材料を蒸発させるとともにアークプラ
ズマにより蒸発した蒸着材料をイオン化する蒸発
源と、前記真空槽と前記被蒸着部材との間にバイ
アス電圧を印加し前記イオン化した蒸着材料を前
記被蒸着部材に引付けるバイアス電源と、前記蒸
発源と前記被蒸着部材の搬送方向下手側において
前記真空槽内に設けられ前記被蒸着部材の表面に
蒸着した蒸着層にイオンを照射するイオン源とを
備えたものである。
The ion beam evaporation apparatus of the present invention includes a vacuum chamber, a conveying means for vertically conveying a sheet-like member to be evaporated in the vacuum chamber, and a evaporator to be evaporated on the side of the member to be evaporated in the vacuum chamber. an evaporation source, which is provided with evaporation surfaces facing each other, and evaporates the evaporation material by heat generated by arc discharge between the evaporation material serving as a cathode and the vacuum chamber serving as an anode, and ionizes the evaporation material evaporated by arc plasma; a bias power supply that applies a bias voltage between the vacuum chamber and the member to be deposited to attract the ionized deposition material to the member to be deposited; The device includes an ion source that is provided in the tank and irradiates the vapor deposition layer deposited on the surface of the member to be vapor-deposited with ions.

〔作用〕[Effect]

この発明の構成によれば、被蒸着部材を垂直に
搬送して被蒸着部材の側方に蒸発源とイオン源を
配置したので、蒸発した蒸着材料がごみとしてイ
オン源に落下しにくくなる。
According to the configuration of the present invention, the evaporation source and the ion source are arranged on the sides of the member to be vapor-deposited while the member to be vapor-deposited is conveyed vertically, so that evaporated vapor-deposited material is less likely to fall into the ion source as dust.

また、蒸発源の蒸発面を被蒸着部材に対向さ
せ、蒸発源において陰極となる蒸着材料および陽
極となる真空槽間のアーク放電による発熱で蒸着
材料を蒸発させるとともにアークプラズマにより
蒸発した蒸着材料をイオン化し、さらにバイアス
電源によつてイオン化した蒸着材料を被蒸着部材
に引付けるようにしたことによつて、蒸発源から
蒸発した蒸発材料を効率よく被蒸着部材に蒸着さ
せることができ、被蒸着部材を垂直に搬送するこ
とによる蒸着効率の低下の問題は生じない。この
ように、蒸発源の蒸発面を被蒸着面に対向させる
ことができるのは、蒸着材料の全体が溶融するの
ではなく、蒸着材料の表面のアーク放電によつて
生じるアークスポツトの部分のごく少量のみが高
温になつて溶融し、蒸着面を立てても溶融した蒸
着材料が垂れ落ちることがないからである。
In addition, the evaporation surface of the evaporation source is placed to face the member to be evaporated, and the evaporation material is evaporated by the heat generated by the arc discharge between the evaporation material that becomes the cathode and the vacuum chamber that becomes the anode in the evaporation source, and the evaporation material that has been evaporated by the arc plasma is evaporated. By ionizing the evaporation material and then drawing the ionized evaporation material to the target member using a bias power supply, the evaporation material evaporated from the evaporation source can be efficiently deposited on the target member, and the evaporation material can be efficiently deposited on the target member. There is no problem of reduced deposition efficiency due to vertical conveyance of the member. In this way, the evaporation surface of the evaporation source can be made to face the surface to be evaporated, not by melting the entire evaporation material, but by melting only a small portion of the arc spot generated by arc discharge on the surface of the evaporation material. This is because only a small amount of the material becomes high temperature and melts, and the molten vapor deposition material does not drip down even if the vapor deposition surface is upright.

さらに、被蒸着部材を垂直に搬送するようにし
たので、被蒸着部材がたるんだりせず、蒸発源な
らびにイオン源の前後における搬送手段の間隔を
大きく取ることができる。したがつて蒸発源から
蒸発した蒸着材料が搬送手段に付着しにくくな
る。このように、蒸発した蒸着材料がごみとして
イオン源に落下しにくく、かつ搬送手段にも付着
しにくくなり、保守が容易に行なえる。
Furthermore, since the member to be evaporated is conveyed vertically, the member to be evaporated does not sag, and the distance between the conveying means before and after the evaporation source and the ion source can be increased. Therefore, the evaporation material evaporated from the evaporation source is less likely to adhere to the conveying means. In this way, the evaporated deposition material is less likely to fall into the ion source as dust, and is also less likely to adhere to the transport means, making maintenance easier.

しかも、蒸着材料の溶融は、アーク放電によつ
て行うので、蒸着材料は放電した部分しか溶融し
ない。したがつて、蒸発源を被蒸着部材の側方に
配置しても蒸発材料がこぼれたりしない。
Furthermore, since the vapor deposition material is melted by arc discharge, only the portion of the vapor deposition material where the discharge occurs is melted. Therefore, even if the evaporation source is placed on the side of the member to be evaporated, the evaporation material will not spill out.

〔実施例〕〔Example〕

この発明の一実施例を第1図および第2図に基
づいて説明する。このイオンビーム蒸着装置は、
第1図に示すように、真空槽10内にシート状の
被蒸着部材14を搬送手段12により垂直に搬送
し、真空槽10内で被蒸着部材14の側方に蒸発
源16a,16b,16c,16dを設け、各蒸
発源16a〜16dの被蒸着部材14の搬送方向
下手側において真空槽10内にイオン源18a,
18b,18c,18dを設けたものである。
An embodiment of the present invention will be described based on FIGS. 1 and 2. This ion beam evaporation equipment is
As shown in FIG. 1, a sheet-shaped member to be evaporated 14 is vertically conveyed into a vacuum chamber 10 by a conveying means 12, and evaporation sources 16a, 16b, 16c are placed on the side of the member to be evaporated in the vacuum chamber 10. , 16d are provided, and an ion source 18a,
18b, 18c, and 18d are provided.

蒸発源16a〜16dは、被蒸着部材14の側
方に位置した陰極24a,24b,24c,24
dとなる蒸着材料および陽極となる真空槽10間
のアーク放電による発熱で蒸着材料からなる陰極
24a,24b,24c,24dを蒸発させると
ともにアークプラズマにより蒸発した蒸着材料を
イオン化するものである。イオン化した蒸着材料
は、バイアス電源34により真空槽10と被蒸着
部材14との間に印加したバイアス電圧により被
蒸着部材14に引付けられる。
The evaporation sources 16a to 16d include cathodes 24a, 24b, 24c, and 24 located on the sides of the member 14 to be evaporated.
The cathodes 24a, 24b, 24c, and 24d made of the evaporation material are evaporated by the heat generated by the arc discharge between the evaporation material d and the vacuum chamber 10, which is the anode, and the evaporation material evaporated by the arc plasma is ionized. The ionized evaporation material is attracted to the evaporation target member 14 by a bias voltage applied between the vacuum chamber 10 and the evaporation target member 14 by the bias power supply 34 .

また、イオン源18a〜18dは、被蒸着部材
14の表面に蒸着した蒸着層にイオンを照射し
て、例えばこのイオンを注入するものである。
Further, the ion sources 18a to 18d irradiate the vapor deposition layer deposited on the surface of the member 14 to be vapor-deposited with ions, and implant the ions, for example.

真空槽10は金属等の導電性材料からなり、上
下に補助真空槽20,22が形成されており、真
空槽10内を所定の真空度に維持している。被蒸
着部材14は金属シート等からなり、真空槽10
に設けたローラからなる搬送手段12によつて、
真空槽10内を上から下へ垂直に搬送される。
The vacuum chamber 10 is made of a conductive material such as metal, and auxiliary vacuum chambers 20 and 22 are formed above and below to maintain the inside of the vacuum chamber 10 at a predetermined degree of vacuum. The member to be evaporated 14 is made of a metal sheet or the like, and is placed in the vacuum chamber 10.
By means of a conveyance means 12 consisting of rollers provided in
It is vertically conveyed in the vacuum chamber 10 from top to bottom.

蒸発源16a〜16dとイオン源18a〜18
dは、真空槽10内において被蒸着部材14の両
側に並設されている。被蒸着部材14の片側に
は、真空槽10の上から下に並んで蒸発源16
a、イオン源18a、蒸発源16b、イオン源1
8bが設けられており、被蒸着部材14の片面に
薄膜を形成する。また、被蒸着部材14の他側に
は、真空槽10の上から下に並んで蒸発源16
c、イオン源18c、蒸発源16d、イオン源1
8dが設けられており、被蒸着部材14の他面に
薄膜を形成する。各蒸発源16a〜16dは、真
空槽10に固定されたTi等の蒸着材料でできた
陰極24a〜24dと、陰極24a〜24dの中
央部に設けたトリガ電極26a〜26dと、陰極
24a〜24dに負極を接続し正極を陽極である
真空槽10およびトリガ電極26a〜26dに接
続したアーク電源28a〜28dと、このアーク
電源28a〜28dとトリガ電極26a〜26d
との間に設けた抵抗30a〜30dと、陰極24
a〜24dを接地電位にある真空槽10より絶縁
するための絶縁物31a〜31dとから構成され
ている。また、イオン源18a〜18dは、例え
ばNイオンをマルチアパーチヤ32a〜32dか
ら引き出して加速し被蒸着部材14に照射するも
のである。なお、バイアス電源34は、負極を被
蒸着部材14に接し正極を真空槽10に接続した
直流の電源からなる。また、第2図は、イオンビ
ーム蒸着装置の要部斜視図を示している。
Evaporation sources 16a-16d and ion sources 18a-18
d are arranged in parallel on both sides of the member to be evaporated 14 in the vacuum chamber 10 . On one side of the member 14 to be evaporated, evaporation sources 16 are arranged from top to bottom of the vacuum chamber 10.
a, ion source 18a, evaporation source 16b, ion source 1
8b is provided to form a thin film on one side of the member 14 to be evaporated. Further, on the other side of the member to be evaporated 14, evaporation sources 16 are arranged from top to bottom of the vacuum chamber 10.
c, ion source 18c, evaporation source 16d, ion source 1
8d is provided to form a thin film on the other surface of the member 14 to be evaporated. Each of the evaporation sources 16a to 16d includes cathodes 24a to 24d made of a vapor deposition material such as Ti fixed to the vacuum chamber 10, trigger electrodes 26a to 26d provided at the center of the cathodes 24a to 24d, and cathodes 24a to 24d. The arc power supplies 28a to 28d are connected to the vacuum chamber 10 with a negative electrode connected to the vacuum tank 10 and the trigger electrodes 26a to 26d and the positive electrode is connected to the trigger electrodes 26a to 26d.
and the resistors 30a to 30d provided between the cathode 24 and
It is composed of insulators 31a to 31d for insulating a to 24d from the vacuum chamber 10 which is at ground potential. Further, the ion sources 18a to 18d extract, for example, N ions from the multi-apertures 32a to 32d, accelerate them, and irradiate the member 14 to be evaporated. The bias power supply 34 is a DC power supply whose negative electrode is in contact with the member 14 to be evaporated and whose positive electrode is connected to the vacuum chamber 10 . Moreover, FIG. 2 shows a perspective view of essential parts of the ion beam evaporation apparatus.

次に、被蒸着部材14の両面に薄膜を形成する
動作について説明する。なお、被蒸着部材14の
両面はそれぞれ同様にして薄膜形成を行うので、
第1図の被蒸着部材14の紙面方向左側面につい
てのみ説明し、右側面についてはその説明を省略
する。
Next, the operation of forming a thin film on both sides of the member 14 to be vapor-deposited will be explained. Note that since thin films are formed on both sides of the member 14 to be vapor-deposited in the same manner,
Only the left side surface of the member 14 to be deposited in FIG. 1 in the plane of the paper will be described, and the description of the right side surface will be omitted.

まず、図示しない駆動源につながれた一つま
たは複数個の搬送手段12を駆動して被蒸着部
材14を上から下へ搬送する。
First, one or more transport means 12 connected to a drive source (not shown) is driven to transport the member 14 to be deposited from top to bottom.

蒸発源16aより蒸着材料を蒸気化して被蒸
着部材14の表面に蒸着し、厚さ300Å程度の
蒸着層を形成する。蒸着材料の蒸着は、次のよ
うにして行う。まず、トリガ電極26aと陰極
24aとの間にアーク放電が起きて蒸着材料が
蒸発し、さらにこの蒸発した蒸着材料を介して
蒸着材料からなる陰極24aと陽極である真空
槽10との間にアーク放電が発生して蒸着材料
が蒸発してイオン化する。蒸発してイオン化し
た蒸着材料は、バイアス電源34によるバイア
ス電圧によつて、被蒸着部材14の表面に引付
けられ被蒸着部材14の側面に蒸着して、Ti
の蒸着層を形成する。
The evaporation material is evaporated from the evaporation source 16a and deposited on the surface of the member 14 to be evaporated to form a evaporation layer with a thickness of about 300 Å. The vapor deposition material is vapor-deposited as follows. First, an arc discharge occurs between the trigger electrode 26a and the cathode 24a, vaporizing the vapor deposition material, and further, an arc occurs between the cathode 24a made of the vapor deposition material and the vacuum chamber 10, which is the anode, via the vaporized vapor deposition material. A discharge occurs, and the deposition material is evaporated and ionized. The evaporated and ionized deposition material is attracted to the surface of the member to be deposited 14 by the bias voltage from the bias power supply 34 and is deposited on the side surface of the member to be deposited 14 to form Ti.
Form a vapor deposited layer.

イオン源18aよりで形成した蒸着層に向
けて例えば30KeVのエネルギをもつたNイオ
ンを照射して蒸着層に注入し、被蒸着部材14
の表面にTiNと被蒸着部材14の構成原子と
が混合したミキシング層を形成する。
N ions having an energy of, for example, 30 KeV are irradiated from the ion source 18a toward the deposited layer formed by the ion source 18a and injected into the deposited layer, and the member 14 to be deposited is injected into the deposited layer.
A mixing layer in which TiN and the constituent atoms of the member 14 to be evaporated are mixed is formed on the surface of the evaporator.

次に、蒸発源16bより蒸発材料を蒸気化
し、で形成したミキシング層に蒸着する。
Next, the evaporation material is evaporated from the evaporation source 16b and deposited on the mixing layer formed in .

さらに、イオン源18bより低エネルギ(例
えば数KeV)のNイオンを照射して注入し、
被蒸着部材14に所望の厚さのTiN薄膜を形
成する。
Furthermore, N ions of low energy (for example, several KeV) are irradiated and implanted from the ion source 18b,
A TiN thin film having a desired thickness is formed on the member 14 to be vapor-deposited.

なお、蒸発源16a,16bからの蒸気化した
Ti、およびイオン源18a,18bからのNイ
オンは、或る拡がりを有して被蒸着部材14に到
達するので、被蒸着部材14の表面には、Tiの
蒸着とNイオンの照射とが同時に行われる部分が
ある。
In addition, the vaporized from the evaporation sources 16a and 16b
Ti and N ions from the ion sources 18a and 18b reach the member 14 with a certain spread, so that the surface of the member 14 is simultaneously evaporated with Ti and irradiated with N ions. There are parts that are done.

以上のようにして、被蒸着部材14の両面に
TiN薄膜を形成する。
In the above manner, both sides of the member 14 to be vapor-deposited are coated.
Form a TiN thin film.

このように構成されたイオンビーム蒸着装置に
よると、被蒸着部材14を垂直に搬送し、蒸発源
16a〜16dおよびイオン源18a〜18dを
被蒸着部材14の側方に配置したので、蒸発した
蒸着材料がイオン源18a〜18dに落下しにく
くなる。また、被蒸着部材14を垂直に搬送する
ようにしたので、被蒸着部材14がたるんだりせ
ず、蒸発源16a,16cならびにイオン源18
b,18dの前後における搬送手段12の間隔を
大きく取ることができる。したがつて、蒸発源1
6a〜16dから蒸発した蒸着材料が搬送手段1
2に付着しにくくなる。このように、蒸発した蒸
着材料がごみとしてイオン源18a〜18dに落
下しにくく、かつ搬送手段12にも付着しにくく
なり、清浄等の保守が容易に行なえる。
According to the ion beam evaporation apparatus configured in this way, the member to be evaporated 14 is conveyed vertically, and the evaporation sources 16a to 16d and the ion sources 18a to 18d are arranged on the sides of the member to be evaporated 14, so that the evaporated deposition material is Materials are less likely to fall into the ion sources 18a-18d. Further, since the member 14 to be evaporated is conveyed vertically, the member 14 to be evaporated does not sag, and the evaporation sources 16a, 16c and the ion source 18
It is possible to increase the distance between the conveying means 12 before and after b and 18d. Therefore, evaporation source 1
The vapor deposition material evaporated from 6a to 16d is transferred to the conveying means 1.
It becomes difficult to adhere to 2. In this way, the evaporated deposition material is less likely to fall into the ion sources 18a to 18d as dust, and is also less likely to adhere to the transport means 12, making maintenance such as cleaning easier.

しかも、蒸着材料の溶融は、アーク放電によつ
て行うので、蒸着材料は放電した部分しか溶融し
ない。したがつて、蒸発源16a〜16dを被蒸
着部材14の側方に配置しても蒸着材料がこぼれ
たりしない。
Furthermore, since the vapor deposition material is melted by arc discharge, only the portion of the vapor deposition material where the discharge occurs is melted. Therefore, even if the evaporation sources 16a to 16d are arranged on the sides of the member 14 to be evaporated, the evaporation material will not spill.

また、被蒸着部材14を垂直に搬送し、被蒸着
部材14の両側に各々蒸発源16a〜16dおよ
びイオン源18a〜18dを並設して被蒸着部材
14の両側面に薄膜を形成できるようにしたの
で、真空槽10内を1度上から下へ搬送するだけ
で被蒸着部材14の両側面の薄膜形成が行え、薄
膜形成作業が容易に行なえる。
Further, the member to be evaporated 14 is conveyed vertically, and the evaporation sources 16a to 16d and the ion sources 18a to 18d are arranged in parallel on both sides of the member to be evaporated, so that a thin film can be formed on both sides of the member to be evaporated. Therefore, a thin film can be formed on both sides of the member to be evaporated 14 by simply transporting it from top to bottom in the vacuum chamber 10, and the thin film forming operation can be easily performed.

また、TiNの反応を起こすために必要な十分
なエネルギを持つてイオン源18a〜18dから
被蒸着部材14にイオンが照射されるので、被蒸
着部材14をあらかじめ余熱しておく必要がな
く、低温状態で薄膜形成が行なえる。
Furthermore, since the ion sources 18a to 18d irradiate the member 14 to be evaporated with sufficient energy necessary to cause a TiN reaction, there is no need to preheat the member 14 to be evaporated, and the temperature is low. Thin film formation can be performed in this state.

なお、前記実施例では、被蒸着部材14の両側
にそれぞれ2組ずつ蒸発源とイオン源を配置した
ものであつたが、被蒸着部材14の片側に設けた
ものや、蒸発源およびイオン源を1組ずつ設けた
ものでもよい。また、蒸発源による蒸着作業の前
に、イオン源による被蒸着部材14の表面のクリ
ーニングと活性化を行つてもよい。さらに、本実
施例では被蒸着部材14の表面にTiNなどの金
属窒化物の薄膜を形成したが、蒸発源でAlを蒸
着しイオン源でArイオンを照射して被蒸着部材
14の表面にAlの薄膜を形成したり、あるいは
蒸発源からTiを蒸発させイオン源でCイオンを
照射してTiCに金属炭化物の薄膜を形成できるこ
とは勿論である。
In the above embodiment, two sets of evaporation sources and two ion sources were arranged on each side of the member 14 to be evaporated. One set each may be provided. Further, before the evaporation operation using the evaporation source, the surface of the member 14 to be evaporated may be cleaned and activated using the ion source. Furthermore, in this example, a thin film of metal nitride such as TiN was formed on the surface of the member 14 to be evaporated, but Al was evaporated with an evaporation source and Ar ions were irradiated with an ion source to coat the surface of the member 14 with Al. Of course, it is also possible to form a thin film of metal carbide on TiC by evaporating Ti from an evaporation source and irradiating it with C ions from an ion source.

〔発明の効果〕〔Effect of the invention〕

この発明のイオンビーム蒸着装置によれば、被
蒸着部材を垂直に搬送して被蒸着部材の側方に蒸
発源とイオン源を配置したので、蒸発した蒸着材
料がごみとしてイオン源に落下しにくくなる。
According to the ion beam evaporation apparatus of the present invention, the member to be evaporated is conveyed vertically and the evaporation source and the ion source are arranged on the side of the member to be evaporated, so that the evaporated material is less likely to fall into the ion source as dust. Become.

また、蒸発源の蒸発面を被蒸着部材に対向させ
蒸発源において蒸着材料となる陰極と陽極となる
真空槽間のアーク放電による発熱で蒸着材料を蒸
発させるとともにアークプラズマにより蒸発した
蒸着材料をイオン化し、さらにバイアス電源によ
つてイオン化した蒸着材料を被蒸着部材に引付け
るようにしたことによつて、蒸発源から蒸発した
蒸着材料を効率よく被蒸着部材に蒸着させること
ができ、被蒸着部材を垂直に搬送することによる
蒸着効率の低下の問題は生じない。
In addition, the evaporation surface of the evaporation source faces the member to be evaporated, and in the evaporation source, the evaporation material is evaporated by heat generated by arc discharge between the cathode, which is the evaporation material, and the vacuum chamber, which is the anode, and the evaporation material is ionized by the arc plasma. Furthermore, by attracting the ionized deposition material to the member to be deposited using the bias power supply, the deposition material evaporated from the evaporation source can be efficiently deposited onto the member to be deposited. The problem of reduced vapor deposition efficiency due to vertical conveyance does not occur.

さらに、被蒸着部材を垂直に搬送するようにし
たので、被蒸着部材がたるんだりせず、蒸発源な
らびにイオン源の前後における搬送手段の間隔を
大きく取ることができる。したがつて、蒸発源か
ら蒸発した蒸着材料が搬送手段に付着しにくくな
る。このように、蒸発した蒸着材料がごみとして
イオン源に落下しにくく、かつ搬送手段にも付着
しにくくなり、保守が容易に行なえるという効果
がある。
Furthermore, since the member to be evaporated is conveyed vertically, the member to be evaporated does not sag, and the distance between the conveying means before and after the evaporation source and the ion source can be increased. Therefore, the evaporation material evaporated from the evaporation source is less likely to adhere to the conveying means. In this way, the evaporated deposition material is less likely to fall into the ion source as dust, and is less likely to adhere to the transport means, making maintenance easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の概略図、第2図
はその要部斜視図、第3図は従来例の斜視図であ
る。 10……真空槽、12……搬送手段、14……
被蒸着部材、16a〜16d……蒸発源、18a
〜18d……イオン源、26a〜26d……トリ
ガ電極、34……バイアス電源。
FIG. 1 is a schematic diagram of an embodiment of the present invention, FIG. 2 is a perspective view of the main part thereof, and FIG. 3 is a perspective view of a conventional example. 10... Vacuum chamber, 12... Transport means, 14...
Evaporation target member, 16a to 16d... Evaporation source, 18a
~18d...Ion source, 26a-26d...Trigger electrode, 34...Bias power supply.

Claims (1)

【特許請求の範囲】 1 真空槽と、 この真空槽内でシート状の被蒸着部材を垂直に
搬送する搬送手段と、 前記真空槽内において前記被蒸着部材の側方に
前記被蒸着部材に蒸発面が対向した状態に設けら
れ、陰極となる蒸着材料および陽極となる前記真
空槽間のアーク放電による発熱で蒸着材料を蒸発
させるとともにアークプラズマにより蒸発した蒸
着材料をイオン化する蒸発源と、 前記真空槽と前記被蒸着部材との間にバイアス
電圧を印加し前記イオン化した蒸着材料を前記被
蒸着部材に引付けるバイアス電源と、 前記蒸発源の前記被蒸着部材の搬送方向下手側
において前記真空槽内に設けられ前記被蒸着部材
の表面に蒸着した蒸着層にイオンを照射するイオ
ン源とを備えたイオンビーム蒸着装置。
[Scope of Claims] 1. A vacuum chamber; a conveying means for vertically conveying a sheet-like member to be deposited in the vacuum chamber; an evaporation source that is provided with faces facing each other and that evaporates the evaporation material by heat generated by arc discharge between the evaporation material serving as the cathode and the vacuum chamber serving as the anode, and ionizes the evaporation material evaporated by the arc plasma; a bias power source that applies a bias voltage between the tank and the member to be evaporated to attract the ionized evaporation material to the member to be evaporated; An ion beam evaporation apparatus comprising: an ion source that is installed in the evaporation layer and irradiates the evaporation layer deposited on the surface of the member to be evaporated with ions;
JP13241786A 1986-06-06 1986-06-06 Ion beam vapor deposition device Granted JPS62287068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13241786A JPS62287068A (en) 1986-06-06 1986-06-06 Ion beam vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13241786A JPS62287068A (en) 1986-06-06 1986-06-06 Ion beam vapor deposition device

Publications (2)

Publication Number Publication Date
JPS62287068A JPS62287068A (en) 1987-12-12
JPH0533304B2 true JPH0533304B2 (en) 1993-05-19

Family

ID=15080886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13241786A Granted JPS62287068A (en) 1986-06-06 1986-06-06 Ion beam vapor deposition device

Country Status (1)

Country Link
JP (1) JPS62287068A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3031551B2 (en) * 1988-08-12 2000-04-10 凸版印刷株式会社 Method for producing vapor-deposited film having gas barrier properties
KR19990047679A (en) * 1997-12-05 1999-07-05 박호군 Apparatus for Surface Treatment of Materials Using Ion Beams
CN102471881A (en) * 2009-08-06 2012-05-23 富士电机株式会社 Apparatus for producing a thin-film lamination
JP6306437B2 (en) * 2014-05-31 2018-04-04 国立大学法人山梨大学 Vertical deposition system
CN109957752B (en) * 2017-12-26 2022-10-28 佳能特机株式会社 Substrate processing apparatus, method of controlling the same, film forming apparatus, and method of manufacturing electronic component
JP6567119B1 (en) * 2018-03-27 2019-08-28 キヤノントッキ株式会社 Substrate processing apparatus, control method therefor, film forming apparatus, and electronic component manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100675A (en) * 1981-12-11 1983-06-15 Mitsubishi Heavy Ind Ltd Method and device for continuous vapor deposition
JPS6134173A (en) * 1984-07-24 1986-02-18 Agency Of Ind Science & Technol Production of high-hardness boron nitride film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100675A (en) * 1981-12-11 1983-06-15 Mitsubishi Heavy Ind Ltd Method and device for continuous vapor deposition
JPS6134173A (en) * 1984-07-24 1986-02-18 Agency Of Ind Science & Technol Production of high-hardness boron nitride film

Also Published As

Publication number Publication date
JPS62287068A (en) 1987-12-12

Similar Documents

Publication Publication Date Title
US6570172B2 (en) Magnetron negative ion sputter source
EP0595624B1 (en) Film forming apparatus for filling fine pores of a substrate
US6352627B2 (en) Method and device for PVD coating
US6337005B2 (en) Depositing device employing a depositing zone and reaction zone
US3649502A (en) Apparatus for supported discharge sputter-coating of a substrate
JPH0533304B2 (en)
JPH0519328Y2 (en)
JP4982004B2 (en) Protection plate device
JPH09511792A (en) Device for coating a substrate with a material vapor in a negative pressure or vacuum
JPS60251269A (en) Method and apparatus for ionic plating
JPS6324068A (en) Continuous vacuum deposition plating device
JPS63255366A (en) Method for coating conductive film on insulating substrate
JPS60255972A (en) Thin film vapor deposition apparatus
JPH0784650B2 (en) Vacuum deposition method and vacuum deposition apparatus
JPH03191054A (en) Thin film formation
JP2604853B2 (en) Method of forming through hole in circuit board
KR100193365B1 (en) How to Form Titanium Nitride Film on Metal Surface
JPH03126868A (en) Inline type film forming device
Morimoto et al. Ion Plating Apparatus
JPH04246168A (en) Method and apparatus for forming compound thin film
JPS6140767Y2 (en)
JPH0635653B2 (en) Ion deposition thin film forming equipment
JPS62267464A (en) Apparatus for forming thin film by ionic vapor deposition
JPH02104661A (en) Thin film forming device
JPH0742580B2 (en) Film forming equipment