JPH0519328Y2 - - Google Patents
Info
- Publication number
- JPH0519328Y2 JPH0519328Y2 JP1986086822U JP8682286U JPH0519328Y2 JP H0519328 Y2 JPH0519328 Y2 JP H0519328Y2 JP 1986086822 U JP1986086822 U JP 1986086822U JP 8682286 U JP8682286 U JP 8682286U JP H0519328 Y2 JPH0519328 Y2 JP H0519328Y2
- Authority
- JP
- Japan
- Prior art keywords
- evaporation
- deposited
- evaporated
- vacuum chamber
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001704 evaporation Methods 0.000 claims description 108
- 230000008020 evaporation Effects 0.000 claims description 105
- 239000000463 material Substances 0.000 claims description 56
- 150000002500 ions Chemical class 0.000 claims description 42
- 238000010891 electric arc Methods 0.000 claims description 9
- 230000008021 deposition Effects 0.000 claims description 5
- 238000007740 vapor deposition Methods 0.000 description 16
- 239000010409 thin film Substances 0.000 description 14
- 238000010884 ion-beam technique Methods 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000428 dust Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
この考案は、金属シートの表面に薄膜を形成す
るイオンビーム蒸着装置に関するものである。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an ion beam evaporation apparatus for forming a thin film on the surface of a metal sheet.
従来より、金属シートの表面に薄膜を形成して
シート表面の改質(硬度向上、耐摩耗性向上、耐
食性向上、摩擦係数低減、色調光沢改善)を行な
つている。
Conventionally, a thin film is formed on the surface of a metal sheet to modify the sheet surface (improve hardness, improve abrasion resistance, improve corrosion resistance, reduce coefficient of friction, improve color tone and gloss).
このような薄膜の形成は、第3図に示すイオン
ビーム蒸着装置により行なつている。図におい
て、40は鋼板等の金属シートからなる被蒸着部
材であり、真空槽42内をローラ44により矢印
方向に水平移動する。また、真空槽42内には、
被蒸着部材40の下方において、被蒸着部材40
の搬送方向に蒸発源46、イオン源48、蒸発源
50が交互に並んで設けられている。蒸発源4
6,50は、電子銃(図示せず)から電子ビーム
を照射して容器46a,50a内の蒸着材料(例
えばAl)52を電子ビーム加熱することで蒸着
材料52を蒸気化させるものである。また、イオ
ン源48は、例えばAr等の元素のイオンを被蒸
着部材40に向けて加速して照射するものであ
る。 Formation of such a thin film is carried out using an ion beam evaporation apparatus shown in FIG. In the figure, reference numeral 40 denotes a member to be deposited made of a metal sheet such as a steel plate, and is moved horizontally within the vacuum chamber 42 by rollers 44 in the direction of the arrow. Moreover, inside the vacuum chamber 42,
Below the member 40 to be deposited, the member 40 to be deposited
An evaporation source 46, an ion source 48, and an evaporation source 50 are arranged alternately in the transport direction. Evaporation source 4
Reference numerals 6 and 50 irradiate an electron beam from an electron gun (not shown) to heat the evaporation material (for example, Al) 52 in the containers 46a and 50a with the electron beam, thereby vaporizing the evaporation material 52. Further, the ion source 48 accelerates and irradiates ions of an element such as Ar toward the member 40 to be evaporated.
次に、被蒸着部材40の下面に薄膜を形成する
動作を説明する。 Next, the operation of forming a thin film on the lower surface of the member to be deposited 40 will be explained.
まず、蒸発源46より蒸発した蒸着材料が被
蒸着部材40の下面に蒸着し、厚さ300Å程度
の蒸着層を形成する。 First, the evaporation material evaporated from the evaporation source 46 is deposited on the lower surface of the member 40 to be evaporated, forming a evaporation layer with a thickness of about 300 Å.
次に、イオン源48よりで形成した蒸着層
に向けて30keV程度のエネルギをもつたArイ
オンを1015個/cm2程度照射して蒸着層に注入
し、被蒸着部材40の下面にAlと被蒸着部材
40の構成原子とが混合したミキシング層を形
成する。 Next, about 10 15 Ar ions/cm 2 with an energy of about 30 keV are irradiated from the ion source 48 toward the vapor deposition layer formed, and injected into the vapor deposition layer, so that Al is formed on the lower surface of the member 40 to be vapor deposited. A mixing layer is formed in which constituent atoms of the member 40 to be vapor-deposited are mixed.
さらに、蒸発源50より蒸着材料52を蒸気
化して、で形成したミキシング層の上に更に
Al蒸着を行い、厚さ3μm程度の薄膜を形成す
る。 Further, a deposition material 52 is vaporized from an evaporation source 50 and deposited on the mixing layer formed in step 2.
Al is evaporated to form a thin film with a thickness of about 3 μm.
以上のようにして、例えば耐腐食性アルミ皮覆
鋼板が形成される。 In the manner described above, for example, a corrosion-resistant aluminum coated steel plate is formed.
しかし、このように構成されたイオンビーム蒸
着装置によると、蒸着源46,50およびイオン
源48が水平に搬送される被蒸着部材40の下方
に配設されているので、蒸発源46,50から蒸
発した蒸着材料52がごみとしてイオン源48内
に落下し、イオン源48が汚れやすく、イオン源
48の清浄に手間がかかるという問題があつた。
However, according to the ion beam evaporation apparatus configured in this way, the evaporation sources 46, 50 and the ion source 48 are disposed below the member to be evaporated 40 that is transported horizontally, so that There was a problem in that the evaporated deposition material 52 fell into the ion source 48 as dust, making the ion source 48 easily dirty and requiring time and effort to clean the ion source 48.
この考案の目的は、イオン源に蒸発した蒸着材
料がごみとして落下せず、保守が容易に行なえる
イオンビーム蒸着装置を提供することである。 The purpose of this invention is to provide an ion beam evaporation apparatus that prevents evaporated material from falling into the ion source as dust and is easy to maintain.
この考案のイオンビーム蒸着装置は、真空槽
と、
この真空槽内でシート状の被蒸着部材を水平に
搬送する搬送手段と、
前記真空槽内において前記被蒸着部材の上方
に、前記被蒸着部材に蒸発面が対向した状態に設
けられ、陰極となる蒸着材料および陽極となる前
記真空槽間のアーク放電による発熱で蒸着材料を
蒸発させるとともにアークプラズマにより蒸発し
た蒸着材料をイオン化する蒸発源と、
前記真空槽と前記被蒸着部材との間にバイアス
電圧を印加し前記イオン化した蒸着材料を前記被
蒸着部材に引付けるバイアス電源と、
前記被蒸着部材の上方かつ搬送方向下手側にお
いて前記真空槽に設けられ前記被蒸着部材の表面
に蒸着したイオンを照射するイオン源とを備えた
ものである。
The ion beam evaporation apparatus of this invention includes a vacuum chamber, a conveyance means for horizontally conveying a sheet-like member to be deposited within the vacuum chamber, and a member to be deposited above the member to be deposited in the vacuum chamber. an evaporation source, which is provided with evaporation surfaces facing each other, and evaporates the evaporation material by heat generated by arc discharge between the evaporation material serving as a cathode and the vacuum chamber serving as an anode, and ionizes the evaporation material evaporated by arc plasma; a bias power source that applies a bias voltage between the vacuum chamber and the member to be evaporated to attract the ionized evaporation material to the member to be evaporated; and an ion source that irradiates the surface of the member to be vapor-deposited with ions that have been vapor-deposited.
この考案の構成によれば、水平に搬送する被蒸
着部材の上方に蒸発源とイオン源とを配置したこ
とにより、蒸発した蒸着材料がごみとしてイオン
源に落下せずイオン源が汚れにくくなり、保守を
容易に行なうことができる。
According to the configuration of this invention, by arranging the evaporation source and the ion source above the member to be evaporated that is being conveyed horizontally, the evaporated evaporation material does not fall into the ion source as dust, making the ion source less likely to become contaminated. Maintenance can be easily performed.
また、蒸発源の蒸発面を被蒸着部材に対向さ
せ、蒸発源において陰極となる蒸着材料および陽
極となる真空槽間のアーク放電による発熱で蒸着
材料を蒸発させるとともにアークプラズマにより
蒸発した蒸着材料をイオン化し、さらにバイアス
電源によつてイオン化した蒸着材料を被蒸着部材
に引付けるようにしたことによつて、蒸発源から
蒸発した蒸着材料を効率よく被蒸着部材に蒸着さ
せることができ、蒸発源を被蒸着部材の上方に位
置させることによる蒸着効率の低下の問題は生じ
ない。 In addition, the evaporation surface of the evaporation source is placed to face the member to be evaporated, and the evaporation material is evaporated by the heat generated by the arc discharge between the evaporation material that becomes the cathode and the vacuum chamber that becomes the anode in the evaporation source, and the evaporation material that has been evaporated by the arc plasma is evaporated. By ionizing the evaporation material and drawing the ionized evaporation material to the member to be evaporated using a bias power supply, the evaporation material evaporated from the evaporation source can be efficiently deposited onto the member to be evaporated, and the evaporation source There is no problem of decrease in vapor deposition efficiency due to positioning above the member to be vapor deposited.
このように、蒸発源を被蒸着部材の上方に位置
させた状態で蒸発源の蒸発面を被蒸着面に対向さ
せることができるのは、つまり蒸発源の蒸発面を
下向きにできるのは、蒸着材料の全体が溶融する
のではなく、蒸発面のアーク放電によつて生じる
アークスポツトの部分のごく少量のみが高温にな
つて溶融し、蒸発面を下向きにしても溶融した蒸
着材料が垂れ落ちることがないからである。 In this way, the evaporation surface of the evaporation source can be made to face the surface to be evaporated while the evaporation source is positioned above the member to be evaporated, that is, the evaporation surface of the evaporation source can be directed downward. The entire material does not melt, but only a small amount of the arc spot generated by arc discharge on the evaporation surface becomes high temperature and melts, and the molten evaporation material drips even if the evaporation surface is facing downward. This is because there is no.
この考案の一実施例を第1図および第2図に基
づいて説明する。このイオンビーム蒸着装置は、
第1図に示すように、真空槽10内にシート状の
被蒸着部材14を搬送手段12により水平に搬送
し、真空槽10内で被蒸着部材14の上方に蒸発
源16,16′を設け、蒸発源16の被蒸着部材
14の搬送方向下手側において真空槽10内にイ
オン源18を設けたものである。
An embodiment of this invention will be described based on FIGS. 1 and 2. This ion beam evaporation equipment is
As shown in FIG. 1, a sheet-shaped member to be evaporated 14 is transported horizontally into a vacuum chamber 10 by a conveying means 12, and evaporation sources 16, 16' are provided above the member to be evaporated 14 in the vacuum chamber 10. , an ion source 18 is provided in the vacuum chamber 10 on the downstream side of the evaporation source 16 in the direction of conveyance of the member to be evaporated 14 .
蒸発源16,16′は、被蒸着部材14の上方
に位置した陰極24,24′となる蒸着材料およ
び陽極となる真空槽10間のアーク放電による発
熱で蒸着材料からなる陰極24,24′を蒸発さ
せるとともにアークプラズマにより蒸発した蒸着
材料をイオン化するものである。イオン化した蒸
着材料は、バイアス電源34によつて真空槽10
と被蒸着部材14との間に印加したバイアス電圧
により被蒸着部材14に引付けられる。 The evaporation sources 16, 16' generate cathodes 24, 24' made of the evaporation material by heat generated by arc discharge between the evaporation material, which becomes the cathodes 24, 24', located above the member 14 to be evaporated, and the vacuum chamber 10, which becomes the anode. This is to ionize the evaporated material by evaporating it and using arc plasma. The ionized vapor deposition material is transferred to the vacuum chamber 10 by the bias power supply 34.
It is attracted to the member to be evaporated 14 by the bias voltage applied between the member 14 and the member to be evaporated.
また、イオン源18は、被蒸着部材14の表面
に蒸着した蒸着層にイオンを照射するものであ
る。 Further, the ion source 18 irradiates the vapor deposition layer deposited on the surface of the member 14 to be vapor-deposited with ions.
真空層10は金属等の導電性材料からなり、左
右に補助真空槽20,22が形成されており、真
空槽10内を所定の真空度に維持している。被蒸
着部材14は金属シート等からなり、真空槽10
に設けたローラからなる搬送手段12によつて、
真空槽10内を右から左へ水平に搬送される。 The vacuum layer 10 is made of a conductive material such as metal, and auxiliary vacuum chambers 20 and 22 are formed on the left and right sides to maintain the inside of the vacuum chamber 10 at a predetermined degree of vacuum. The member to be evaporated 14 is made of a metal sheet or the like, and is placed in the vacuum chamber 10.
By means of a conveyance means 12 consisting of rollers provided in
It is transported horizontally within the vacuum chamber 10 from right to left.
蒸発源16,16′とイオン源18は、真空槽
10内において被蒸着部材14の上方に並んで設
けられており、被蒸着部材14の上面に薄膜を形
成する。各蒸着源16,16′は、真空槽10に
固定されAl等の蒸着材料でできた陰極24,2
4′と、陰極24,24′の中央部に設けたトリガ
電極26,26′と、陰極24,24′に負極を接
続し正極を陽極である真空槽10およびトリガ電
極26,26′に接続したアーク電源28,2
8′と、このアーク電源28,28′とトリガ電極
26,26′との間に設けた抵抗30,30′と、
陰極24,24′を接地電位にある真空槽10よ
り絶縁するための絶縁物31,31′とから構成
されている。また、イオン源18は、例えばAr
イオンをマルチアパーチヤ32から引き出して加
速し被蒸着部材14に照射するものである。な
お、バイアス電源34は、負極を被蒸着部材14
に接し正極を真空槽10に接続した直流の電源か
らなる。また、第2図は、イオンビーム蒸着装置
の要部斜視図を示している。 The evaporation sources 16 and 16' and the ion source 18 are arranged above the member 14 to be evaporated in the vacuum chamber 10, and form a thin film on the upper surface of the member 14 to be evaporated. Each vapor deposition source 16, 16' has a cathode 24, 2 fixed to the vacuum chamber 10 and made of a vapor deposition material such as Al.
4', a trigger electrode 26, 26' provided in the center of the cathode 24, 24', a negative electrode connected to the cathode 24, 24', and a positive electrode connected to the vacuum chamber 10, which is an anode, and the trigger electrode 26, 26'. arc power supply 28,2
8', resistors 30, 30' provided between the arc power sources 28, 28' and the trigger electrodes 26, 26',
It consists of insulators 31, 31' for insulating the cathodes 24, 24' from the vacuum chamber 10, which is at ground potential. Further, the ion source 18 is, for example, Ar
Ions are extracted from the multi-aperture 32, accelerated, and irradiated onto the member 14 to be deposited. Note that the bias power supply 34 connects the negative electrode to the member 14 to be evaporated.
It consists of a DC power supply whose positive electrode is connected to the vacuum chamber 10. Moreover, FIG. 2 shows a perspective view of essential parts of the ion beam evaporation apparatus.
次に、被蒸着部材14の上面に薄膜を形成する
動作について説明する。 Next, the operation of forming a thin film on the upper surface of the member to be vapor-deposited 14 will be explained.
まず、図示しない駆動源につながれた一つま
たは複数個の搬送手段12を駆動して被蒸着部
材14を右から左へ搬送する。 First, one or more transport means 12 connected to a drive source (not shown) is driven to transport the member 14 to be deposited from right to left.
蒸発源16より蒸着材料を蒸気化して被蒸着
部材14の上面に蒸着し、厚さ300Å程度の蒸
着層を形成する。蒸着材料の蒸着は、次のよう
にして行なう。まず、トリガ電極26と陰極2
4との間にアーク放電が起きて蒸着材料が蒸発
し、さらにこの蒸発した蒸着材料を介して蒸着
材料からなる陰極24と陽極である真空槽10
との間にアーク放電が発生して蒸着材料が蒸発
してイオン化する。蒸発してイオン化した蒸着
材料は、バイアス電源34によるバイアス電圧
によつて、被蒸着部材14の表面に引付けられ
被蒸着部材14の上面に蒸着して、Alの蒸着
層を形成する。 The evaporation material is evaporated from the evaporation source 16 and deposited on the upper surface of the member 14 to be evaporated to form a evaporated layer with a thickness of about 300 Å. The vapor deposition material is vapor-deposited as follows. First, the trigger electrode 26 and the cathode 2
4, the vapor deposition material is evaporated, and the vapor deposition material is further passed through the cathode 24 made of the vapor deposition material and the vacuum chamber 10 which is the anode.
An arc discharge occurs between the two and the vapor deposition material is evaporated and ionized. The vaporized and ionized vapor deposition material is attracted to the surface of the member 14 to be vapor-deposited by the bias voltage from the bias power supply 34, and is vapor-deposited on the upper surface of the member 14 to be vapor-deposited, thereby forming a vapor-deposited layer of Al.
イオン源18よりで形成した蒸着層に向け
て例えば30keVのエネルギをもつたArイオン
を1015個/cm2程度照射して蒸着層に注入し、被
蒸着部材14の表面にAlと被蒸着部材14の
構成原子とが混合したミキシング層を形成す
る。 For example, about 10 15 Ar ions/cm 2 with an energy of 30 keV are irradiated onto the deposited layer formed by the ion source 18 and injected into the deposited layer. A mixing layer containing 14 constituent atoms is formed.
次に、蒸発源16′より蒸着材料を蒸気化し
てで形成したミキシング層に蒸着し、厚さ
3μm程度の薄膜を形成する。ミキシング層は
Alと被蒸着部材14の構成原子とが混合した
ものであり、Alイオンはミキシング層に強固
に蒸着する。 Next, the evaporation material is evaporated from the evaporation source 16' and deposited on the mixing layer formed by the evaporation material to a thickness of
Forms a thin film of about 3μm. The mixing layer
It is a mixture of Al and constituent atoms of the member 14 to be deposited, and Al ions are firmly deposited on the mixing layer.
以上のようにして、被蒸着部材14の上面に
Alの耐腐食性薄膜を形成する。 In the above manner, the upper surface of the member 14 to be vapor-deposited is
Forms a corrosion-resistant thin film of Al.
このように構成されたイオンビーム蒸着装置に
よると、水平に搬送する被蒸着部材14の上方に
蒸発源16,16′およびイオン源18を配置し
たので、蒸発した蒸着材料がイオン源18に落下
しない。また、被蒸着部材14の上方に蒸発源1
6,16′ならびにイオン源18を配設し、被蒸
着部材14の上面に薄膜を形成するようにしたの
で、被蒸着部材14の下面に適宜搬送手段12を
設けて被蒸着部材14を受けることができる。し
たがつて、被蒸着部材14の上面においては、蒸
発源16,16′の前後における搬送手段12の
間隔を大きく取ることができる。したがつて、蒸
発源16,16′から蒸発した蒸着材料が搬送手
段12に付着し難くなる。このように、蒸発した
蒸着材料がごみとしてイオン源18に落下せずイ
オン源18が汚れにくく、かつ搬送手段12にも
付着しにくくなり、清浄等の保守が容易に行なえ
る。 According to the ion beam evaporation apparatus configured in this way, the evaporation sources 16 and 16' and the ion source 18 are arranged above the member to be evaporated 14 that is being conveyed horizontally, so that the evaporated deposition material does not fall into the ion source 18. . In addition, an evaporation source 1 is placed above the member 14 to be evaporated.
6, 16' and the ion source 18 are arranged to form a thin film on the upper surface of the member to be evaporated 14. Therefore, the conveying means 12 is appropriately provided on the lower surface of the member to be evaporated 14 to receive the member to be evaporated 14. I can do it. Therefore, on the upper surface of the member 14 to be vapor-deposited, the distance between the conveying means 12 before and after the evaporation sources 16, 16' can be increased. Therefore, the evaporation material evaporated from the evaporation sources 16, 16' is less likely to adhere to the conveying means 12. In this way, the evaporated deposition material does not fall into the ion source 18 as dust, making the ion source 18 less likely to become dirty and less likely to adhere to the transport means 12, making maintenance such as cleaning easier.
また、蒸発源16,16′の蒸発面を被蒸着部
材14に対向させ、蒸発源16,16′において
陰極24,24′となる蒸着材料および陽極とな
る真空槽10間のアーク放電による発熱で蒸着材
料を蒸発させるとともにアークプラズマにより蒸
発した蒸着材料をイオン化し、さらにバイアス電
源34によつてイオン化した蒸着材料を被蒸着部
材14に引付けるようにしたことによつて、蒸発
源16,16′から蒸発した蒸着材料を効率よく
被蒸着部材14に蒸着させることができ、蒸発源
16,16′を被蒸着部材14の上方に位置させ
ることによる蒸着効率の低下の問題が生じない。 In addition, the evaporation surfaces of the evaporation sources 16 and 16' are arranged to face the member to be evaporated 14, and heat generation due to arc discharge between the evaporation materials that will become the cathodes 24 and 24' and the vacuum chamber 10 that will become the anode is carried out at the evaporation sources 16 and 16'. By evaporating the evaporation material, ionizing the evaporated evaporation material by arc plasma, and drawing the ionized evaporation material to the member 14 by the bias power supply 34, the evaporation sources 16, 16' The evaporation material evaporated from the evaporation material can be efficiently deposited on the member 14 to be evaporated, and the problem of reduction in evaporation efficiency due to positioning the evaporation sources 16, 16' above the member 14 to be evaporated does not occur.
しかも、蒸着材料の溶融は、アーク放電によつ
て行なうので、蒸着材料は放電した部分しか溶融
しない。したがつて、蒸発源16,16′を被蒸
着部材14の上方に下向きに配置しても蒸着材料
がこぼれたりしない。 Moreover, since the vapor deposition material is melted by arc discharge, only the portion of the vapor deposition material where the discharge occurs is melted. Therefore, even if the evaporation sources 16, 16' are disposed above the member 14 to be evaporated and facing downward, the evaporation material will not spill out.
また、ミキシング層形成に必要なイオン源18
のイオンビーム量(約1015個/cm2)は、普通の
TiN膜等の形成に必要なイオンビーム量に比べ
て非常に少なく、ミキシング層形成における所要
時間が少なくて済む。 In addition, the ion source 18 necessary for forming the mixing layer
The amount of ion beam (approximately 10 15 ions/cm 2 ) is
This is much smaller than the amount of ion beam required to form a TiN film, etc., and the time required to form the mixing layer is short.
さらに、蒸発源16とイオン源18によつて被
蒸着部材14にミキシング層を形成した後、さら
に蒸発源16′によつてAl蒸着を行なうので、密
着性にすぐれた薄膜を形成することができる。 Further, after the mixing layer is formed on the member to be evaporated 14 by the evaporation source 16 and the ion source 18, Al evaporation is performed by the evaporation source 16', so that a thin film with excellent adhesion can be formed. .
なお、蒸発源16とイオン源18のみを設けた
イオンビーム蒸着装置であつてもよく、また蒸発
源による蒸着作業の前に、イオン源による被蒸着
部材14の表面のクリーニングと活性化を行なつ
てもよい。さらに、本実施例では被蒸着部材14
の表面にAlの薄膜を形成したが、蒸発源からTi
を蒸発させイオン源でNイオンを照射してTiN
の金属窒化物の薄膜の形成したり、あるいは蒸発
源からTiを蒸発させイオン源でCイオンを照射
してTiCの金属炭化物の薄膜を形成できることは
勿論である。 Note that the ion beam evaporation apparatus may be an ion beam evaporation apparatus provided with only the evaporation source 16 and the ion source 18, and the surface of the member to be evaporated 14 may be cleaned and activated using the ion source before the evaporation operation using the evaporation source. You can. Furthermore, in this embodiment, the member to be evaporated 14
Although a thin film of Al was formed on the surface of the Ti
TiN is evaporated and irradiated with N ions using an ion source.
Of course, a thin film of metal nitride of TiC can be formed, or a thin film of metal carbide of TiC can be formed by evaporating Ti from an evaporation source and irradiating C ions with an ion source.
〔考案の効果〕
この考案のイオンビーム蒸着装置によれば、水
平に搬送する被蒸着部材の上方に蒸発源とイオン
源を配置したので蒸発した蒸着材料がごみとして
イオン源に落下せず、保守が容易に行なえるとい
う効果がある。[Effects of the invention] According to the ion beam evaporation apparatus of this invention, since the evaporation source and the ion source are arranged above the member to be evaporated that is being conveyed horizontally, the evaporated evaporation material does not fall into the ion source as dust, making maintenance easier. This has the effect that it can be easily performed.
また、蒸発源の蒸発面を被蒸着部材に対向さ
せ、蒸発源において陰極となる蒸着材料および陽
極となる真空槽間のアーク放電による発熱で蒸着
材料を蒸発させるとともにアークプラズマにより
蒸発した蒸着材料をイオン化し、さらにバイアス
電源によつてイオン化した蒸着材料を被蒸着部材
に引付けるようにしたことによつて、蒸発源から
蒸発した蒸着材料を効率よく被蒸着部材に蒸着さ
せることができ、蒸発源を被蒸着部材の上方に位
置させることによる蒸着効率の低下の問題は生じ
ない。 In addition, the evaporation surface of the evaporation source is placed to face the member to be evaporated, and the evaporation material is evaporated by the heat generated by the arc discharge between the evaporation material that becomes the cathode and the vacuum chamber that becomes the anode in the evaporation source, and the evaporation material that has been evaporated by the arc plasma is evaporated. By ionizing the evaporation material and drawing the ionized evaporation material to the member to be evaporated using a bias power supply, the evaporation material evaporated from the evaporation source can be efficiently deposited onto the member to be evaporated, and the evaporation source There is no problem of decrease in vapor deposition efficiency due to positioning above the member to be vapor deposited.
第1図はこの考案の一実施例の概略図、第2図
はその要部斜視図、第3図は従来例の斜視図であ
る。
10……真空槽、12……搬送手段、14……
被蒸着部材、16,16′……蒸発源、18……
イオン源、34……バイアス電源。
FIG. 1 is a schematic diagram of an embodiment of this invention, FIG. 2 is a perspective view of its essential parts, and FIG. 3 is a perspective view of a conventional example. 10... Vacuum chamber, 12... Transport means, 14...
Evaporation target member, 16, 16'... Evaporation source, 18...
Ion source, 34...bias power supply.
Claims (1)
搬送する搬送手段と、 前記真空槽内において前記被蒸着部材の上方
に、前記被蒸着部材に蒸発面が対向した状態に設
けられ、陰極となる蒸着材料および陽極となる前
記真空槽間のアーク放電による発熱で蒸着材料を
蒸発させるとともにアークプラズマにより蒸発し
た蒸着材料をイオン化する蒸発源と、 前記真空槽と前記被蒸着部材との間にバイアス
電圧を印加し前記イオン化した蒸着材料を前記被
蒸着部材に引付けるバイアス電源と、 前記被蒸着部材の上方かつ搬送方向下手側にお
いて前記真空槽に設けられ前記被蒸着部材の表面
に蒸着したイオンを照射するイオン源とを備えた
イオンビーム蒸着装置。[Scope of Claim for Utility Model Registration] A vacuum chamber, a conveyance means for horizontally conveying a sheet-like member to be deposited within the vacuum chamber, and a means for horizontally transporting a sheet-like member to be deposited in the vacuum chamber, above the member to be deposited in the vacuum chamber. an evaporation source that is provided with evaporation surfaces facing each other and evaporates the evaporation material by heat generated by arc discharge between the evaporation material serving as a cathode and the vacuum chamber serving as an anode, and ionizes the evaporation material evaporated by arc plasma; a bias power supply that applies a bias voltage between the vacuum chamber and the member to be deposited to attract the ionized deposition material to the member to be deposited; and a bias power supply provided in the vacuum chamber above the member to be deposited and on the downstream side in the conveyance direction. and an ion source that irradiates the surface of the member to be vapor-deposited with ions deposited on the surface of the member to be vapor-deposited.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986086822U JPH0519328Y2 (en) | 1986-06-06 | 1986-06-06 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986086822U JPH0519328Y2 (en) | 1986-06-06 | 1986-06-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62198268U JPS62198268U (en) | 1987-12-17 |
JPH0519328Y2 true JPH0519328Y2 (en) | 1993-05-21 |
Family
ID=30943480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1986086822U Expired - Lifetime JPH0519328Y2 (en) | 1986-06-06 | 1986-06-06 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0519328Y2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58100675A (en) * | 1981-12-11 | 1983-06-15 | Mitsubishi Heavy Ind Ltd | Method and device for continuous vapor deposition |
JPS6134173A (en) * | 1984-07-24 | 1986-02-18 | Agency Of Ind Science & Technol | Production of high-hardness boron nitride film |
-
1986
- 1986-06-06 JP JP1986086822U patent/JPH0519328Y2/ja not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58100675A (en) * | 1981-12-11 | 1983-06-15 | Mitsubishi Heavy Ind Ltd | Method and device for continuous vapor deposition |
JPS6134173A (en) * | 1984-07-24 | 1986-02-18 | Agency Of Ind Science & Technol | Production of high-hardness boron nitride film |
Also Published As
Publication number | Publication date |
---|---|
JPS62198268U (en) | 1987-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100279344B1 (en) | Thin film forming apparatus for filling the micropores of the substrate | |
US6352627B2 (en) | Method and device for PVD coating | |
JPS6483656A (en) | Method and vacuum painting machine for applying film to base layer | |
US6337005B2 (en) | Depositing device employing a depositing zone and reaction zone | |
US3649502A (en) | Apparatus for supported discharge sputter-coating of a substrate | |
JPH0533304B2 (en) | ||
JPH0519328Y2 (en) | ||
JPS6324068A (en) | Continuous vacuum deposition plating device | |
JPS5842771A (en) | Ion planting device | |
JPS63255366A (en) | Method for coating conductive film on insulating substrate | |
JPH04191364A (en) | Method and device for ion plating | |
JPH0784650B2 (en) | Vacuum deposition method and vacuum deposition apparatus | |
Morimoto et al. | Ion Plating Apparatus | |
JPS60255972A (en) | Thin film vapor deposition apparatus | |
JPS6227564A (en) | Ion plating device | |
JP2604853B2 (en) | Method of forming through hole in circuit board | |
JP3291088B2 (en) | Coating method | |
JPH03191054A (en) | Thin film formation | |
JPS6140767Y2 (en) | ||
JPH0635653B2 (en) | Ion deposition thin film forming equipment | |
JPH07122131B2 (en) | Arc type evaporation source | |
JPH06145979A (en) | Film forming device | |
KR100326343B1 (en) | Apparatus and method for ion-cleaning physical vapor deposition coating by using large current electron beam shutter | |
JPS6227565A (en) | Ion plating device | |
JPS62109972A (en) | Ion plating device |