JPH05332944A - Optical system for detecting for foreign matter on color filter - Google Patents

Optical system for detecting for foreign matter on color filter

Info

Publication number
JPH05332944A
JPH05332944A JP16195292A JP16195292A JPH05332944A JP H05332944 A JPH05332944 A JP H05332944A JP 16195292 A JP16195292 A JP 16195292A JP 16195292 A JP16195292 A JP 16195292A JP H05332944 A JPH05332944 A JP H05332944A
Authority
JP
Japan
Prior art keywords
light
foreign matter
color filter
reflected light
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16195292A
Other languages
Japanese (ja)
Other versions
JP2987007B2 (en
Inventor
Motoo Hourai
泉雄 蓬莱
Noboru Kato
昇 加藤
Yutaka Kumazawa
豊 熊沢
Tadahiro Furukawa
忠宏 古川
Ichiro Betsumiya
一郎 別宮
Shinji Mizumoto
伸二 水元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo Printing Co Ltd
Hitachi High Tech Corp
Original Assignee
Kyodo Printing Co Ltd
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo Printing Co Ltd, Hitachi Electronics Engineering Co Ltd filed Critical Kyodo Printing Co Ltd
Priority to JP16195292A priority Critical patent/JP2987007B2/en
Publication of JPH05332944A publication Critical patent/JPH05332944A/en
Application granted granted Critical
Publication of JP2987007B2 publication Critical patent/JP2987007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To simplify the conventional optical system of a drive for detecting foreign matters on a color filter. CONSTITUTION:A set of light projection system 3 and light reception system 4 are provided and a light projection angle thetaT of the light projection system 34 and a light reception angle thetaR of the light reception system 4 are set to an identical angle within 75 deg.-85 deg. for the surface of a color filter 1. A half mirror 42 is provided at the light reception system 4 for applying one part of the reflection light on the surface which is divided into two portions, a first space filter 43 which eliminated a regular reflection light LR is provided, a first light receiver 44 which receives axis-deviated reflection lights LR' and LR'' whose axis deviated for the regular reflection light LR and then detects an angular protrusion which is formed by a buried foreign object and a second space filter 45 which applies the other of the divided reflection light and allows only the regular reflection light LR to be transmitted are provided, and then a second light receiver 4 which detects an adhering object by detecting reduction in intensity of the regular reflection light LR which is transmitted through it is provided, thus forming only a simple set of light projection/reception system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、カラー表示液晶パネ
ル用のカラーフィルタに対する異物検出光学系に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foreign matter detecting optical system for a color filter for a color display liquid crystal panel.

【0002】[0002]

【従来の技術】液晶とその制御技術の進歩により、小電
力でかなりの大きさの画面にカラー表示ができる液晶パ
ネルが開発され、これにはカラーフィルタが使用されて
いる。図3(a) はカラーフィルタ1の一例を示すもの
で、ガラス板11の表面にクロームの薄膜12が蒸着され、
これに微細な角孔が規則的な配列で多数穿孔され、各角
孔にR,GおよびBで示す3原色の画素13がサイクリッ
クに植設されている。画素13の配列方法には各種がある
が、図はRGBが三角形の頂点となるデルタ配列を示
す。(b) はカラーフィルタ1の断面を示し、各画素が植
設されたカラーフィルタ1の全面に、ポリイミドやアク
リルなどの透明材が微小な厚さでコーティングされ、ト
ップコート14とよばれる保護膜が形成される。このカラ
ーフィルタ1には、図示を省略するが、微小な厚さの配
向膜や液晶膜、薄膜トランジスタ(TFT)などが積層
されてカラー液晶パネルが構成される。
2. Description of the Related Art With the progress of liquid crystal and its control technology, a liquid crystal panel capable of color display on a screen of considerable size with a small amount of power has been developed, and a color filter is used for this. FIG. 3A shows an example of the color filter 1, in which a chrome thin film 12 is deposited on the surface of a glass plate 11,
A large number of fine square holes are formed in a regular array in this, and pixels 13 of three primary colors indicated by R, G, and B are cyclically planted in each square hole. Although there are various methods for arranging the pixels 13, the drawing shows a delta array in which RGB is the apex of a triangle. (b) shows a cross section of the color filter 1, and a transparent film such as polyimide or acrylic is coated with a very small thickness on the entire surface of the color filter 1 in which each pixel is implanted. Is formed. Although not shown in the drawing, an alignment film, a liquid crystal film, a thin film transistor (TFT) and the like having a minute thickness are laminated on the color filter 1 to form a color liquid crystal panel.

【0003】さて、上記のカラーフィルタに異物が存在
し、その大きさが例えば数μm以上のときは、画素が不
明瞭となるばりでなく、異物が配向膜や液晶膜を連続的
に突き破ってTFTを破損することがある。TFTは各
画素に対応した個数が配列されているが、それぞれは回
路的に独立せず、多数個が相互に接続されているので、
1個のTFTの破損は1個のみにとどまらず、接続され
た一連のTFTの動作不良を招く。図4によりカラーフ
ィルタ1に存在する異物を説明する。(a) はトップコー
ト14をコーティングする前の状態を示し、異物をpと
し、p1 は画素13の中間に、p2 は画素の表面にそれぞ
れ付着した付着異物、またp3 は画素の内部に埋没した
埋没異物である。ここで注目すべきは、p3 により画素
の表面が上方に盛り上がって突起2を生じていることで
ある。次に、(b) は、トップコート14がコーティングさ
れ状態で、異物p1,p2,p3 はトップコート中に埋没
し、この場合もトップコートに突起2が発生している。
なお、異物p’はコーティングが終了後、トップコート
14に付着したものである。以上においては、各異物p1
〜p3,p' を球形と仮定したが、一般的には勿論球形で
なくて種々の形状の異形であるが、突起2は単純な山形
またはこれに近い形状をなし、これを山形突起とよぶこ
ととする。
When a foreign substance exists in the color filter and the size thereof is, for example, several μm or more, the pixel is not obscured, and the foreign substance continuously breaks through the alignment film or the liquid crystal film. It may damage the TFT. Although the number of TFTs corresponding to each pixel is arranged, each of them is not independent in a circuit, and a large number of TFTs are connected to each other.
The damage of one TFT is not limited to one, and causes a malfunction of a series of connected TFTs. Foreign matter existing in the color filter 1 will be described with reference to FIG. (a) shows the state before the top coat 14 is coated, where the foreign matter is p, p 1 is the middle of the pixel 13, p 2 is the foreign matter attached to the surface of the pixel, and p 3 is the inside of the pixel. It is a buried foreign substance buried in. What should be noted here is that the surface of the pixel rises upward due to p 3 to form the protrusion 2. Next, in (b), the foreign matter p 1 , p 2 , and p 3 are buried in the top coat in a state where the top coat 14 is coated, and in this case also, the protrusions 2 are formed on the top coat.
In addition, the foreign matter p'is a top coat after the coating is completed.
It is attached to 14. In the above, each foreign matter p 1
Although it is assumed that ~ p 3 and p'are spherical, in general, they are not spherical but have irregular shapes of various shapes, but the projection 2 has a simple mountain shape or a shape close to this, and this is called a mountain projection. I will call it.

【0004】以上の各異物に対して、従来はトップコー
トがコーティングされる前と後に、目視観察によりカラ
ーフィルタの全数検査を行い、検出された異物をできる
かぎり除去して良品とされている。しかし、目視検査は
非能率であり、個人差により検出ムラがある。これに対
して、従来から半導体ICのウェハなどの異物検査に使
用されている表面検査装置を適用することが考えられ
る。しかし、従来の表面検査装置は異物の散乱光を受光
する方式であって、上記の図4(b) のp1,p2,p3 のよ
うに、画素13またはトップコート14に埋没した異物は散
乱光を散乱しないため、検出が困難なことが実験により
判明した。これに対して、この発明の発明者により埋没
異物を検出する方法が考案され、先行技術として「平2-
324029号、カラーフィルタの埋没異物検出方法および異
物検査装置」が特許出願されている。図5により上記の
特許出願にかかる埋没異物検出方法を説明する。図5
(a) において、カラーフィルタ1の表面に対して投光角
θT で白色光束LT を投射する。表面が平滑であればそ
の正反射光LR は投光角θT に等しい正反射角θR の方
向をなすが、山形突起2があると反射方向が変化して軸
ズレ反射光LR'となり、その反射角はθR'となる。反射
角θR'の方向に受光器を設け、投射角θT に対する受光
器の最適受光角θr を求める実験がなされ、その結果に
よると、投射角θT を78°とした場合、受光角θr
83°のとき受光された軸ズレ反射光LR'がピーク値を
示すことが判明した。図5(b) はカラーフィルタ1の表
面を白色光束LT で走査してえられた受光器の検出信号
を示し、各画素13により振幅が変化する波形中に、山形
突起2に対するパルスpが突出しており、これを適当な
閾値で検出することにより埋没異物pを間接的に検出す
るものである。
Conventionally, before and after the top coat is coated on each of the above-mentioned foreign matters, 100% inspection of the color filters is performed by visual observation, and the detected foreign matters are removed as much as possible, and it is regarded as a good product. However, the visual inspection is inefficient, and there is uneven detection due to individual differences. On the other hand, it is conceivable to apply a surface inspection device that has been conventionally used for inspecting foreign substances such as a semiconductor IC wafer. However, the conventional surface inspection apparatus is a method of receiving scattered light of a foreign substance, and the foreign substance buried in the pixel 13 or the top coat 14 as shown by p 1 , p 2 and p 3 in FIG. 4B above. Experiments have found that is difficult to detect because it does not scatter scattered light. On the other hand, the inventor of the present invention has devised a method for detecting a buried foreign matter, and as a prior art, “flat 2-
No. 324029, “Built-in foreign matter detection method for color filter and foreign matter inspection apparatus” has been applied for a patent. The buried foreign matter detection method according to the above patent application will be described with reference to FIG. Figure 5
In (a), a white light flux L T is projected onto the surface of the color filter 1 at a projection angle θ T. If the surface is smooth, the regular reflection light L R has a direction of the regular reflection angle θ R equal to the projection angle θ T , but if the chevron projection 2 is present, the reflection direction changes and the axially displaced reflection light L R ' And its reflection angle becomes θ R '. An experiment was conducted to determine the optimum light-receiving angle θ r of the light-receiver with respect to the projection angle θ T by installing a light-receiver in the direction of the reflection angle θ R '. The results show that when the projection angle θ T is 78 °, the light-receiving angle is It was found that the axially displaced reflected light L R 'received when θ r was 83 ° had a peak value. FIG. 5B shows a detection signal of the photodetector obtained by scanning the surface of the color filter 1 with the white light flux L T. In the waveform in which the amplitude changes by each pixel 13, the pulse p for the chevron projection 2 is shown. It is projected, and the embedded foreign matter p is indirectly detected by detecting this with an appropriate threshold value.

【0005】さて、山形突起2は3次元の山形であるの
で、その断面は左右と前後の両側に傾斜面がある。これ
に対して、上記の実験では左側の傾斜面に対する軸ズレ
反射光LR'の最適受光角θr について述べたが、それ以
外の傾斜面はこの受光角θrでは必ずしも検出できない
とされた。そこで、実用されていね埋没異物検査装置で
は、左右の傾斜面を対象とする2組の投受光器を設け、
さらにカラーフィルタ1を回転して0°と90°の、都
合4方向で受光し、いずれかの方向で山形突起2を検出
するように構成されている。図6は実用の埋没異物検査
装置の光学系の概略構成を示し、2個の投光器3a,3b
を有する投光系3と、2個の受光器4a,4b を有する受
光系4を設け、山形突起2の左側の傾斜面に対して投光
器3a と受光器4a により、また右側の傾斜面に対して
投光器3b と受光器4b により、それぞれの軸ズレ反射
光LR'を受光する。カラーフィルタ1は載置台5に載置
され、移動回転機構6によりX、Y方向に交互に移動し
て白色光LT が全面に亘って走査され、左右の2方向に
対する検査がなされ、これが終了すると、移動回転機構
6によりカラーフィルタ1を90°回転して、前後の2
方向が検査されている。
Since the chevron projection 2 is a three-dimensional chevron, its cross section has inclined surfaces on the left and right sides and the front and back sides. On the other hand, in the above experiment, the optimum light receiving angle θ r of the off-axis reflected light L R ′ with respect to the left tilted surface was described, but it is considered that other tilted surfaces cannot always be detected at this light receiving angle θ r . .. Therefore, a buried foreign matter inspection apparatus that has not been put into practical use is provided with two sets of light emitters / receivers for the left and right inclined surfaces,
Further, the color filter 1 is rotated to receive light in four directions of 0 ° and 90 °, and the chevron projection 2 is detected in either direction. FIG. 6 shows a schematic configuration of an optical system of a practical buried foreign matter inspection apparatus, which shows two projectors 3a and 3b.
And a light receiving system 4 having two light receivers 4a and 4b are provided. The light emitting system 3a and the light receiver 4a are provided for the left inclined surface of the chevron projection 2 and the right light is provided for the right inclined surface. The light projector 3b and the light receiver 4b receive the respective axis-shifted reflected light L R '. The color filter 1 is mounted on the mounting table 5, and the moving and rotating mechanism 6 alternately moves in the X and Y directions to scan the entire surface with the white light L T , and the inspection is performed in the left and right directions. Then, the moving and rotating mechanism 6 rotates the color filter 1 by 90 °, and
Direction is being checked.

【0006】[0006]

【発明が解決しようとする課題】上記の光学系は、2組
の投受光系を必要とするため、構成がやや複雑なことが
欠点である。これを簡略化するために、前記した受光器
の最適受光角θr についてさらに検討を行った結果、投
光系と受光系を同一でかつ適切な高角度とすれば、上記
の2組の場合と同様に、1組の投受光系により山形突起
の検出が可能であることが判明した。ただし、左右方向
と前後方向に対しては、従来と同様にカラーフィルタ1
を回転して、0°と90°の2方向で測定する。なお、
異物検査装置は付着異物についても検出することが必要
で、このために投光系を兼用し、付着異物に対する受光
器を別を設けて2方向で受光する。この場合の検出は付
着異物の散乱光により正反射光の強度が低下することを
利用して行うことができる。この発明は、カラーフィル
タの異物検査装置の光学系を簡略化するためになされた
もので、上記の検討結果に基づき、山形突起2を検出す
る1組の投受光系と、その受光系に付着異物に対する受
光器を付加し、検査装置の移動回転機構6により、カラ
ーフィルタを0°と90°の2方向に回転し、埋没異物
と付着異物とをともに良好の検出する異物検出光学系を
提供することを目的とする。
The above-mentioned optical system requires two sets of light projecting and receiving systems, and thus has a drawback that the configuration is rather complicated. In order to simplify this, as a result of further studying the optimum light receiving angle θ r of the above-mentioned light receiver, if the light projecting system and the light receiving system have the same and appropriate high angle, in the case of the above two sets, It was found that the chevron projections can be detected by a pair of light emitting and receiving systems as in the above. However, for the left-right direction and the front-back direction, the color filter 1
Rotate and measure in two directions, 0 ° and 90 °. In addition,
The foreign matter inspection device also needs to detect the adhered foreign matter, and for this purpose also serves as a light projecting system, and a light receiver for the adhered foreign matter is separately provided to receive light in two directions. The detection in this case can be performed by utilizing the fact that the intensity of the specular reflection light is reduced due to the scattered light of the adhering foreign matter. The present invention has been made to simplify the optical system of a foreign substance inspection device for a color filter, and based on the above-mentioned examination results, a set of a light projecting and receiving system for detecting the chevron projections 2 and a light receiving system attached thereto. A light detector for foreign matter is added, and the color filter is rotated in two directions of 0 ° and 90 ° by the moving / rotating mechanism 6 of the inspection device, thereby providing a foreign matter detection optical system capable of detecting both embedded foreign matter and adhered foreign matter in good condition. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】この発明はカラーフィル
タの異物検出光学系であって、前記のカラーフィルタの
異物検査装置において、 (1) 1組の投光系と受光系を、カラーフィルタの表面の
垂線に関して対称的に配置し、投光系の投光角θT と受
光系の受光角θR を、カラーフィルタの表面に対して7
5°〜85°の範囲内の同一角度に設定する。 (2) 受光系に対して、受光系に入力した表面の反射光を
2分割するハーフミラーと、ハーフミラーにより2分割
された一方が入力し、表面の正反射光を除去する第1の
空間フィルタを有し、第1の空間フィルタを透過し、正
反射光に対して軸ズレした軸ズレ反射光を受光して、埋
没異物の形成する突起を検出する第1の受光器、および
2分割された他方が入力し、正反射光のみを透過する第
2の空間フィルタを有し、第2の空間フィルタを透過し
た正反射光の強度の低下を検出することにより、付着異
物を検出する第2の受光器とを設けて構成される。
SUMMARY OF THE INVENTION The present invention is a foreign matter detection optical system for a color filter, comprising: (1) one set of a light projecting system and a light receiving system, They are arranged symmetrically with respect to the surface normal, and the projection angle θ T of the projection system and the reception angle θ R of the reception system are 7 with respect to the surface of the color filter.
Set to the same angle within the range of 5 ° to 85 °. (2) For the light receiving system, a half mirror that splits the reflected light on the surface that is input to the light receiving system and one that is split by the half mirror, and the first space that removes the specularly reflected light on the surface. A first light receiver that has a filter, transmits the first spatial filter, receives the off-axis reflected light that is off-axis with respect to the regular reflected light, and detects the protrusion formed by the embedded foreign matter, and two divisions. A second spatial filter that transmits only the specularly reflected light that is input to the other of the two, and detects the adhered foreign matter by detecting a decrease in the intensity of the specularly reflected light that has passed through the second spatial filter. And two light receivers.

【0008】[0008]

【作用】上記の異物検出光学系においては、投光角θT
と受光角θR とがカラーフィルタの表面に対して75°
〜85°の範囲内の同一角度として、1組の投光系と受
光系が該表面の垂線に関して対称的に配置される。投光
系よりの白色光束が表面に投射され、移動回転機構によ
りカラーフィルタを0°と90°の2方向に回転して、
それぞれ全面走査を行う。受光系に受光された反射光に
は、表面の正反射光と、山形突起の左右または前後の両
側の傾斜面による軸ズレ反射光とが含まれており、これ
らはハーフミラーにより2分割される。2分割された一
方は、第1の空間フィルタにより正反射光が除去され、
軸ズレ反射光が第1の受光器により受光されて、0°ま
たは90°の方向のいずれか、または両方向において山
形突起が検出される。また、他方は第2の空間フィルタ
により、山形突起による軸ズレ反射光または付着異物に
よる散乱光が除去され、正反射光のみが透過して第2の
受光器に受光される。第2の受光器の受光した正反射光
は、軸ズレ反射光または散乱光により強度が低下してい
るので、受光信号にはこの低下に対するパルスが現れ、
これを検出することにより付着異物が検出される。以上
においては、カラーフィルタは0°と90°の2方向に
回転され、山形突起に対して投光系と第1の受光器によ
り、また付着異物に対して兼用した投光系と第2の受光
器により、2方向の検査がなされて、いずれかの方向ま
たは両方向でそれぞれが検出されるもので、従来に比較
して光学系が著しく簡略化される。
In the above foreign matter detection optical system, the projection angle θ T
And the acceptance angle θ R are 75 ° with respect to the surface of the color filter.
A set of light projecting system and light receiving system are arranged symmetrically with respect to the normal to the surface, with the same angle in the range of ~ 85 °. A white light flux from the projection system is projected on the surface, and the color filter is rotated in two directions of 0 ° and 90 ° by the moving and rotating mechanism,
The entire surface is scanned respectively. The reflected light received by the light receiving system includes specular reflected light on the surface and axially displaced reflected light on the left and right or front and rear inclined surfaces of the chevron projection, which are divided into two by a half mirror. .. One of the two parts is specularly reflected light is removed by the first spatial filter,
The off-axis reflected light is received by the first photodetector, and chevron projections are detected in either the 0 ° or 90 ° direction, or in both directions. On the other hand, the second spatial filter removes the axially reflected light due to the chevron protrusions or the scattered light due to the adhered foreign matter, and only the specularly reflected light is transmitted and received by the second light receiver. Since the intensity of the specularly reflected light received by the second light receiver is reduced due to the axially displaced reflected light or scattered light, a pulse for this reduction appears in the received light signal,
Adhering foreign matter is detected by detecting this. In the above, the color filter is rotated in two directions of 0 ° and 90 °, and the projection system and the first photoreceiver are used for the chevron projections, and the projection system and the second projection system are also used for the adhering foreign matter. Since the optical receiver performs inspection in two directions and detects each in either direction or both directions, the optical system is significantly simplified as compared with the conventional one.

【0009】[0009]

【実施例】図1により、この発明の異物検出光学系にお
ける埋没異物の検出原理を説明する。図1のカラーフィ
ルタ1において、画素13またはトップコート14に埋没し
た異物pにより、それらの表面に山形突起2が生じてい
る。山形突起2に対して投光角θT で白色光束LT を投
射すると、山形突起2の頂点は水平であるので、二点鎖
線で示すように、投光角θT に等しい反射角θR で正反
射光LR が反射される。これに対して山形突起2の図示
左側の傾斜面による反射光LR'は、傾斜面の傾斜角(位
置により変化する)の2倍だけ左方に軸ズレし、右側の
傾斜面の反射光LR'' は傾斜角の2倍だけ右方に軸ズレ
する。従って、軸ズレ反射光LR'とLR'' の広がり角度
は傾斜角の最大値の4倍である。この傾斜角を数値的に
みると、山形突起2の大きさは、底面が例えば約100
μmのとき、その高さは数μm程度であって、傾斜角の
最大値は高々3〜4度である。従って、広がり角度は2
0度以下となり、これを1個の受光器で受光することが
可能であり、これがこの発明の埋没異物の検出原理であ
る。ただし、正反射光LR は軸ズレ反射光LR', Lr''
に対するノイズとなるから除去することが必要である。
また、検出を確実にするため、従来と同様に0°と90
°の2方向で検査するものとする。以上により、投光角
θT と同一の受光角θR の方向に第1の受光器を設け、
正反射光LR を除去して軸ズレ反射光LR',LR'' を受
光することにより、山形突起2を検出することができ
る。ただし、θT ,θR を小さくとると、画素13のエッ
ジの散乱光が受光系に入力してやはりノイズとなるの
で、これらは光学系の構成に支障しない範囲で大きくと
ることが望ましい。以上により、θT ,θR は75°〜
85°の範囲内が適切である。つぎに、付着異物につい
ては図示を省略するが、上記ではノイズとなった正反射
光LR に着目すると、LR は付着異物(埋没異物も同
じ)により散乱されて強度が低下するので、これに対す
る第2の受光器を設け、受光信号に含まれる低下パルス
により付着異物を検出することができる。この場合は、
付着異物の散乱光と軸ズレ反射光LR'とLR'' はノイズ
となるので除去することが必要である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The principle of detecting a buried foreign matter in the foreign matter detecting optical system of the present invention will be described with reference to FIG. In the color filter 1 of FIG. 1, the foreign matter p buried in the pixel 13 or the top coat 14 causes the mountain-shaped projections 2 to occur on the surface thereof. When the white light flux L T is projected onto the chevron projection 2 at a projection angle θ T , the apex of the chevron projection 2 is horizontal, and as shown by the chain double-dashed line, a reflection angle θ R equal to the projection angle θ T. The specularly reflected light L R is reflected at. On the other hand, the reflected light L R 'from the inclined surface on the left side of the chevron protrusion 2 is axially displaced to the left by twice the inclination angle of the inclined surface (varies depending on the position), and the reflected light on the inclined surface on the right side. L R ″ is offset to the right by twice the tilt angle. Therefore, the spread angle of the off-axis reflected lights L R ′ and L R ″ is four times the maximum value of the tilt angle. Looking at this inclination angle numerically, the size of the chevron protrusion 2 is such that the bottom surface is, for example, about 100.
When it is μm, the height is about several μm, and the maximum value of the inclination angle is 3 to 4 degrees at most. Therefore, the spread angle is 2
It becomes 0 degrees or less, and this can be received by one light receiver, which is the principle of detection of the embedded foreign matter of the present invention. However, the regular reflected light L R is the axially displaced reflected light L R ', L r ``
Therefore, it is necessary to remove it.
In addition, in order to ensure detection, 0 ° and 90
It shall be inspected in two directions. As described above, the first light receiver is provided in the direction of the light receiving angle θ R that is the same as the light projecting angle θ T ,
By removing the regular reflection light L R and receiving the axially displaced reflection lights L R ′ and L R ″, the chevron projection 2 can be detected. However, if θ T and θ R are made small, the scattered light at the edge of the pixel 13 is input to the light receiving system and also becomes noise. Therefore, it is desirable to make them large within a range that does not interfere with the configuration of the optical system. From the above, θ T and θ R are from 75 ° to
A range of 85 ° is suitable. Next, although illustration of the adhered foreign matter is omitted, focusing on the specular reflection light L R that has become noise in the above, since L R is scattered by the adhered foreign matter (the same applies to the buried foreign matter), the intensity decreases. A second photodetector is provided to detect the adhering foreign matter by the lowering pulse included in the photodetection signal. in this case,
The scattered light of the adhering foreign matter and the off-axis reflected light L R ′ and L R ″ become noise and therefore need to be removed.

【0010】図2はこの発明の異物検出光学系の一実施
例を示し、(a) は全体構成図、(b)は部分図である。図
2(a) において、異物検出光学系は1組の投光系3と受
光系4を、図示のようにカラーフィルタ1の表面の垂線
Cに関して対称的に配置して構成される。投光系3はハ
ロゲンランプの光源31と、その白色光をコリメートする
投光レンズ32、および白色光を光束LT とするスリット
板33よりなり、スリット板33を通して、載置台5に載置
されたカラーフィルタ1の表面に対して、投光角θT
白色光束LT を投射し、埋没異物と付着異物の検出に兼
用する。受光系4は、表面の反射光を集光する集光レン
ズ41と、集光された反射光を2分割するハーフミラー42
とを設ける。さらに、2分割された一方が入力して、正
反射光LR を除去する第1の空間フィルタ43と、これを
透過した軸ズレ反射光LR',LR'' を受光する第1の受
光器44を設け、また2分割された他方が入力して、正反
射光LR のみが透過する第2の空間フィルタ45と、これ
を透過した正反射光LR を受光する第2の受光器45を設
けて構成される。各受光器44,46 はCCDリニアセンサ
を使用して集光レンズ41の結像点に配設し、これらの直
前に第1および第2の空間フィルタ43,45 をそれぞれ配
置する。図2(b) はスリット板33と、第1および第2の
空間フィルタ43,45 の例を示し、スリット板33のスリッ
ト331 は、走査方向の幅WX を照射幅に対応した間隔と
し、Y方向の長さWY をCCDセンサに対応した長さと
するが、これらが山形突起または付着異物の大きさに比
較して過大であると検出感度が低下し、過小であれば走
査時間が長くなり、互いに相反するので実験などにより
適切な値に設定する。また、第1および第2の空間フィ
ルタ43,45 には、軸ズレ反射光LR',LR'' のみを透過
する切り欠き431,432 、正反射光LR のみを透過する切
り欠き451をそれぞれ設ける。図ではこれらの切り欠き
の形状を矩形としたが、形状と寸法は山形突起と付着異
物の検出性能に大きく影響するので、矩形に限定せず、
上記と同様に実験などにより、これらが良好に検出でき
るように、それぞれを適切に設定する。以上の異物検出
光学系においては、投光系3よりの白色光束LT がカラ
ーフィルタ1の表面に投射され、移動回転機構6により
X,Y方向に移動して全面が走査され、0°と90°の
2方向に回転してそれぞれ検査される。表面の反射光は
受光系4により受光され、第1および第2の受光器44,4
6 のそれぞれの受光信号に対して所定の処理がなされ、
いずれかの方向または2方向で埋没異物と付着異物が検
出される。
2A and 2B show an embodiment of the foreign matter detecting optical system of the present invention. FIG. 2A is an overall configuration diagram and FIG. 2B is a partial view. In FIG. 2 (a), the foreign matter detection optical system is constructed by arranging a set of a light projecting system 3 and a light receiving system 4 symmetrically with respect to a vertical line C on the surface of the color filter 1. The light projecting system 3 and the light source 31 of a halogen lamp, made from a slit plate 33 to projection lens 32 for collimating the white light, and white light with the light beam L T, through a slit plate 33, mounted on the mounting table 5 Further, the white light flux L T is projected onto the surface of the color filter 1 at the projection angle θ T , and is also used for detecting the embedded foreign matter and the adhered foreign matter. The light receiving system 4 includes a condenser lens 41 that collects the reflected light on the surface and a half mirror 42 that divides the collected reflected light into two.
And. Further, one of the two divided light beams is input, and the first spatial filter 43 that removes the specular reflection light L R and the first spatial light filter 43 that receives the axially displaced reflection lights L R ′ and L R ″ that have passed through the first spatial filter 43 are received. the photodetector 44 is provided, also by entering two other split portion, a second spatial filter 45 which only specularly reflected light L R is transmitted through the second light that receives the specularly reflected light L R transmitted through this It is configured by providing a container 45. Each of the light receivers 44 and 46 is arranged at the image forming point of the condenser lens 41 by using a CCD linear sensor, and the first and second spatial filters 43 and 45 are arranged immediately before them. FIG. 2B shows an example of the slit plate 33 and the first and second spatial filters 43, 45. The slit 331 of the slit plate 33 has a width W X in the scanning direction as an interval corresponding to the irradiation width, The length W Y in the Y direction is set to a length corresponding to the CCD sensor, but if these are too large compared to the size of the chevron protrusion or the adhered foreign matter, the detection sensitivity will decrease, and if it is too small, the scanning time will be long. Since they conflict with each other, set to an appropriate value through experiments. Further, the first and second spatial filters 43, 45 are provided with notches 431, 432 for transmitting only the axis-shifted reflected light L R ′, L R ″ and a notch 451 for transmitting only the specularly reflected light L R , respectively. Set up. In the figure, the shapes of these notches are rectangular, but the shape and dimensions greatly affect the detection performance of the chevron protrusions and adhered foreign matter, so the shape is not limited to a rectangle.
Similar to the above, each is set appropriately by experiments or the like so that these can be detected well. In the foreign matter detection optical system described above, the white light flux L T from the light projecting system 3 is projected on the surface of the color filter 1, and is moved in the X and Y directions by the moving and rotating mechanism 6 to scan the entire surface to 0 °. Rotate in two directions of 90 ° and inspect each. The reflected light on the surface is received by the light receiving system 4, and the first and second light receivers 44, 4
Predetermined processing is performed on each received light signal of 6,
Buried foreign matter and adhering foreign matter are detected in either or two directions.

【0011】[0011]

【発明の効果】以上の説明のとおり、この発明による異
物検出光学系においては、カラーフィルタの画素または
トップコートに埋没した埋没異物、またはそれらの表面
に付着した付着異物は、カラーフィルタを0°と90°
の2方向に回転し、いずれかの方向または両方向におい
て、投光系と受光系の第1の受光器により埋没異物が、
また兼用した投光系と受光系の第2の受光器により付着
異物がそれぞれ良好に検出されるもので、2組の投受光
系を使用した従来の検査装置に比較して光学系が著しく
簡略化される効果には大きいものがある。
As described above, in the foreign matter detecting optical system according to the present invention, the buried foreign matter buried in the pixels of the color filter or the top coat, or the foreign matter adhered to the surface of the foreign matter is 0 ° in the color filter. And 90 °
In either direction or both directions, the first photodetector of the light projecting system and the photoreceiver system causes the buried foreign matter to rotate.
In addition, the second light receiver, which also serves as a light emitting system and a light receiving system, can detect adhering foreign matter satisfactorily. The optical system is remarkably simpler than the conventional inspection device using two sets of light emitting and receiving systems. There is a great effect in being realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の異物検出光学系における埋没異物
の検出原理の説明図である。
FIG. 1 is an explanatory diagram of a principle of detecting a buried foreign matter in a foreign matter detection optical system of the present invention.

【図2】 この発明の異物検出光学系の一実施例を示
し、(a) は全体構成図、(b) は部分図である。
2A and 2B show an embodiment of a foreign matter detection optical system of the present invention, wherein FIG. 2A is an overall configuration diagram and FIG. 2B is a partial view.

【図3】 (a) はカラーフィルタの一例を示す図、(b)
はカラーフィルタにコーティングされたトップコートの
説明図である。
FIG. 3A is a diagram showing an example of a color filter, and FIG.
FIG. 3 is an explanatory diagram of a top coat coated on a color filter.

【図4】 カラーフィルタに存在する異物の説明図で、
(a) はトップコートがコーティングされる前の状態、
(b) はコーティングされた状態をそれぞれ示す。
FIG. 4 is an explanatory diagram of foreign matter existing in a color filter,
(a) is the state before the top coat is coated,
(b) shows the coated state, respectively.

【図5】 特許出願にかかる先行技術の埋没異物検出方
法の説明図で、(a)は埋没異物による山形突起と、これ
による反射光の反射角の説明図、(b) は受光器の検出信
号の波形の一例を示す図である。
5A and 5B are explanatory views of a prior art buried foreign matter detection method according to a patent application, in which FIG. 5A is an explanatory view of a chevron protrusion due to the buried foreign matter and a reflection angle of reflected light due to the projection, and FIG. It is a figure which shows an example of the waveform of a signal.

【図6】 従来の埋没異物検査装置の光学系の概略構成
図である。
FIG. 6 is a schematic configuration diagram of an optical system of a conventional buried foreign matter inspection apparatus.

【符号の説明】[Explanation of symbols]

1…カラーフィルタ、11…ガラス板、12…クロームの薄
膜、13…3原色の画素 14…トップコート、2…山形突起、3…投光系、3a,3
b …投光器、31…光源、32…投光レンズ、33…スリット
板、331 …スリット、4…受光系、4a,4b …受光器、
41…集光レンズ、42…ハーフミラー、43…第1の空間フ
ィルタ、431,432 …切り欠き、44…第1の受光器、45…
第2の空間フィルタ、451 …切り欠き、46…第2の受光
器、5…載置台、6…移動回転機構、p,p1 〜p3,
p' …異物、LT …白色光束、LR …正反射光、LR',
R'' …軸ズレ反射光、θT …投光角、θR …反射角。
DESCRIPTION OF SYMBOLS 1 ... Color filter, 11 ... Glass plate, 12 ... Chrome thin film, 13 ... 3 Primary color pixels 14 ... Top coat, 2 ... Angle projection, 3 ... Projection system, 3a, 3
b ... Emitter, 31 ... Light source, 32 ... Emitter lens, 33 ... Slit plate, 331 ... Slit, 4 ... Light receiving system, 4a, 4b ... Light receiver,
41 ... Condensing lens, 42 ... Half mirror, 43 ... First spatial filter, 431, 432 ... Notch, 44 ... First light receiver, 45 ...
Second spatial filter, 451 ... Notch, 46 ... Second light receiver, 5 ... Mounting table, 6 ... Moving and rotating mechanism, p, p 1 to p 3 ,
p '... foreign matter, L T ... white light flux, L R ... specular reflection light, L R ',
L R ″ ... Axis off reflected light, θ T ... Projection angle, θ R ... Reflection angle.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊沢 豊 東京都千代田区大手町二丁目6番2号 日 立電子エンジニアリング株式会社内 (72)発明者 古川 忠宏 東京都文京区小石川四丁目14番12号 共同 印刷株式会社内 (72)発明者 別宮 一郎 東京都文京区小石川四丁目14番12号 共同 印刷株式会社内 (72)発明者 水元 伸二 東京都文京区小石川四丁目14番12号 共同 印刷株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yutaka Kumazawa, 2-6-2 Otemachi, Chiyoda-ku, Tokyo, inside Nitrate Electronics Engineering Co., Ltd. (72) Tadahiro Furukawa, 4-12-12 Koishikawa, Bunkyo-ku, Tokyo Kyodo Printing Co., Ltd. (72) Inventor Ichiro Betsumiya 4-14-12 Koishikawa, Bunkyo-ku, Tokyo Kyodo Printing Co., Ltd. (72) Inventor Shinji Mizumoto 4-14-12 Koishikawa, Bunkyo-ku, Tokyo Joint printing Within the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3原色の画素が配列されたカラーフィル
タを対象とし、該カラーフィルタを載置してXまたはY
方向に移動し、かつ90°回転する移動回転機構と、該
カラーフィルタの表面に白色光束を投射して走査する投
光系、および該表面の反射光を受光する受光系を具備
し、前記移動回転機構により前記カラーフィルタを回転
し、0°および90°の2方向で該受光系により該反射
光をそれぞれ受光して、前記画素または該カラーフィル
タにコーティングされたトップコートに埋没した埋没異
物、または付着した付着異物を検出する異物検査装置に
おいて、(1) 1組の前記投光系と受光系を前記表面の垂
線に関して対称的に配置し、該投光系の投光角θT と受
光系の受光角θR とを、前記カラーフィルタの表面に対
して75°〜85°の範囲内の同一角度に設定し、(2)
前記受光系に対して、該受光系に入力した前記表面の反
射光を2分割するハーフミラーと、該ハーフミラーによ
り2分割された反射光の一方が入力し、該表面の正反射
光を除去する第1の空間フィルタを有し、該第1の空間
フィルタを透過し、前記正反射光に対して軸ズレした軸
ズレ反射光を受光して、前記埋没異物の形成する山形突
起を検出する第1の受光器、および前記2分割された反
射光の他方が入力し、前記正反射光のみを透過する第2
の空間フィルタを有し、該第2の空間フィルタを透過し
た前記正反射光を受光し、該受光信号の強度の低下を検
出することにより、前記付着異物を検出する第2の受光
器とを設けて構成されたことを特徴とする、カラーフィ
ルタの異物検出光学系。
1. A color filter, in which pixels of three primary colors are arranged, is targeted, and the color filter is mounted on the X or Y axis.
A moving and rotating mechanism that moves in a direction and rotates by 90 °, a light projecting system that projects a white light beam on the surface of the color filter to scan, and a light receiving system that receives the reflected light of the surface. The color filter is rotated by a rotating mechanism, the reflected light is received by the light receiving system in two directions of 0 ° and 90 °, and the embedded foreign matter is embedded in the pixel or the top coat coated on the color filter. Alternatively, in a foreign matter inspection device for detecting adhered foreign matter, (1) one set of the light projecting system and the light receiving system are symmetrically arranged with respect to the surface normal, and the light projecting angle θ T and the light receiving angle of the light projecting system are received. The light receiving angle θ R of the system is set to the same angle within the range of 75 ° to 85 ° with respect to the surface of the color filter, and (2)
A half mirror that splits the reflected light of the surface that is input to the light receiving system into two and one of the reflected light that is split into two by the half mirror are input to the light receiving system, and specularly reflected light of the surface is removed. A first spatial filter that transmits the first spatial filter, receives the axially displaced reflected light that is axially displaced from the specularly reflected light, and detects the chevron protrusion formed by the embedded foreign matter. The first light receiver and the second of the reflected light divided into two are inputted, and the second light transmitting only the specularly reflected light
A second photodetector for detecting the adhering foreign matter by receiving the specular reflection light transmitted through the second spatial filter and detecting a decrease in intensity of the received light signal. A foreign matter detection optical system for a color filter, which is configured to be provided.
JP16195292A 1992-05-28 1992-05-28 Foreign matter detection optical system of color filter Expired - Fee Related JP2987007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16195292A JP2987007B2 (en) 1992-05-28 1992-05-28 Foreign matter detection optical system of color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16195292A JP2987007B2 (en) 1992-05-28 1992-05-28 Foreign matter detection optical system of color filter

Publications (2)

Publication Number Publication Date
JPH05332944A true JPH05332944A (en) 1993-12-17
JP2987007B2 JP2987007B2 (en) 1999-12-06

Family

ID=15745177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16195292A Expired - Fee Related JP2987007B2 (en) 1992-05-28 1992-05-28 Foreign matter detection optical system of color filter

Country Status (1)

Country Link
JP (1) JP2987007B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188903A (en) * 2000-09-07 2002-07-05 Heidelberger Druckmas Ag Parallel processing optical distance meter
JP2006501470A (en) * 2002-09-30 2006-01-12 アプライド マテリアルズ イスラエル リミテッド Dark field inspection system
JP2012150024A (en) * 2011-01-20 2012-08-09 Hitachi High-Technologies Corp Surface defect inspection device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188903A (en) * 2000-09-07 2002-07-05 Heidelberger Druckmas Ag Parallel processing optical distance meter
JP2006501470A (en) * 2002-09-30 2006-01-12 アプライド マテリアルズ イスラエル リミテッド Dark field inspection system
JP2012150024A (en) * 2011-01-20 2012-08-09 Hitachi High-Technologies Corp Surface defect inspection device and method

Also Published As

Publication number Publication date
JP2987007B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
JP2671241B2 (en) Glass plate foreign matter detection device
EP1049925B1 (en) Optical inspection method and apparatus
US4299443A (en) Apparatus for detecting the defects of a pattern with directional characteristics using a filter having arm sections of curved shape
EP0459489A2 (en) Method of reading optical image of inspected surface and image reading system employable therein
KR100334222B1 (en) Method of and apparatus for inspecting surface irregularities of transparent plate
JP3105702B2 (en) Optical defect inspection equipment
JPH08304050A (en) Magnetic film defect inspection device for magnetic disk
KR102633672B1 (en) Methods and apparatus for detecting surface defects on glass sheets
JPH05332944A (en) Optical system for detecting for foreign matter on color filter
JPH0444204B2 (en)
JPS61223605A (en) Method for inspecting surface shape
JP2873450B2 (en) Defect inspection device using light
JPH085575A (en) Method and apparatus for detecting foreign matter protrusion on color filter
JP3007849B2 (en) Shape detection method and shape detection device for object surface
EP0104762B1 (en) Apparatus for optically measuring the distance between two grating-like structures and the size of periodic pattern elements forming one of the grating-like structures
JP2850031B2 (en) Inspection method and inspection device for pattern members
JP2997034B2 (en) Method and apparatus for detecting foreign matter embedded in color filter
JPH06242019A (en) Method and system for inspecting painted face using image signal
JPH08145901A (en) Inspection equipment of foreign substance of transparent metal thin film substrate
JPS6313446Y2 (en)
US20230252616A1 (en) Inspection system and inspection method
JP2001108406A (en) Device for measuring end surface position of plate body
JPS6180009A (en) Surface-flaw inspection of magnetic disk and apparatus thereof
JPH10132704A (en) Optical inspection device
JPH04320951A (en) Method and device for inspecting defect on glass plate surface

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees