JPH0533242B2 - - Google Patents

Info

Publication number
JPH0533242B2
JPH0533242B2 JP25497384A JP25497384A JPH0533242B2 JP H0533242 B2 JPH0533242 B2 JP H0533242B2 JP 25497384 A JP25497384 A JP 25497384A JP 25497384 A JP25497384 A JP 25497384A JP H0533242 B2 JPH0533242 B2 JP H0533242B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogenation
hydrogen
solvent
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25497384A
Other languages
Japanese (ja)
Other versions
JPS61133203A (en
Inventor
Yasushi Nakajima
Toshio Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP25497384A priority Critical patent/JPS61133203A/en
Publication of JPS61133203A publication Critical patent/JPS61133203A/en
Publication of JPH0533242B2 publication Critical patent/JPH0533242B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はチーグラー型重合冷媒の再生方法に関
し、特に、重合溶媒中の重合阻害物質を水素化し
て無害化する処理を、温和な条件下で高速で行う
技術に関する。 (従来技術) チーグラー型触媒と溶媒の存在下にオレフイン
を重合した後回収された溶媒は、工業的には、再
びそのまま、あるいは蒸留して重合に供せられて
いる。しかし、原因は明らかでないが、回収され
た溶媒を用いると新しい溶媒に較べて触媒活性の
低下や生成ポリマー物性の目標からのずれがおこ
ることが多い。これは回収溶媒中に重合に用いる
原材料や触媒、溶媒等の分解物、重合副生成物等
の微量不純物が含まれているためと考えられる。
これら不純物を除去するためには、蒸留の還流比
や高、低沸点分のカツト率を大きくする必要があ
り、蒸気や溶媒原単位の悪化などの不具合をひき
おこしていた。また、上記のような蒸留を行つて
も、繰り返し使用すると触媒活性の低下は避けら
れなかつた。 一方、最近は重合触媒の活性が高くなり触媒を
低濃度で使用するため、上記副生成物の影響を受
け易く、触媒活性の低下や生成ポリマー物性の変
動が大きくなり、その解決が必要とされていた。
そこで、蒸留した回収溶媒を公知の方法で水素化
処理して重合阻害物質を無害なものに変換する方
法が考えられている。 (従来技術の問題点) しかしながら、この目的のためには10m3/h〜
200m3/hというような多量の回収溶媒を処理し
なければならないため、通常の流動床回分式水素
化方法では大規模な装置が必要なうえ、水素化触
媒の分離回収などの後処理操作も煩雑となり、工
業的な利用価値は低かつた。 また、固定床連続方式でも、通常の液相水添の
条件である空塔速度0.1〜10h-1では、装置が10〜
100m3と大きくなり処理効率が低いという不具合
があつた。また、通常、固定床内では上昇流で水
素化を実施するため、効率を上げるために空塔速
度30〜100h-1にすると触媒ペレツトが摩耗して数
日で担持金属が脱落してしまうという不具合があ
つた。 (問題点の解決手段) 発明者等は溶媒の水素化再生処理に伴う上記の
欠点を解決するために鋭意検討した結果、回収溶
媒を蒸留後、固定床に市販のペレツト状水添触媒
から選ばれた効率の良い触媒を充填し、水素と並
流接触しつつ該固定床に導入することにより、温
和な条件下(室温〜150℃,0〜20Kg/cm2G)で、
非常に効率良く(空塔速度10〜200h-1)回収溶媒
中の不純物を水素化して無害化し得ることを見出
して本発明を完成した。 本発明においては、回収溶媒と水素の並流触媒
において、触媒固定床前に水素溶解槽を設けて回
収溶媒中に水素を溶解させ、水素化を溶存水素の
みで行うこともできる。この様にすると、触媒固
定床中には液相のみが導入されるため、触媒ペレ
ツト間に生ずる気泡や偏流が防止され水素化効率
が向上する。更に、効率が上がるため、必要量又
はそれより若干過剰量の水素を溶解させれば良
く、未反応水素の除去が不用となり、従つて、未
反応水素の除去槽や循環設備が省略できると共に
未反応水素を破棄する必要もなくなる。水素溶解
槽は、水素吸収効率を向上させるため攪拌型式、
多孔板型式、充填型式等を採用することができ
る。 回収溶媒及び水素は、触媒層に上昇流で供給す
ることも下降流で供給することもできるが、特に
空塔速度が大きい場合には、下降流にすると触媒
の摩耗等による劣化が減少し好都合である。 反応器の形式は槽型、管型、塔型、押出機型
等、水素化反応に通常使用されるものを用いるこ
とができるが、塔型固定床型式が特に好ましい。
下降流接触方式を採用する時は、壁効果が生じな
い程度の塔径を選び、下降流で偏流を生じない程
度の塔高とするかデイストリビユーターを備える
必要がある。また、反応様式は、液相、気相、気
液混相方式のいずれでも良い。 本発明の水素化処理用触媒としては、遷移金属
担持型触媒及び遷移金属混合成形触媒のいずれも
使用することができ、遷移金属としては、Fe,
Co,Ni,Ru,Rh,Pd,Ir,Pt等を挙げること
ができる。これらの金属の酸化物や、錯体等の塩
類も触媒として用いることができる。また、遷移
金属担持型触媒の担体としては活性炭、グラフア
イト、シリカ、シリカアルミナ、アルミナなどが
使用でき、遷移金属混合成形触媒の成形材料とし
てはケイソウ土などを使用することができる。担
体又は成形材料に対する前記遷移金属又はその酸
化物や塩類の担持(混合)率は、通常の水素化反
応に使用される範囲であれば良い。触媒形状は粉
体も考えられるが、固定床での圧損を考慮すると
ペレツト状が好ましく、充填空隙率は0.2〜0.7と
するのが好ましい。 本発明の水素化反応条件は、反応温度;0〜
150℃、好ましくは室温〜100℃、反応圧力;常圧
〜30Kgf/cm2、好ましくは3〜9Kgf/cm2、空塔
速度(LHSV);5〜200h-1、好ましくは10〜
100h-1である。 本発明で水素化処理する回収溶媒中のオレフイ
ン濃度は、通常、臭素指数(mg−Br/100g−溶
媒)で200〜4000、好ましくは200〜2000程度であ
り、この中、生成不純物に起因する量は臭素指数
で通常0〜200程度である。 本発明の方法で水素化処理される重合溶媒は、
通常オレフイン類の重合の際に生成ポリマーまた
は触媒を溶解または分散させるために用いられる
炭化水素類で、例えば、炭素数4〜20程度のパラ
フイン、シクロパラフイン類、ベンゼン、トルエ
ン、キシレン、及びこれらの2種以上の混合物が
あげられる。本発明で行われるオレフイン重合反
応は、上記炭化水素類の存在下に、周期律表4〜
6族遷移金属の化合物と同表1〜3族金属の有機
金属化合物、さらには必要に応じて電子供与体化
合物よりなる組合わせ触媒を用いて行う、いわゆ
るチーグラー型重合反応である。 上記の遷移金属化合物としては、チタン、バナ
ジウム、ジルコニウム化合物が用いられ、例え
ば、三塩化チタン、四塩化チタン、テトラアルコ
キシチタン、四塩化バナジウム、オキシ三塩化バ
ナジウム、アルコキシオキシバナジウムハライ
ド、三塩化ジルコニウム、ジアルキルジルコニウ
ムハライドなどがあげられる。 さらにこれら遷移金属化合物を塩化マグネシウ
ムなどの担体に担持した高活性触媒を用いる際に
は、本発明の効果が顕著である。 上記の担体に担持した高活性触媒としては、塩
化マグネシウム、酸化マグネシウムなどの担体
に、四塩化チタン、テトラアルコキシチタン、四
塩化バナジウムなどの遷移金属化合物、さらに必
要により有機酸エステル、有機シリコン化合物、
アルキルハライドなどの電子供与性化合物を、公
知の方法で担持した成分が用いられる。 上記の有機金属化合物としては、トリアルキル
アルミニウム、ジアルキルアルミニウムハライ
ド、アルキルアルミニウムセスキハライド、アル
キルアルミニウムジハライドなどの有機アルミニ
ウム化合物、ジアルキルマグネシウムなどの有機
マグネシウム化合物、例えばトリエチルアルミニ
ウム、トリイソブチルアルミニウム、エチルアル
ミニウムセスキクロリド、ジエチルマグネシウム
などがあげられ、これらは混合物であつてもよ
い。 また、上記遷移金属化合物、有機金属化合物の
他に、触媒の活性向上、生成ポリマーの物性制御
のために、エステル類、アミン類、エーテル類、
ハロアルカン類などの電子供与性化合物を加える
こともできる。 また上記重合反応で用いられるオレフイン類と
しては、エチレン、プロピレン、1−ブテン、1
−ヘキセン、1−オクテン、1−ドデセン、4−
メチル−1−ペンテン等のα−オレフインがあ
り、これらの共重合反応、さらにこれらとブタジ
エン、イソプレン、ジシクロペンタジエン、エチ
リデンノルボルネンなどのジエン類との共重合に
も本発明は適用できる。 本発明の重合反応の温度、圧力、時間、反応原
料濃度などの重合条件には特に制限はなく、公知
の条件で行うことができる。 以下に実施例を用いて本発明を更に詳しく説明
する。 (実施例 1〜15) (小試験規模気液混相連続水素化処理) 表1に示した水素化触媒を窒素雰囲気下で110
℃以上に加熱し、吸着している水分及び酸素を除
去後、窒素で希釈した水素を通じて還元処理
(Pt−Pd触媒では60〜110℃,1時間;Ni触媒で
は210℃,4〜8時間)した。ジシクロペンタジ
エンをコモノマーとして、予めイソヘキサン溶媒
に1.0g/の濃度で加える以外には、後述の方法
と全く同様に重合後、生成重合体を分離し、水洗
いされたイソヘキサン溶媒をオルダーシヨウ型20
段の蒸留塔を用いて、還流比2で蒸留し、62〜68
℃で留出する留分を集めた。本操作を1回以上経
た回収溶媒を窒素バブリングで脱水して得られる
ヘキサンを回収ヘキサンとした。 後述の方法で重合後生成ポリマーを分離し、水
洗いしたイソヘキサン溶媒をオルダーシヨウ型20
段の蒸留塔を用いて還流比2で蒸留し、62〜68℃
の留分を集めた。本操作(重合及び蒸留)を1回
以上経た回収溶媒を窒素バブリングで脱水して得
られるヘキサンを回収ヘキサンとした。 上記回収ヘキサンを第1図に示す構成の小試験
規模連続水素化装置で水素化した。 すなわち、回収ヘキサンaを加圧ダイヤフラム
ポンプ4で温水ジヤケツト付耐食鋼製固定触媒床
1(内径27mm、長さ220mm;触媒量50又は80c.c.、
上下の空隙にはグラスウールを充填)に上昇流方
式で導入した。また、水素bはその所定量をフロ
ーメーターを通して計量しながら、固定床入口直
前で回収ヘキサンaとライン混合した。 水素化処理後のイソヘキサンと未反応水素とを
ガラス製オートクレーブ2で気相と液相に分離
し、更に冷却脱圧した後、イソヘキサンを集めて
水素化ヘキサンcとした。 本試験装置では、未反応水素ガスは循環せずに
ベントから廃棄した。 水素化ヘキサンの不純物除去程度は、エチレ
ン・プロピレン共重合反応の重合活性及びプロピ
レン重合の重合活性によつて評価した。 すなわち、窒素バブリングで水分を除去した水
素化ヘキサン480c.c.をコンデンサーと攪拌装置を
備えた1フラスコに入れ、これに窒素バブリン
グ下でオキシ三塩化バナジウム0.1mmoを加
え、回転数2000rpmで攪拌しながら、装入ガスを
窒素からエチレン・プロピレン混合ガス(容積比
=40/60)100/hに切り換えた。溶液を35℃
に保持しながら、モノマーガスを装入速度400
/hに増加し、あらかじめ20c.c.の水素化ヘキサ
ンにエチルアルミニウムセスキクロリド1mmo
を溶媒させて調整しておいた溶液を素早く滴下し
た。次いで、モノマーガスを100〜400/hの範
囲で、供給不足にならないように調節しながら吸
込み、温度35℃で10分間共重合させた。 1mlのメタノールを加え共重合反応を停止さ
せ、更に多量のメタノールを添加して重合体を析
出後、減圧乾燥して、エチレン・プロピレン共重
合体をそれぞれ表1に示す収量で得た。得られた
共重合体の物性は、新しいイソヘキサンを用いた
場合と等しかつた。 また、以下の様にしてプロピレンの重合反応も
実施した。 [Ι] 高活性Ti触媒成分の調製 1のステンレス製ボールミルを使用して、窒
素雰囲気下で無水塩化マグネシウム20gと安息香
酸エチル4.8gを投入し、24時間共粉砕した。200
ml丸底フラスコに窒素雰囲気下で上記担体15gを
とり、次に四塩化チタン150mlを室温で滴下する。
温度を80℃に上げ、2時間攪拌の後、デカンテー
シヨンにより上澄液を除いた。次にn−ヘキサン
100mlを加え、攪拌の後、デカンテーシヨンで上
澄液を除く操作を5回繰り返した。この成分のn
−ヘキサンを蒸発させて分析したところ、1.3wt
%のTiが含有されていた。 [] プロピレン重合 耐食鋼製2オートクレープに水素化ヘキサン
750ml[]で調製したTi成分[Ti基準で]
0.0225mmo、トリエチルアルミニウム(A
基準で)3.75mmo及びパラトルイル酸メチル
1.25mmoを窒素雰囲気中で装入後、水素を
(常圧換算で)400ml圧入し、次にプロピレンを装
入して全圧7Kg/cm2G,60℃において重合を2時
間実施した。その後脱圧後、溶媒ヘキサンを濾別
し、粉末状ポリプロピレンを表1に示す収量で得
た。プロピレン重合体の物性は、新しいイソヘキ
サンを用いた場合と同等であつた。(比較例1〜
3) 水素化ヘキサンの代わりに新しいイソヘキサン
又は回収ヘキサンを重合溶媒として用いて、実施
例1と同様にエチレン・プロピレン共重合及びプ
ロピレン単独重合反応を実施し、表1(比較例)
に示す結果を得た。
(Industrial Application Field) The present invention relates to a method for regenerating a Ziegler-type polymerization refrigerant, and particularly to a technique for hydrogenating and rendering harmless polymerization inhibitors in a polymerization solvent at high speed under mild conditions. (Prior Art) Industrially, the solvent recovered after polymerizing olefin in the presence of a Ziegler type catalyst and a solvent is used again for polymerization as is or after distillation. However, although the cause is not clear, when a recovered solvent is used, the catalyst activity often decreases or the physical properties of the produced polymer deviate from the target, compared to using a fresh solvent. This is thought to be because the recovered solvent contains trace impurities such as raw materials used in polymerization, catalysts, decomposition products of solvents, etc., and polymerization by-products.
In order to remove these impurities, it is necessary to increase the reflux ratio of distillation and the cut rate of high and low boiling point components, which causes problems such as deterioration of steam and solvent consumption. Moreover, even if the above-mentioned distillation was carried out, a decrease in catalyst activity could not be avoided with repeated use. On the other hand, recently, as the activity of polymerization catalysts has increased and catalysts are used at low concentrations, they are more susceptible to the effects of the above-mentioned by-products, resulting in a decrease in catalyst activity and large fluctuations in the physical properties of the resulting polymer, which requires a solution. was.
Therefore, a method has been considered in which the distilled recovered solvent is hydrogenated by a known method to convert the polymerization inhibitor into a harmless substance. (Problems with conventional technology) However, for this purpose, 10m 3 /h ~
Because it is necessary to process a large amount of recovered solvent (200 m 3 /h), the conventional fluidized bed batch hydrogenation method requires large-scale equipment and also requires post-treatment operations such as separation and recovery of the hydrogenation catalyst. It became complicated and had low industrial utility value. In addition, even in the fixed bed continuous system, when the superficial velocity is 0.1 to 10 h -1 , which is the condition of normal liquid phase hydrogenation, the equipment is
There was a problem that the processing efficiency was low due to the large size of 100m3 . Additionally, since hydrogenation is normally carried out in an upward flow in a fixed bed, if the superficial velocity is set to 30 to 100 h -1 to increase efficiency, the catalyst pellets will wear out and the supported metal will fall off within a few days. There was a problem. (Means for solving the problem) As a result of intensive studies in order to solve the above-mentioned drawbacks associated with solvent hydrogenation regeneration treatment, the inventors conducted a series of intensive studies to resolve the above-mentioned drawbacks associated with solvent hydrogenation regeneration treatment. By charging a highly efficient catalyst and introducing it into the fixed bed in cocurrent contact with hydrogen, under mild conditions (room temperature to 150°C, 0 to 20 kg/cm 2 G),
The present invention was completed by discovering that impurities in the recovered solvent can be hydrogenated and rendered harmless very efficiently (at a superficial velocity of 10 to 200 h -1 ). In the present invention, in the co-current catalyst of the recovered solvent and hydrogen, a hydrogen dissolution tank may be provided in front of the fixed catalyst bed to dissolve hydrogen in the recovered solvent, and hydrogenation may be performed only with dissolved hydrogen. In this way, only the liquid phase is introduced into the fixed bed of catalyst, thereby preventing air bubbles and drifting between catalyst pellets and improving hydrogenation efficiency. Furthermore, since efficiency is increased, it is only necessary to dissolve hydrogen in the required amount or in a slightly excess amount, eliminating the need to remove unreacted hydrogen. There is no need to discard the reaction hydrogen. The hydrogen dissolution tank is a stirring type to improve hydrogen absorption efficiency.
A perforated plate type, a filling type, etc. can be adopted. The recovered solvent and hydrogen can be supplied to the catalyst bed in an upward flow or a downward flow. However, when the superficial velocity is particularly high, a downward flow is advantageous because it reduces deterioration due to catalyst wear, etc. It is. The reactor type may be of the tank type, tube type, tower type, extruder type, etc., which are commonly used in hydrogenation reactions, but the tower type fixed bed type is particularly preferred.
When adopting the downflow contact method, it is necessary to select a column diameter that does not cause wall effects, and a column height that does not cause uneven flow in the downward flow, or to be equipped with a distributor. Further, the reaction mode may be a liquid phase, a gas phase, or a gas-liquid mixed phase system. As the catalyst for hydrogenation treatment of the present invention, both a supported transition metal catalyst and a transition metal mixed molded catalyst can be used, and the transition metals include Fe, Fe,
Examples include Co, Ni, Ru, Rh, Pd, Ir, and Pt. Oxides of these metals and salts such as complexes can also be used as catalysts. Furthermore, activated carbon, graphite, silica, silica alumina, alumina, etc. can be used as a carrier for the transition metal supported catalyst, and diatomaceous earth etc. can be used as the molding material for the transition metal mixed molded catalyst. The supporting (mixing) ratio of the transition metal or its oxide or salt on the carrier or molding material may be within the range used in ordinary hydrogenation reactions. The catalyst may be in the form of a powder, but in consideration of pressure loss in a fixed bed, a pellet form is preferable, and the packing porosity is preferably 0.2 to 0.7. The hydrogenation reaction conditions of the present invention include reaction temperature;
150°C, preferably room temperature to 100°C, reaction pressure: normal pressure to 30Kgf/ cm2 , preferably 3 to 9Kgf/ cm2 , superficial velocity (LHSV): 5 to 200h -1 , preferably 10 to
100h -1 . The concentration of olefin in the recovered solvent to be hydrotreated in the present invention is usually about 200 to 4000, preferably about 200 to 2000, in terms of bromine index (mg-Br/100g-solvent). The amount is usually about 0 to 200 in terms of bromine index. The polymerization solvent to be hydrogenated in the method of the present invention is:
Hydrocarbons that are usually used to dissolve or disperse polymers or catalysts produced during the polymerization of olefins, such as paraffins having about 4 to 20 carbon atoms, cycloparaffins, benzene, toluene, xylene, and the like. A mixture of two or more types is mentioned. The olefin polymerization reaction carried out in the present invention is carried out in the presence of the above-mentioned hydrocarbons.
This is a so-called Ziegler type polymerization reaction which is carried out using a combination catalyst consisting of a Group 6 transition metal compound, an organometallic compound of Groups 1 to 3 metals, and, if necessary, an electron donor compound. As the above transition metal compound, titanium, vanadium, and zirconium compounds are used, such as titanium trichloride, titanium tetrachloride, tetraalkoxytitanium, vanadium tetrachloride, vanadium oxytrichloride, alkoxyoxyvanadium halide, zirconium trichloride, Examples include dialkyl zirconium halides. Furthermore, when using a highly active catalyst in which these transition metal compounds are supported on a carrier such as magnesium chloride, the effects of the present invention are remarkable. The highly active catalyst supported on the above carrier includes a carrier such as magnesium chloride or magnesium oxide, a transition metal compound such as titanium tetrachloride, tetraalkoxytitanium, or vanadium tetrachloride, and, if necessary, an organic acid ester, an organic silicon compound,
A component in which an electron-donating compound such as an alkyl halide is supported by a known method is used. The above-mentioned organometallic compounds include organoaluminum compounds such as trialkylaluminium, dialkylaluminum halide, alkylaluminum sesquihalide, and alkylaluminum dihalide; organomagnesium compounds such as dialkylmagnesium; for example, triethylaluminum, triisobutylaluminum, ethylaluminum sesquihalide; Examples include chloride, diethylmagnesium, etc., and a mixture of these may be used. In addition to the transition metal compounds and organometallic compounds mentioned above, esters, amines, ethers,
Electron donating compounds such as haloalkanes can also be added. In addition, the olefins used in the above polymerization reaction include ethylene, propylene, 1-butene, 1
-hexene, 1-octene, 1-dodecene, 4-
There are α-olefins such as methyl-1-pentene, and the present invention is also applicable to the copolymerization reaction of these and also to the copolymerization of these with dienes such as butadiene, isoprene, dicyclopentadiene, and ethylidene norbornene. There are no particular restrictions on the polymerization conditions such as temperature, pressure, time, and concentration of reaction raw materials for the polymerization reaction of the present invention, and the polymerization reaction can be carried out under known conditions. The present invention will be explained in more detail below using Examples. (Examples 1 to 15) (Small test scale gas-liquid mixed phase continuous hydrogenation treatment) Hydrogenation catalysts shown in Table 1 were heated at 110 °C under a nitrogen atmosphere.
After heating above ℃ to remove adsorbed moisture and oxygen, reduction treatment using hydrogen diluted with nitrogen (60 to 110℃ for 1 hour for Pt-Pd catalyst; 210℃ for 4 to 8 hours for Ni catalyst) did. After polymerization is carried out in exactly the same manner as described below, except that dicyclopentadiene is added as a comonomer to the isohexane solvent at a concentration of 1.0 g/ml, the resulting polymer is separated, and the isohexane solvent washed with water is added to the isohexane solvent using the Older Sho type 20.
Distilled using a stage distillation column at a reflux ratio of 2 to 62 to 68
The fraction distilled at ℃ was collected. Hexane obtained by dehydrating the recovered solvent that had undergone this operation one or more times by nitrogen bubbling was used as recovered hexane. Separate the polymer produced after polymerization using the method described below, and add the isohexane solvent washed with water to an older model 20.
Distilled at a reflux ratio of 2 using a stage distillation column and heated to 62-68℃.
Collected fractions. Hexane obtained by dehydrating the recovered solvent that had undergone this operation (polymerization and distillation) one or more times by nitrogen bubbling was used as recovered hexane. The recovered hexane was hydrogenated in a small test scale continuous hydrogenation apparatus having the configuration shown in FIG. That is, the recovered hexane a is pumped using a pressurizing diaphragm pump 4 into a fixed catalyst bed made of corrosion-resistant steel with a hot water jacket (inner diameter 27 mm, length 220 mm; catalyst amount 50 or 80 c.c.,
The upper and lower spaces were filled with glass wool) and were introduced using an upward flow method. Further, a predetermined amount of hydrogen b was metered through a flow meter and mixed in line with recovered hexane a immediately before the fixed bed inlet. Isohexane after the hydrogenation treatment and unreacted hydrogen were separated into a gas phase and a liquid phase in a glass autoclave 2, and after further cooling and depressurization, the isohexane was collected to obtain hydrogenated hexane c. In this test device, unreacted hydrogen gas was disposed of through the vent without being circulated. The degree of impurity removal from hydrogenated hexane was evaluated based on the polymerization activity of ethylene-propylene copolymerization reaction and the polymerization activity of propylene polymerization. That is, 480 c.c. of hydrogenated hexane from which moisture had been removed by nitrogen bubbling was placed in a flask equipped with a condenser and a stirring device, and 0.1 mmo of vanadium oxytrichloride was added to it under nitrogen bubbling, followed by stirring at a rotational speed of 2000 rpm. At the same time, the charging gas was changed from nitrogen to ethylene/propylene mixed gas (volume ratio = 40/60) at 100/h. Solution at 35℃
Monomer gas charging rate 400
1 mmo of ethylaluminum sesquichloride in 20 c.c. of hydrogenated hexane.
A solution prepared by making the solution into a solvent was quickly added dropwise. Next, monomer gas was sucked in at a rate of 100 to 400/h while being controlled to avoid insufficient supply, and copolymerization was carried out at a temperature of 35° C. for 10 minutes. 1 ml of methanol was added to stop the copolymerization reaction, and a large amount of methanol was added to precipitate the polymer, which was then dried under reduced pressure to obtain ethylene-propylene copolymers in the yields shown in Table 1. The physical properties of the copolymer obtained were the same as when fresh isohexane was used. In addition, a propylene polymerization reaction was also carried out as follows. [Ι] Preparation of highly active Ti catalyst component Using the stainless steel ball mill No. 1, 20 g of anhydrous magnesium chloride and 4.8 g of ethyl benzoate were charged under a nitrogen atmosphere and co-pulverized for 24 hours. 200
15 g of the above carrier was placed in a ml round bottom flask under a nitrogen atmosphere, and then 150 ml of titanium tetrachloride was added dropwise at room temperature.
The temperature was raised to 80°C, and after stirring for 2 hours, the supernatant liquid was removed by decantation. Then n-hexane
After adding 100 ml and stirring, the operation of removing the supernatant liquid by decantation was repeated 5 times. n of this component
- When hexane was evaporated and analyzed, it was found that 1.3wt
% of Ti was contained. [] Propylene polymerization Hydrogenated hexane in two autoclave made of corrosion-resistant steel
Ti component prepared in 750ml [based on Ti]
0.0225mmo, triethylaluminum (A
3.75mmo and methyl paratoluate
After charging 1.25 mmol in a nitrogen atmosphere, 400 ml of hydrogen (in terms of normal pressure) was charged, and then propylene was charged and polymerization was carried out at a total pressure of 7 Kg/cm 2 G and 60° C. for 2 hours. Thereafter, after depressurizing, the solvent hexane was filtered off, and powdered polypropylene was obtained in the yield shown in Table 1. The physical properties of the propylene polymer were comparable to those using fresh isohexane. (Comparative example 1~
3) Using fresh isohexane or recovered hexane as a polymerization solvent instead of hydrogenated hexane, ethylene-propylene copolymerization and propylene homopolymerization reactions were carried out in the same manner as in Example 1, and Table 1 (comparative example)
The results shown are obtained.

【表】 *2 未使用イソヘキサン使用時の重合体収量に対す
る百分比。
(実施例 16〜34) (小試験規模純液相連続水素化処理) 表2に示した水素化触媒を実施例1と同様の方
法で処理し、この触媒を用いて、実施例1と同様
の操作で得られた回収ヘキサンを水素化処理し
た。水素化処理方法は、A法(気液混相水素化)
の場合は回収ヘキサンの導入を下降流方式とした
以外は実施例1と全く同じ方法で行つた。B法
(純液相水素化)の場合には、第2図に示したプ
ロセスを用いた。すなわち、1ガラス製オート
クレーブを用いた水素溶解槽(7;攪拌型)を、
固定触媒床1の前に取り付けた。固定触媒床1
に、水素を溶解させた回収ヘキサンaを導入する
のには、差圧を利用し流量調節バルブ8で流量を
調節した。回収ヘキサンの固定触媒床1への導入
は下降流方式で行なつた。 A法、B法に従い、表2に示す条件で回収溶媒
を水素化処理して得た水素化ヘキサンを用いて実
施例1と同様に共重合反応を実施し、それぞれ表
2に示す収量で共重合体を得た。得られた共重合
体の物性は、新しいイソヘキサンを用いた場合と
等しかつた。 (比較例 4〜6) 水素化ヘキサンの代わりに新しいイソヘキサン
又は回収ヘキサンを共重合触媒として用いて実施
例1と同様にエチレン・プロピレン共重合反応を
実施し、表1(比較例)に示す結果を得た。
[Table] *2 Percentage of polymer yield when using virgin isohexane.
(Examples 16 to 34) (Small test scale pure liquid phase continuous hydrogenation treatment) The hydrogenation catalyst shown in Table 2 was treated in the same manner as in Example 1, and using this catalyst, the same procedure as in Example 1 was carried out. The recovered hexane obtained in the above operation was hydrogenated. Hydrogenation method is method A (gas-liquid mixed phase hydrogenation)
In the case of Example 1, the procedure was exactly the same as in Example 1 except that the recovered hexane was introduced in a downward flow manner. In the case of method B (pure liquid phase hydrogenation), the process shown in FIG. 2 was used. In other words, a hydrogen dissolution tank (7; stirring type) using a glass autoclave,
It was installed before the fixed catalyst bed 1. Fixed catalyst bed 1
In order to introduce the recovered hexane a in which hydrogen was dissolved, the flow rate was adjusted using the flow rate control valve 8 using the differential pressure. The recovered hexane was introduced into the fixed catalyst bed 1 in a downflow manner. According to Methods A and B, a copolymerization reaction was carried out in the same manner as in Example 1 using hydrogenated hexane obtained by hydrogenating the recovered solvent under the conditions shown in Table 2, and copolymerization reactions were carried out in the same manner as in Example 1. A polymer was obtained. The physical properties of the copolymer obtained were the same as when fresh isohexane was used. (Comparative Examples 4 to 6) An ethylene-propylene copolymerization reaction was carried out in the same manner as in Example 1 using fresh isohexane or recovered hexane as a copolymerization catalyst instead of hydrogenated hexane, and the results are shown in Table 1 (Comparative Examples). I got it.

【表】【table】

【表】 (発明の効果) 本発明の方法を用いて水素化処理することによ
り、大量の溶媒を温和な条件で高速で再生するこ
とが可能なため、大型の重合装置を小型の溶媒再
生装置で支援することができる。また、本発明は
固定触媒床を用い、水素化反応触媒の摩耗度の少
ない反応方式を採つているため、本発明の方法で
処理した触媒中には水素化触媒等の不純物が含ま
れず、そのまま後処理せずに重合反応に用いるこ
とができる。
[Table] (Effects of the invention) By hydrogenating using the method of the present invention, it is possible to regenerate a large amount of solvent at high speed under mild conditions. can be supported by. In addition, since the present invention uses a fixed catalyst bed and adopts a reaction method with less wear on the hydrogenation reaction catalyst, the catalyst treated by the method of the present invention does not contain impurities such as hydrogenation catalyst, and remains as it is. It can be used in polymerization reactions without post-treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は気液混相連続水素化プロセス[A法]、
第2図は純液相連続水素化プロセス[B法]のプ
ロセスフローシートである。
Figure 1 shows a gas-liquid mixed phase continuous hydrogenation process [method A].
FIG. 2 is a process flow sheet of the pure liquid phase continuous hydrogenation process [Method B].

Claims (1)

【特許請求の範囲】 1 チーグラー型重合の回収溶媒を、必要により
蒸留後、遷移金属系水素化触媒を用いた固定触媒
床連続水素化装置で水素により、室温〜150℃の
温度、0〜20Kg/cm2Gの圧力、空塔速度10〜
200h-1にて水素化再生する重合溶媒の再生方法。 2 水素及び回収溶媒を触媒床に導入する前部に
水素溶解槽を設けた連続水素化装置を用いる特許
請求の範囲第1項記載の方法。 3 水素及び回収溶媒を前記触媒床に下降流で供
給する特許請求の範囲第1項記載の方法。 4 前記遷移金属系水素化触媒が、ペレツト状の
遷移金属担持触媒又は遷移金属混合成形触媒であ
る特許請求の範囲第1項記載の方法。
[Claims] 1. After distilling the recovered solvent of Ziegler type polymerization if necessary, it is treated with hydrogen in a fixed catalyst bed continuous hydrogenation apparatus using a transition metal hydrogenation catalyst at a temperature of room temperature to 150°C, 0 to 20 kg. /cm 2 G pressure, superficial velocity 10~
A method for regenerating a polymerization solvent by hydrogenation and regeneration at 200 h -1 . 2. The method according to claim 1, which uses a continuous hydrogenation apparatus provided with a hydrogen dissolution tank at the front part where hydrogen and recovered solvent are introduced into the catalyst bed. 3. The method of claim 1, wherein hydrogen and recovered solvent are fed downflow to the catalyst bed. 4. The method according to claim 1, wherein the transition metal-based hydrogenation catalyst is a pellet-shaped transition metal supported catalyst or a transition metal mixed molded catalyst.
JP25497384A 1984-12-04 1984-12-04 Reclamation of solvent for ziegler-type polymerization Granted JPS61133203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25497384A JPS61133203A (en) 1984-12-04 1984-12-04 Reclamation of solvent for ziegler-type polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25497384A JPS61133203A (en) 1984-12-04 1984-12-04 Reclamation of solvent for ziegler-type polymerization

Publications (2)

Publication Number Publication Date
JPS61133203A JPS61133203A (en) 1986-06-20
JPH0533242B2 true JPH0533242B2 (en) 1993-05-19

Family

ID=17272437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25497384A Granted JPS61133203A (en) 1984-12-04 1984-12-04 Reclamation of solvent for ziegler-type polymerization

Country Status (1)

Country Link
JP (1) JPS61133203A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019291010B2 (en) 2018-06-21 2021-10-21 Basell Polyolefine Gmbh Suspension process for preparing ethylene copolymers in a reactor cascade

Also Published As

Publication number Publication date
JPS61133203A (en) 1986-06-20

Similar Documents

Publication Publication Date Title
JP2577432B2 (en) Method for adjusting melt flow of olefin polymer product
JPS6324001B2 (en)
EP0123767A2 (en) Method of preparing a supported Ziegler-catalyst for the polymerisation of alpha-olefins
JPS5841283B2 (en) Method for producing propylene polymer or copolymer
JPS5830887B2 (en) Method for purifying highly crystalline polyolefin
JPH0533242B2 (en)
JPH06157635A (en) Vanadium-based catalyst component and catalyst for olefin polymerization and method of polymerization using same
JPS61133204A (en) Reclamation of solvent for ziegler-type polymerization
JPS6349688B2 (en)
JPS612706A (en) Polymerization of propylene
JPS591406B2 (en) Method for producing improved olefinic polymers
US2880200A (en) Catalytic process
JPS6356885B2 (en)
JPH0548242B2 (en)
EP0396417A2 (en) Ziegler-Natta-catalyst component, its preparation and use
JPS642122B2 (en)
JPH0681773B2 (en) Method for producing block copolymer of propylene
JPS6138927B2 (en)
JPS6412292B2 (en)
JPH01213311A (en) Production of alpha-olefin polymer
JPH04331219A (en) Production of propylene block copolymer
JPH0344563B2 (en)
JPH0158202B2 (en)
JPH0316365B2 (en)
JPS591285B2 (en) Alpha − Olefuinnojiyugohouhou

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term