JPS61133204A - Reclamation of solvent for ziegler-type polymerization - Google Patents

Reclamation of solvent for ziegler-type polymerization

Info

Publication number
JPS61133204A
JPS61133204A JP25497484A JP25497484A JPS61133204A JP S61133204 A JPS61133204 A JP S61133204A JP 25497484 A JP25497484 A JP 25497484A JP 25497484 A JP25497484 A JP 25497484A JP S61133204 A JPS61133204 A JP S61133204A
Authority
JP
Japan
Prior art keywords
solvent
polymerization
catalyst
hexane
ziegler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25497484A
Other languages
Japanese (ja)
Inventor
Yasushi Nakajima
靖 中嶋
Tomohiko Kimura
友彦 木村
Toshio Kobayashi
俊夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP25497484A priority Critical patent/JPS61133204A/en
Publication of JPS61133204A publication Critical patent/JPS61133204A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accomplish the titled reclamation by hydrogenation treatment, using a transition metal-based hydrogenation catalyst, of solvent used in Ziegler- type polymerization to effect efficient deactivation of the polymerization- inhibiting substances accumulated in the polymerization solvent. CONSTITUTION:A solvent used in Ziegler-type polymerization (e.g., benzene, xylene, 4-20C paraffin) is scrubbed ar distilled if needed, followed by hydrogena tion treatment of the solvent using a transition metal-based hydrogenation catalyst (e.g., titanium trichloride, alkoxyoxyvanadium halide), normally at room temperature-100 deg.C under a hydrogen-pressurized condition of 3-9kgf/cm<2>, thus accomplishing the objective reclamation.

Description

【発明の詳細な説明】 (産業上の利用分野) 未発明はポリオレフィンをチーグラー型重合によって製
造する際に用いる重合溶媒を再生する方法に関する。詳
しくは、ポリマーを単離後、必要に応じて水洗、居留精
製した前記重合溶媒を更に木素化処理して、重合溶媒中
に蓄積されてくる重合阻害物質を無害化する方法である
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for regenerating a polymerization solvent used when producing polyolefins by Ziegler type polymerization. Specifically, after isolating the polymer, if necessary, the polymerization solvent that has been washed with water and purified by distillation is further subjected to a lignification treatment to render harmless polymerization inhibitors accumulated in the polymerization solvent.

(従来の技術) 従来、チーグラー型触媒を用いるオレフィンの重合にお
いては、触媒と溶媒の存在下にオレフィンをセ合後、生
成物を分離することにより回収した溶媒を、再びそのま
ま、又は蒸留して重合に供している。しかし、原因は明
らかでないが、一度ないし散開使用後に回収された溶媒
を用いると、新しい溶媒を用いた場合に較べて触媒活性
が低下したり、生成ポリマーの物性に目標とのずれが生
じることが多い、これは、触媒と原料オレフィンとの副
反応による重合副生成物、触媒分解生成物、使用した溶
媒そのものを含め、その他各種原料の分解物など微量の
不純物が溶媒中に含まれているためと考えられる。
(Prior art) Conventionally, in the polymerization of olefins using a Ziegler type catalyst, after olefins are combined in the presence of a catalyst and a solvent, the product is separated and the recovered solvent is recovered either as it is or by distillation. Subjected to polymerization. However, although the cause is not clear, when a recovered solvent is used once or after being dispersed, the catalytic activity may be lower than when a fresh solvent is used, and the physical properties of the resulting polymer may deviate from the target. This is because the solvent contains small amounts of impurities such as polymerization by-products from side reactions between the catalyst and raw olefin, catalyst decomposition products, and decomposition products of various other raw materials, including the solvent itself. it is conceivable that.

(従来技術の問題点) これらの不純物を除去するために、溶媒は蒸留して再使
用に供されるが、これらの不・練物を許容値以下にして
重合になるべく影響を及ぼさないようにするには、蒸留
の還流比を大きくしたり。
(Problems with the prior art) In order to remove these impurities, the solvent is distilled and reused, but it is necessary to keep these impurities below an acceptable level so that they do not affect the polymerization as much as possible. To do this, increase the reflux ratio during distillation.

高、低沸点分のガツト率を大きくする必要があり1M気
使用暖の増大、溶媒原単位の悪化などの工業的な不利益
が増大する。また、上記のような蒸留を行っても鰻り返
し使用すると活性の低下は避けられなかった。
It is necessary to increase the gut ratio for high and low boiling point components, which increases industrial disadvantages such as an increase in 1M air usage and a deterioration in the solvent consumption rate. Further, even if the above-mentioned distillation was carried out, a decrease in activity could not be avoided when using unagigaeshi.

〜力、最近では重合触媒の活性が著しく高くなり、溶媒
の触媒濃度を大幅に低下させたプロセスが一般化してい
る。この場合上台反応は、オレフィ7など、原料中の不
純物の影響を受は易くなり、触媒の原単位が悪化したり
、生成ポリマー物性が大きく変動するため、プロセスの
運転に大きな障害になり、その解決が必要になっていた
Recently, the activity of polymerization catalysts has increased significantly, and processes in which the concentration of catalyst in the solvent is significantly reduced have become commonplace. In this case, the upper platform reaction is easily affected by impurities in the raw materials such as olefin 7, which deteriorates the catalyst unit consumption and greatly fluctuates the physical properties of the produced polymer, which greatly impedes the operation of the process. A solution was needed.

(問題点の解決手段) 発明者等は、上記のような従来の溶媒再生技術の欠点を
克服するため種々検討を重ねた結果、溶媒を必要に応じ
て水洗、蒸留後、更に遷移金属系水素化触媒を用いて木
素化処理することによって効率良く再生し得ることを見
出して本発明を完成した。
(Means for solving the problem) As a result of various studies in order to overcome the drawbacks of the conventional solvent regeneration techniques as described above, the inventors have discovered that after washing the solvent with water and distilling it as necessary, the solvent is further treated with transition metal hydrogen. The present invention was completed by discovering that wood can be efficiently regenerated by wood conversion treatment using a chemical catalyst.

本発明の溶媒再生方法は、通常、重合生成物を分離した
溶媒を蒸留後、木素化処理して行うが。
The solvent regeneration method of the present invention is usually carried out by distilling the solvent from which the polymerization product has been separated and then treating it with wood.

重合生成物を分離後直接水素添加処理することもできる
It is also possible to directly hydrogenate the polymerization product after separation.

本発明の木素化処理の触媒としては遷移金属担持型触媒
及び遷移金属混合成形触媒のいずれも使用することがで
き、遷移金属としてはFeCo、Ni、Ru、Rh、P
d、I r、PL等を挙げることができる。これらの金
属の酸化物や錯体等の塩類も触媒として用いることがで
きる。また、遷移金属担持型水素化触媒の担体としては
As the catalyst for the lignification treatment of the present invention, both a supported transition metal catalyst and a transition metal mixed molded catalyst can be used, and the transition metals include FeCo, Ni, Ru, Rh, and P.
Examples include d, Ir, PL, and the like. Salts such as oxides and complexes of these metals can also be used as catalysts. It can also be used as a carrier for transition metal-supported hydrogenation catalysts.

活性炭、グラファイト、ノリ力、シリカアルミナ、アル
ミナなどが使用でき1,11移金属混合成形触媒の成形
材料としてはケイソウ土などを使用することができる。
Activated carbon, graphite, glue, silica alumina, alumina, etc. can be used, and diatomaceous earth etc. can be used as the molding material for the 1,11 transfer metal mixed molded catalyst.

担体又は成形材料に対する前記遷移金属又はその酸化物
や塩類の担持(混合)率は、特に限定されず1通常の水
素添加反応に使用される範囲であれば良い。
The supporting (mixing) ratio of the transition metal or its oxide or salt on the carrier or molding material is not particularly limited, and may be within the range used in ordinary hydrogenation reactions.

本発明の水素化反応は、バッチ、a続 液相。The hydrogenation reaction of the present invention is a batch, continuous liquid phase.

気相、気液混相方式のいずれの方式でも実施することが
でき、触媒との接触方法はスラリー、固定床、流動床の
いずれでも良い0反応器の形状は種型、管型、基型等、
通常の水素化反応に使用されるものを用いることができ
る。水素化反応1条件は、反応型式により異なるが、常
圧〜30kgf/cm’、好ましくは3〜9 k g 
f / c m ?の水素加圧下、温度O〜150℃、
好ましくは室温〜100℃1反応時間0.1〜120分
、回分式の場合好ましくは10分〜60分、連続式の場
合には平均滞留時間で好ましくは0.5〜20分である
。溶媒中のオレフィン濃度は、未反応原料モノマー、反
応副生成物等を含めて、臭素指数(mg−Br、710
0g−溶媒)−C’200−4000、好ましくは20
0〜2000とする0反応副生成物の系内濃度は1通常
、臭素指数で0〜200程度である。なお、水素化触媒
の使用量は、気合反応の種類、木本化反応型式、残存オ
レフィン等により異なるが、一般に水素化反応に使用さ
れる範囲で良い0本発明の方法で木素化処理される重合
溶媒としては、通常オレフィン類の重合の際に生成ポリ
マーまたは触媒を溶解または分散させるために用いられ
る炭化水素類、例えば、炭素数4〜20程度のパラフィ
ン、シクロパラフィン類、ヘンゼン、トルエン、キシレ
ン、及びこれらの2種以上の混合物があげられる0本発
明で行なわれるオレフィン重合反応は、上記炭化水素類
の存在下に周期律表4〜6族遷移金属の化合物と同表1
〜3族金属の有機金属化合物、さらには必要に応じて電
子供与体化合物よりなる組合せ触媒を用いて行う、いわ
ゆるチーグラ−5!重合反応である。
It can be carried out in either a gas phase or a gas-liquid mixed phase system, and the method of contact with the catalyst can be slurry, fixed bed, or fluidized bed.The shape of the reactor can be seed type, tube type, base type, etc. ,
Those used in ordinary hydrogenation reactions can be used. Hydrogenation reaction 1 conditions vary depending on the reaction type, but normal pressure to 30 kgf/cm', preferably 3 to 9 kg
f/cm? under hydrogen pressure, temperature 0~150℃,
Preferably, the reaction time per reaction time is from room temperature to 100° C. 0.1 to 120 minutes, preferably 10 minutes to 60 minutes in the case of a batch method, and preferably 0.5 to 20 minutes in average residence time in the case of a continuous method. The olefin concentration in the solvent, including unreacted raw material monomers, reaction by-products, etc., is determined by the bromine index (mg-Br, 710
0g-solvent)-C'200-4000, preferably 20
The concentration of reaction by-products in the system is usually 0 to 2000, expressed as a bromine index of 0 to 200. The amount of hydrogenation catalyst used varies depending on the type of gas reaction, woody reaction type, residual olefin, etc., but generally it is within the range used for hydrogenation reactions. Examples of the polymerization solvent include hydrocarbons that are normally used to dissolve or disperse the polymer or catalyst produced during the polymerization of olefins, such as paraffins having about 4 to 20 carbon atoms, cycloparaffins, Hensen, toluene, The olefin polymerization reaction carried out in the present invention includes xylene and mixtures of two or more thereof.
~ So-called Ziegler-5! carried out using a combination catalyst consisting of an organometallic compound of Group 3 metal and, if necessary, an electron donor compound! It is a polymerization reaction.

上記の遷移金属化合物としては、チタン、バナジウム、
ジルコニウム化合物が用いられ1例えば、三塩化チタン
、四塩化チタン、テトラアルコキシチタン、四塩化バナ
ジウム、オキン三塩化バナジウム、アルコキシオキシバ
ナジウムノ・ライド、三塩化ジルコニウム、ジアルキル
ジルコニウムハライドなどがあげられる。
The above transition metal compounds include titanium, vanadium,
Examples of zirconium compounds used include titanium trichloride, titanium tetrachloride, tetraalkoxytitanium, vanadium tetrachloride, vanadium trichloride, alkoxyoxyvanadium oxide, zirconium trichloride, and dialkylzirconium halides.

さらにこれら遷移金属化合物を塩化マグネシウムなどの
担体に担持した高活性触媒を用いる際には1本発明の効
果がin著である。
Furthermore, when using a highly active catalyst in which these transition metal compounds are supported on a carrier such as magnesium chloride, the effects of the present invention are particularly significant.

上記の担体に担持した高活性触媒としては、塩化マグネ
ンウム、酸化マグネシウムなどの担体に、四塩化チタン
、テトラアルコキシチタン、四塩化バナジウムなどの遷
移金属化合物、さらに必要により有機酸エステル、有機
シリコン化合物、アルキルハライドなどの電子供与性化
合物を、公知の方法で担持した成分が用いられる。
The highly active catalyst supported on the above carrier includes a carrier such as magnesium chloride or magnesium oxide, a transition metal compound such as titanium tetrachloride, tetraalkoxytitanium, or vanadium tetrachloride, and, if necessary, an organic acid ester, an organic silicon compound, A component in which an electron-donating compound such as an alkyl halide is supported by a known method is used.

上記の有機金属化合物としては、トリアルキルアルミニ
ウム、ジアルキルアルミニウムハライド、フルキルアル
ミニウムセスキハライド、アルキルアルミニウムシバラ
イドなどの有機アルミニウム化合物、ジアルキルマグネ
シウムなどの有機マグネシウム化合物1例えば、トリエ
チルアルミニウム、トリインブチルアルミニウム、エチ
ルアルミニウムセスキクロリド、ジエチルマグネシウム
などがあげられ、これらは混合物であってもよい。
Examples of the above-mentioned organometallic compounds include organoaluminum compounds such as trialkyl aluminum, dialkyl aluminum halide, flukylaluminum sesquihalide, and alkyl aluminum civalide; organomagnesium compounds such as dialkyl magnesium; Examples include ethylaluminum sesquichloride and diethylmagnesium, and mixtures thereof may be used.

また、上記遷移金属化合物、有機金属化合物の他に、触
媒の活性向上、生成ポリマーの物性制御のために、エス
テル類、アミン類、エーテル類。
In addition to the above transition metal compounds and organometallic compounds, esters, amines, and ethers are used to improve the activity of the catalyst and control the physical properties of the produced polymer.

ハロフルカン類などの電子供与性混合物を加えることも
できる。
Electron donating mixtures such as haloflucans can also be added.

また、上記重合反応で用いられるオレフィンとしては、
エチレン、フロピレン、 1−ブテン、l−ヘキセン、
l−オクテン、1−ドデセン、4−メチルートペンテン
等のαオレフィンがあり、本発明の溶媒再生方法は、こ
れらの共重合反応、あるいは更にこれらとブタジェン、
イソプレン、ジシクロペンタジェン、エチリデンノルボ
ルネン等のジエン類との共重合反応にも適用することが
できる。なお、重合反応の温度、圧力1時間、反応物の
濃度等の重合条件には特に制限がなく、公知の条件で行
うことができる。
In addition, as the olefin used in the above polymerization reaction,
Ethylene, phlopylene, 1-butene, l-hexene,
There are α-olefins such as l-octene, 1-dodecene, and 4-methylthopentene, and the solvent regeneration method of the present invention involves copolymerization reactions of these or further copolymerization of these with butadiene,
It can also be applied to copolymerization reactions with dienes such as isoprene, dicyclopentadiene, and ethylidene norbornene. There are no particular limitations on the polymerization conditions such as temperature, pressure for 1 hour, concentration of reactants, etc., and the polymerization can be carried out under known conditions.

以下に実施例を用いて本発明を更に詳しく説明する。The present invention will be explained in more detail below using Examples.

(実施例1〜6) 表1に示した水素化触媒を窒素雰囲気下で110℃以上
に約1時間加熱し、吸着している水分、酸素等を除いた
後、窒素で希釈した水素を通して還元処理(Pt、Pa
触媒の場合、60〜110℃、1時間−Ni触媒の場合
、210℃。
(Examples 1 to 6) The hydrogenation catalyst shown in Table 1 was heated to 110°C or higher for about 1 hour in a nitrogen atmosphere to remove adsorbed moisture, oxygen, etc., and then passed through hydrogen diluted with nitrogen for reduction. Treatment (Pt, Pa
60-110°C for catalyst, 1 hour - 210°C for Ni catalyst.

4〜8時間)した。4 to 8 hours).

後述の方法で重合後、生成ポリマーを分離し。After polymerization, the resulting polymer is separated using the method described below.

水洗したイソヘキサンをオルダーシ、つ型2,0段の芯
留塔を用いて還流比?で蒸留し、62〜6Bや ℃の留分を集めた1水損作(重合及び蒸留)を1回以上
経たものを窒素バブリングで脱水して得られるイソヘキ
サンを回収へキサン(1)とした。
The water-washed isohexane is washed with water and refluxed using a two-stage 2.0-stage core distillation column. The recovered hexane (1) was obtained by dehydrating the obtained isohexane by nitrogen bubbling.

上記回収ヘキサン(1)1.5交をt、stガラス製オ
ートクレーブに入れ、オートクレーブを窒素置換後、上
記還元処理後の水素化触媒40rnfLを装入し、密閉
して50℃まで昇温した6次に5kg/cm2Gまで水
素を装入し、500rpmで攪拌しながら30分間水添
した0反応液温を室温まで冷却後、脱圧し、窒素雰囲気
下で水素化触媒を鑓別除去して、インヘキサンを水素化
へキサン(1)とした。
1.5 kg of the recovered hexane (1) was placed in a T and ST glass autoclave, and after purging the autoclave with nitrogen, 40rnfL of the hydrogenation catalyst after the above reduction treatment was charged, the mixture was sealed, and the temperature was raised to 50°C. Next, hydrogen was charged to 5 kg/cm2G and hydrogenated for 30 minutes while stirring at 500 rpm. After cooling the reaction solution temperature to room temperature, the pressure was depressurized, and the hydrogenation catalyst was removed by scraping under a nitrogen atmosphere. Hexane was designated as hydrogenated hexane (1).

得られた水素化へキサン(1)480m見をコンデンサ
及び攪拌装置を備えた11のフラスコに入れ、窒素バブ
リング下でオキシ三塩化バナジウムO,Lmmoiを加
え、2000rpmで撹拌しながら窒業ガスをエチレン
・プロピレン混合ガス(容積比=40760)100見
/hに切換えた。液温を35℃に保持しながら、モノマ
ーガスの装入速度を400見/hに増し、あらかじめ水
素化へキサン(1)20mlにエチルアルミこラムセス
キクロリド1mmoiを溶解させて調整した溶液を素早
く滴下した6次いで、七ツマーガスを装入速度100〜
400見/hの範囲で供給不足にならないように調節し
ながら、吹込温度35℃で10分間共重合させた。1m
iのメタノールを添加して共重合反応を停止させた後、
メタノールを多量添加して析出させた後、減圧乾燥して
、新しいイソヘキサン溶媒を用いた場合と同様の性状を
有するエチレン・プロピレン共重合体をそれぞれ表1の
収量で得た。
480 m of the obtained hydrogenated hexane (1) was placed in a flask 11 equipped with a condenser and a stirring device, and vanadium oxytrichloride (O, Lmmoi) was added under nitrogen bubbling, and nitrogen gas was added to ethylene while stirring at 2000 rpm. - Switched to propylene mixed gas (volume ratio = 40760) at 100 m/h. While maintaining the liquid temperature at 35°C, the monomer gas charging rate was increased to 400 m/h, and a solution prepared in advance by dissolving 1 mmoi of ethylaluminum sesquichloride in 20 ml of hydrogenated hexane (1) was quickly added. The dropping gas was charged at a rate of 100~
Copolymerization was carried out at a blowing temperature of 35° C. for 10 minutes while adjusting the supply rate within the range of 400 m/h to avoid insufficient supply. 1m
After adding methanol (i) to stop the copolymerization reaction,
After adding a large amount of methanol to precipitate, the mixture was dried under reduced pressure to obtain ethylene-propylene copolymers having the same properties as those obtained using fresh isohexane solvent in the yields shown in Table 1.

また以下の様にしてプロピレンと1−ブテンの共重合反
応を実施した。
Further, a copolymerization reaction of propylene and 1-butene was carried out as follows.

[I]高活性Ti触媒成分■の調製 1立のステンレス製ボールミルを使用して、窒素雰囲気
下で無水塩化マグネシウム20gと安息香酸エチル4.
8gを投入し、24時間共粉砕した。200m見丸底フ
ラスコに窒素雰囲気下で上記担体15gをとり1次に四
塩化チタン150m1を室温で滴下する。温度を80℃
に上げ、2時間攪拌の後、デカンテーションにより上澄
液を除いた0次にニーヘキサ7100m文を加え、攪拌
の後、デカンテーションで上澄液を除く作業を5回繰り
返した。この成分のn−ヘキサンを蒸発させて分析した
ところ、1.3wt%のTiが含有されていた。
[I] Preparation of highly active Ti catalyst component (2) Using a stainless steel ball mill, 20 g of anhydrous magnesium chloride and 4. ethyl benzoate were added under a nitrogen atmosphere.
8 g was added and co-pulverized for 24 hours. 15 g of the above carrier was placed in a 200 m round-bottomed flask under a nitrogen atmosphere, and 150 ml of titanium tetrachloride was first added dropwise at room temperature. Temperature 80℃
After stirring for 2 hours, the supernatant was removed by decantation and 7100 m of Nihex was added. After stirring, the process of removing the supernatant by decantation was repeated 5 times. When this component, n-hexane, was evaporated and analyzed, it was found that 1.3 wt% of Ti was contained.

[11] プロピレン′拳ブテン共重合(実施例1〜6
)で調製した水素化へキサン(L)500mJLをコン
デンサ及び攪拌装置を備えた1見のフラスコに入れ、窒
素バブリング下でトリエチルアルミニウム1mmoiを
加え、次いで安息香醸エチル0.33mmo文を加え、
1500rpmで撹拌しながら窒素ガスをプロピレン−
1−ブテン混合ガス(容積比=65/35)150見/
hに切換えた。液温を40℃に保持しながら、[l]で
調製したTi触触媒成分上TiX準で0.01mmo見
加え、3O分間共重合させた。1mMのメタノールを添
加して共重合反応を停止トさせた後、メタノールを多量
に添加して析出させ、減圧乾燥して、新しいイソヘキサ
ン溶媒上用いた場合と同様の性状を有するプロピレン・
ブテン共重合体を表1の収量で得た。また同様にして比
較例に示す条件で重合反応を実施した。
[11] Propylene-butene copolymerization (Examples 1 to 6)
500 mJL of hydrogenated hexane (L) prepared in ) was placed in a one-size flask equipped with a condenser and a stirring device, 1 mmoi of triethylaluminum was added under nitrogen bubbling, and then 0.33 mmoi of benzoinated ethyl was added.
Nitrogen gas was added to propylene while stirring at 1500 rpm.
1-Butene mixed gas (volume ratio = 65/35) 150 views/
I switched to h. While maintaining the liquid temperature at 40° C., 0.01 mm of TiX was added to the Ti catalyst component prepared in [1] and copolymerized for 30 minutes. After stopping the copolymerization reaction by adding 1mM of methanol, a large amount of methanol was added to precipitate it, and it was dried under reduced pressure to produce propylene with the same properties as when used on fresh isohexane solvent.
A butene copolymer was obtained in the yield shown in Table 1. In addition, a polymerization reaction was similarly carried out under the conditions shown in Comparative Example.

(以下余白) (実施例7) [1] 高活性Ti触媒成分・■の調整300m見丸底
フラスコに窒素雰囲気下で、n−ヘキサンloomi及
び無水塩化マグネシウム5 gをとり、室温で攪拌下に
エタノール18.7mJL、ジエチルアルミニウムクロ
ライド15m1及び四塩化チタン31.2mAを順に滴
ドする。この後、デヵンテーシ、ンにより上澄液を除い
た1次にn−ヘキサン100m1を加え。
(Leaving space below) (Example 7) [1] Preparation of highly active Ti catalyst component (■) In a 300 m diameter round bottom flask under a nitrogen atmosphere, add n-hexane roomi and 5 g of anhydrous magnesium chloride, and stir at room temperature. 18.7 mJL of ethanol, 15 ml of diethylaluminum chloride, and 31.2 mA of titanium tetrachloride were added dropwise in this order. After that, the supernatant liquid was removed by decanting, and 100 ml of n-hexane was added.

攪拌ののち、デカンテーションで上澄液を除く操作を5
回くり返した。この成分のn−へキサンを蒸発させて分
析したところ5 、OwL%のTiが含有されていた。
After stirring, remove the supernatant liquid by decantation.
Repeatedly. When this component, n-hexane, was evaporated and analyzed, it was found that Ti was contained in an amount of 5.0 L%.

[11]回収ヘキサンの調整 耐食網製2文オートクレーブにn−ヘキサン12、 [
N で2mall、たTi成分■(Ti基準で)0.0
2mmol、)リエチルアルミニウムCAI基mで)1
mmoJ1及び1−へ$セン50m9.を窒素雰囲気中
で装入後、水素を気相分圧で0.5kg/cm2FF:
入し、次にエチレンを装入して全圧2.5kg/am 
  、70℃において重合を2時間実施した。その後、
生成ポリで−を分離し、n−へ本サンをオルダーシ、つ
fi20段の蒸留塔を用いてlal流比2の条件で蒸留
して65〜67℃にの留分を集めた。このヘキサンを匡
双Σ王ヱZ(2)とした、このヘキサン中には1−ヘキ
センが2000wtppm存在している。上記回収へ午
サンに実施例1に記載の木素化処理を実施シ、このヘキ
サンをに1上仝まよZ(2)とした、このヘキサン中の
1−ヘキセンは30wtppmに減少していた。
[11] Adjustment of recovered hexane 12 n-hexane, [
N 2mall, Ti component (based on Ti) 0.0
2 mmol,) ethylaluminum CAI group m) 1
$sen 50m9 to mmoJ1 and 1-. After charging in a nitrogen atmosphere, hydrogen was charged at a gas phase partial pressure of 0.5 kg/cm2FF:
Then, charge ethylene to reduce the total pressure to 2.5 kg/am.
Polymerization was carried out at , 70° C. for 2 hours. after that,
- was separated from the produced poly, and the present sample was distilled to n- using a 20-stage distillation column at a flow ratio of 2 to collect a fraction at a temperature of 65 to 67°C. This hexane was designated as 匡souΣ王ヱZ(2), and 2000 wtppm of 1-hexene was present in this hexane. The above recovered hexane was subjected to the lignification treatment described in Example 1, and the hexane was used as Z(2), and the 1-hexene in this hexane was reduced to 30 wtppm. .

゛耐食鋼製2愛す一トクレープに、水素化へキサン(2
)1文、[I] で調整・したTi成分(■0.02m
moi、トリエチルアルミニウム1mm’ojLを窒素
雰囲気中で装入後に水素を気相分圧で2.0kg/cm
圧入し、次にエチレンを装入して、全圧4kg/cm2
G、70℃において重合を2時間実施した結果、新しい
n−へキサンを用いて同様に重合した場合と物性の等し
い粉末状ポリエチレンを収(1178gで得た。
゛Hydrogenated hexane (2 pieces) is added to the 2-piece crepe made of corrosion-resistant steel.
) 1 sentence, [I] Adjusted Ti component (■0.02m
moi, after charging 1 mm'ojL of triethylaluminum in a nitrogen atmosphere, hydrogen was added at a gas phase partial pressure of 2.0 kg/cm.
Pressure-fit, then charge ethylene to bring the total pressure to 4 kg/cm2.
As a result of polymerization at 70° C. for 2 hours, powdered polyethylene (1178 g) was obtained, which had the same physical properties as those obtained in the same polymerization using fresh n-hexane.

(比較例1〜5) 新しいイソヘキサン、回収へキサン(1)、 及び回収
ヘキサン(1)を吸着精製処理したものを溶媒として用
いて、実施例1と同様に重合して、それぞれ表1 (比
較例)記載の結果を得た。この表から明らかなように、
木素化処理していない溶媒を用いるとエチレン・プロピ
レン共重合体及びプロピレン−1−ブテン共重合体収量
が何れも著しく低下し、物性も変動する。
(Comparative Examples 1 to 5) Using fresh isohexane, recovered hexane (1), and recovered hexane (1) that had been adsorbed and purified as solvents, polymerization was carried out in the same manner as in Example 1. Example) The stated results were obtained. As is clear from this table,
If a solvent that has not been subjected to lignification treatment is used, the yields of both ethylene-propylene copolymer and propylene-1-butene copolymer will be significantly reduced, and the physical properties will also vary.

この収量低下は高活性Ti触媒成分を用いたプロピレン
−1−ブテン共重合において、特に著しい。
This decrease in yield is particularly significant in propylene-1-butene copolymerization using a highly active Ti catalyst component.

(比較例6) 実施例7の水素化へキサン(2)の代りに回収へキサン
(2)を使用して、実施例7と同様にして重合反応を実
施し、粉末状のポリエチレンを収量176gで得た。
(Comparative Example 6) Using recovered hexane (2) in place of hydrogenated hexane (2) in Example 7, a polymerization reaction was carried out in the same manner as in Example 7, yielding 176 g of powdered polyethylene. I got it.

(比較例7) 実施例7の水素化へキサン(2)の代りに未使用のn−
ヘキサンを使用して、実施例7と同様にして重合反応を
実施し、粉末状のポリエチレンを収量170gで得た。
(Comparative Example 7) In place of hydrogenated hexane (2) in Example 7, unused n-
A polymerization reaction was carried out in the same manner as in Example 7 using hexane, and powdered polyethylene was obtained in a yield of 170 g.

表2は実施例7と比較例6及び7の一上台結果を比較し
て示したものである。この表から回収−キサン(2)を
使用すると生成重合体のMI、、7M I 2.16が
低下するが、水素化へキサン(2)を用いた場合と同等
の物性を有する共重合体が得られることが判る。
Table 2 shows a comparison of the results of Example 7 and Comparative Examples 6 and 7. From this table, it can be seen that when recovered-xane (2) is used, the MI, 7M I 2.16 of the produced polymer decreases, but a copolymer with the same physical properties as when hydrogenated hexane (2) is used is obtained. It turns out that you can get it.

表    2 木1.荷(15kg及び2.16kgでのMIの比(発
明の効果) 本発明の方法においては、溶媒中の重合阻害成分を水素
化反応によって無害な物質に完全に変換してしまうため
、本発明の方法で再生処理すれば1重合体の収量や物性
を低下させずに喧合溶媒を繰り返して使用することがで
きる。
Table 2 Tree 1. The ratio of MI at 15 kg and 2.16 kg (effect of the invention) In the method of the present invention, the polymerization-inhibiting components in the solvent are completely converted into harmless substances by the hydrogenation reaction. If recycled by this method, the solvent can be used repeatedly without reducing the yield or physical properties of the single polymer.

Claims (1)

【特許請求の範囲】[Claims] チーグラー型重合に使用した溶媒を、必要に応じて水洗
、蒸留等の処理後、遷移金属系水素化触媒を用いて木素
化処理することを特徴とする重合溶媒の再生方法。
A method for regenerating a polymerization solvent, which comprises treating the solvent used in Ziegler-type polymerization with water washing, distillation, etc. as necessary, and then subjecting it to lignification treatment using a transition metal-based hydrogenation catalyst.
JP25497484A 1984-12-04 1984-12-04 Reclamation of solvent for ziegler-type polymerization Pending JPS61133204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25497484A JPS61133204A (en) 1984-12-04 1984-12-04 Reclamation of solvent for ziegler-type polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25497484A JPS61133204A (en) 1984-12-04 1984-12-04 Reclamation of solvent for ziegler-type polymerization

Publications (1)

Publication Number Publication Date
JPS61133204A true JPS61133204A (en) 1986-06-20

Family

ID=17272450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25497484A Pending JPS61133204A (en) 1984-12-04 1984-12-04 Reclamation of solvent for ziegler-type polymerization

Country Status (1)

Country Link
JP (1) JPS61133204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021520441A (en) * 2018-06-21 2021-08-19 バーゼル・ポリオレフィン・ゲーエムベーハー Suspension process for the production of ethylene copolymers in the reactor cascade

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021520441A (en) * 2018-06-21 2021-08-19 バーゼル・ポリオレフィン・ゲーエムベーハー Suspension process for the production of ethylene copolymers in the reactor cascade
US11834531B2 (en) 2018-06-21 2023-12-05 Basell Polyolefine Gmbh Suspension process for preparing ethylene copolymers in a reactor cascade

Similar Documents

Publication Publication Date Title
KR101357569B1 (en) Process for the polyolefin finishing
RU2073689C1 (en) Solid component of catalyst of (co)polymerization of ethylene, catalyst, method for production of (co)polymers of ethylene
KR20010081088A (en) Branched semi-crystalline ethylene-propylene compositions
CZ300053B6 (en) Process and apparatus for preparing propylene homopolymers and copolymers
EP2125902A1 (en) Monomer recycle process for fluid phase in-line blending of polymers
JP2003534415A (en) Propylene polymer and its production
EP0123767B1 (en) Method of preparing a supported ziegler-catalyst for the polymerisation of alpha-olefins
JPS61151205A (en) Polymerization catalyst, product and utilization
US6977283B1 (en) Polymerization process
JPH02142804A (en) Catalyst for ethylene polymerization
KR100643513B1 (en) Solvent hydrogenation and reuse method in polyolefin polymerization
JPS58113138A (en) Manufacture of linear olefin product
CN108713030B (en) Method for increasing activity of Ziegler-Natta catalyst
US4311816A (en) Process for the preparation of polymers of α-olefins
EP0606289A1 (en) Catalyst for ethylene polymerization at high temperatures.
JPS61133204A (en) Reclamation of solvent for ziegler-type polymerization
JPS5830887B2 (en) Method for purifying highly crystalline polyolefin
JP4579413B2 (en) Polymerization method
JP4863186B2 (en) Process for producing olefin polymer
JPS61133203A (en) Reclamation of solvent for ziegler-type polymerization
KR101019888B1 (en) A process for transitioning between ziegler natta system and metallocene catalyst system
JP2008534722A (en) Catalyst component for polymerization of olefins
KR100218044B1 (en) Ethylene polymerization catalysts
JPS612706A (en) Polymerization of propylene
WO2004016661A1 (en) Process for producing polyolefin