JPS612706A - Polymerization of propylene - Google Patents

Polymerization of propylene

Info

Publication number
JPS612706A
JPS612706A JP59121942A JP12194284A JPS612706A JP S612706 A JPS612706 A JP S612706A JP 59121942 A JP59121942 A JP 59121942A JP 12194284 A JP12194284 A JP 12194284A JP S612706 A JPS612706 A JP S612706A
Authority
JP
Japan
Prior art keywords
propylene
polymerization
catalyst
halide
organo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59121942A
Other languages
Japanese (ja)
Other versions
JPH0543725B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59121942A priority Critical patent/JPS612706A/en
Publication of JPS612706A publication Critical patent/JPS612706A/en
Publication of JPH0543725B2 publication Critical patent/JPH0543725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To produce polypropylene in high yield, by polymerizing propylene containing dissolved organo-Al compound, in the presence of a catalyst composed of the organo-Al compound and a Ti halide supported on a carrier containing a Mg halide. CONSTITUTION:A magnesium halide such as magnesium chloride and a titanium halide such as titanium trichloride are co-crushed to obtain a carrier, and is used in combination with an organo-aluminum compound such as triethylaluminum as a catalyst. An organo-aluminum compound such as triethylaluminum is dissolved in propylene having a purity of 95% at a concentration of preferably 1-2,500ppm, and the propylene is polymerized by vapor-phase polymerization or bulk polymerization to obtain the objective polypropylene.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプロピレンの重合法に関し、詳しくは、固体触
媒当り高収率の担体付遷移金属触媒を用いてプロピレン
自身を媒体とする塊状重合法或は気相重合法でプロピレ
ンを重合する改良法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a propylene polymerization method, and more specifically, a bulk polymerization method using propylene itself as a medium using a supported transition metal catalyst with a high yield per solid catalyst; This invention relates to an improved method for polymerizing propylene using a gas phase polymerization method.

従来の技術 プロピレンを重合するに際にハロゲン化マグネシウムを
含有する担体にハロゲン化チタンを担持した担体付遷移
金属触媒と有機アルミニウムからなる触媒を用いてプロ
ピレンを重合する方法は特公昭3−9−12105号で
提案されて以来数多くの改良法が提案されており、担体
付遷移金属触媒当りの収率が極めて高いレベルに達して
いる。一方プロピレン自身を媒体とする塊状重合法或は
、気相重合法についても古くから知られており、(l!
!f公昭32−10596、特公昭37−3291、特
公昭44−16017)プロピレン自身を媒体とするた
め、重合時の単量体濃度が高く触媒当り高収率でポリプ
ロピレンを与えることができることが知られている。
Prior Art A method of polymerizing propylene using a supported transition metal catalyst in which titanium halide is supported on a carrier containing magnesium halide and a catalyst consisting of organoaluminum is disclosed in Japanese Patent Publication No. 3-9-1983. Since it was proposed in No. 12105, many improved methods have been proposed, and the yield per supported transition metal catalyst has reached an extremely high level. On the other hand, bulk polymerization methods or gas phase polymerization methods using propylene itself as a medium have been known for a long time (l!
! (F Publication No. 32-10596, Japanese Patent Publication No. 37-3291, Japanese Patent Publication No. 44-16017) It is known that since propylene itself is used as a medium, the monomer concentration during polymerization is high and polypropylene can be obtained at a high yield per catalyst. ing.

発明が解決しようとする問題点 上記高収率の触媒とプロピレン自身を媒体とする重合法
と組み合せることによって、触媒当り高収率でポリプロ
ピレンを製造することが期待できるが、必然的にプロピ
レンに対する触媒の使用量が少くなるため、プロピレン
中の従来は問題とならなかった極めて微量の触媒活性阻
害物の存在により触媒活性が低下することが起こり、従
来の方法で精製を管理して重合用として、製造されたプ
ロピレンを用いても触媒活性が変動しポリプロピレンの
製造工程の管理が困難となるという問題があった。
Problems to be Solved by the Invention By combining the above-mentioned high-yield catalyst with a polymerization method using propylene itself as a medium, it is expected that polypropylene can be produced at a high yield per catalyst. As the amount of catalyst used is reduced, the catalytic activity decreases due to the presence of extremely small amounts of catalyst activity inhibitors in propylene, which did not pose a problem in the past. There was a problem in that even if the produced propylene was used, the catalyst activity fluctuated, making it difficult to control the polypropylene production process.

問題を解決するための手段 本発明者らは、上記問題を解決する方法について鋭意検
討し、少くともハロゲン化マグネシウムを含有する担体
にハロゲン化チタンを担持して得た担体付遷移金属触媒
と有機アルミニウムからなる触媒を用いて、プロピレン
自身を媒体とする塊状重合法或は気相重合法でプロピレ
ンを重合する方法において、使用するプロピレンとして
有機アルミニウムの少くとも1部を溶解したものを用い
て重合することにより触媒当り高収率でプロピレンを重
合できることを見い出し本発明を完成した。
Means for Solving the Problems The present inventors have made extensive studies on methods for solving the above problems, and have developed a supported transition metal catalyst obtained by supporting titanium halide on a support containing at least magnesium halide, and an organic In a method of polymerizing propylene using a catalyst made of aluminum by bulk polymerization or gas phase polymerization using propylene itself as a medium, polymerization using propylene in which at least a part of organoaluminum is dissolved. The present invention was completed based on the discovery that propylene can be polymerized in high yield per catalyst by doing this.

本発明において、用いる少くともハロケン化マグネシウ
ムを含有する担体にハロゲン化チタンを担持して得た担
体付遷移金属触媒としては、ハロゲン化マグネシつム好
ましくは塩化マグネシウム、ハロゲン化チタン好ましく
は三塩化チタン、四塩化チタンと共粉砕する方法、或は
ハロゲン化マグネシウムと液状のハロゲン化チタンと接
触せしめる方法、この際ハロゲン化マグネシウムとして
種種の有機化合物(好ましくは含酸素化合物)で処理し
たものを用いる方法、或は有機マグネシウム、或はアル
コールなどを含有する溶媒に・・ロゲン化マグネシウム
を溶解したものを金属のハロゲン化物で処理しハロゲン
化マグネシウムを含有する担体を製造し次いで該担体に
ハロゲン化チタンを担持したもの、この際種々の含酸素
有機化合物で処理したものなどが挙げられ数多くの方法
がすでに知られているが、本発明の効果の大きいのは、
担体付遷移金属触媒1f当り10kg以上のポリプロピ
レンを与える触媒である。
In the present invention, the supported transition metal catalyst obtained by supporting titanium halide on a carrier containing at least magnesium halide is magnesium halide, preferably magnesium chloride, titanium halide, preferably titanium trichloride. , a method of co-pulverizing with titanium tetrachloride, or a method of contacting magnesium halide with liquid titanium halide, in which case a method of using magnesium halide treated with various organic compounds (preferably oxygen-containing compounds). Alternatively, magnesium halide is dissolved in a solvent containing organomagnesium, alcohol, etc. and treated with a metal halide to produce a carrier containing magnesium halide, and then titanium halide is added to the carrier. A number of methods are already known, including supported methods and methods treated with various oxygen-containing organic compounds, but the most effective method of the present invention is
This is a catalyst that provides 10 kg or more of polypropylene per 1f of supported transition metal catalyst.

本発明において有機アルミニウムとしては、トリエチル
アルミニウム、トリプロピルアルミニウム、lJフチル
アルミニウム、トリペンチルアルミニウム、トリヘキシ
ルアルミニウムなどのトリアルキルアルミニウム、ジエ
チルアルミニウムクロライド、ジグロピルアルミニウム
クロライド、ジブチルアルミニウムクロライド、ジアル
キルアルミニウムクロライド、ジアキルアルミニウムク
ロライドなどのジアルキルアルミニウムクロライド及び
それらの塩素が臭素、ヨウ素で置換されたものが好まし
く用いられる。本発明の効果の大きいのは、有機アルミ
ニウム1g当り1 kg以上のポリプロピレンを与える
上記遷移金属触媒との組み合せの触媒系を用いることで
ある。
In the present invention, the organoaluminum includes trialkylaluminum such as triethylaluminum, tripropylaluminum, lJ phthylaluminum, tripentylaluminum, and trihexylaluminum, diethylaluminum chloride, diglopylaluminum chloride, dibutylaluminum chloride, dialkylaluminum chloride, Dialkyl aluminum chlorides such as dialkyl aluminum chloride and those in which chlorine is replaced with bromine or iodine are preferably used. What is most effective in the present invention is the use of a catalyst system in combination with the above-mentioned transition metal catalyst that yields 1 kg or more of polypropylene per 1 g of organic aluminum.

本発明において用いるプロピレンとしては1通常のAA
型触媒或はそれの変性型触媒を重合する際例えば70℃
で3時間の重合をプロピレン自身を媒体とする塊状重合
法で重合した時AA型触媒1g当り1 kg以上、有機
アルミニウム当り100F以上のプロピレンを与える通
常の重合用グレードのプロピレンであり、プロピレン純
度で95%以上、H2C、CO2、Co、CO3,As
H3などの重合阻害成分を全酸素分、全・イオウ分、全
ヒ素分などとして表わして数ppm以下Kまで除かれた
ものである。
As the propylene used in the present invention, 1 ordinary AA
For example, when polymerizing a type catalyst or a modified type catalyst thereof, the temperature is 70°C.
It is a normal polymerization grade propylene that gives propylene of 1 kg or more per 1 g of AA type catalyst and 100 F or more per organoaluminum when polymerized for 3 hours using a bulk polymerization method using propylene itself as a medium. 95% or more, H2C, CO2, Co, CO3, As
Polymerization inhibiting components such as H3 are expressed as total oxygen content, total sulfur content, total arsenic content, etc., and are removed to a few ppm or less of K.

本発明において塊状重合法或は気相重合法の条件として
は重合圧力としては10kQ/cJ−ゲージ〜5Qkg
/d−ゲージ、重合温度としては常温〜90℃であり、
エチレン、ブテン−1+ヘキセン−1、などの他のオレ
フィンとの共重合反応を行うことも含有する。
In the present invention, the conditions for the bulk polymerization method or gas phase polymerization method are that the polymerization pressure is 10 kQ/cJ-gauge to 5 Q kg.
/d-gauge, the polymerization temperature is room temperature to 90°C,
It also includes performing a copolymerization reaction with other olefins such as ethylene, butene-1+hexene-1, etc.

本発明において肝要なのは、本来用いるべき有機アルミ
ニウムの1部を重合域に導入する前のプロピレンに溶解
せしめることである。即ち重合域にプロピレンと伴に導
入される有機アルミニウムと触媒として導入される有機
アルミニウムの総和が本来用いるべき有機アルミニウム
の量となるようにすることである。これは本発明は、有
機アルミニウムの使用量を増加して重合活性を高めるこ
とを意図しないことを示すものである。
What is important in the present invention is to dissolve a portion of the organoaluminum originally to be used in propylene before introducing it into the polymerization zone. That is, the total amount of organoaluminum introduced into the polymerization zone together with propylene and organoaluminum introduced as a catalyst is the amount of organoaluminum that should be used. This indicates that the present invention does not intend to increase the polymerization activity by increasing the amount of organic aluminum used.

プロピレン中に溶解せしめる有機アルミニウムノ量とし
ては、1〜2500 ppm程度であり、1 ppm以
下では効果がなく、又2500ppm以上とすることは
有機アルミニウムの使用量が意図した使用量を越えるか
らである。なぜなら気相重合法、塊状重合法では使用し
たプロピレンは通常高々40%しか重合しないため、4
0%、2500ppmの組み合せではこれだけで有機ア
ルミニウム1f当りのポリプロピレンの収率が1 kg
となってしまうからである。好ましくは5〜11000
ppである。
The amount of organic aluminum dissolved in propylene is approximately 1 to 2,500 ppm; less than 1 ppm is ineffective, and 2,500 ppm or more is because the amount of organic aluminum used exceeds the intended amount. . This is because in the gas phase polymerization method and bulk polymerization method, only 40% of the propylene used is usually polymerized.
With the combination of 0% and 2500ppm, the yield of polypropylene per 1f of organic aluminum is 1 kg.
This is because it becomes . Preferably 5-11000
It is pp.

本発明においては、使用する有機アルミニウムの全量を
プロピレンに溶解せしめることは好ましくない、なぜな
ら、担体付遷移金属触媒を重合域に導入するに際し分散
媒体として使用する溶媒中の不純物によって触媒活性が
低下することが生ずるため、1部は担体付遷移金属触媒
とともに重合滞域に導入するのが好ましいからである。
In the present invention, it is not preferable to dissolve the entire amount of organoaluminum used in propylene, because impurities in the solvent used as a dispersion medium when introducing the supported transition metal catalyst into the polymerization zone reduce the catalytic activity. This is because it is preferable to introduce a portion of the polymer into the polymerization zone together with the supported transition metal catalyst.

作用 本発明の効果の理由は明らかではないが、担体付遷移金
属触媒上の重合活性点を形成するのに必要な有機アルミ
ニウム景は少な(かなりの部分の有機アルミニウムは1
重合阻害成分の無害化のために消費されているため、担
体付遷移金属触媒上の活性点の保護のためには、本発明
の方法がより有効であるものと推定される。
Effect The reason for the effect of the present invention is not clear, but the organoaluminum required to form polymerization active sites on the supported transition metal catalyst is small (a considerable portion of the organoaluminium is
Since the polymerization-inhibiting components are consumed to render them harmless, it is presumed that the method of the present invention is more effective for protecting the active sites on the supported transition metal catalyst.

実施例 実験例1 担体付遷移金属触媒の製造 直径121Ilのステンレス製ボール80個を入れた内
容積900−の粉砕用ポット2個を装備した粉砕機を準
備する。それぞれのポットに塩化マグネシウム20g、
テトラエトキシシラン4−5α。
Examples Experimental Example 1 Production of transition metal catalyst with support A pulverizer equipped with two pulverizing pots each having an internal volume of 900 mm and containing 80 stainless steel balls each having a diameter of 121 Il is prepared. 20g of magnesium chloride in each pot,
Tetraethoxysilane 4-5α.

α1α−トリクロロトルエン3−1/を装入し40時間
共粉砕して担体を製造した。次いで200.、/のフラ
スコに担体10ダ、四塩化チタン10〇−人れ80℃で
2時間加熱攪拌し、次いで静置して上澄を除去し100
.zのn−へブタンを装入し攪拌後静置して上澄を除去
する操作を7回操り返しさらに100−のn−ヘプタン
を加え担体付遷移金属触媒スラリーとした。
A carrier was prepared by charging 3-1/3 of α1α-trichlorotoluene and co-pulverizing for 40 hours. Then 200. In a flask containing 10 μg of carrier and 100 μg of titanium tetrachloride, heat and stir at 80° C. for 2 hours, then leave to stand and remove the supernatant.
.. The operation of charging z-n-heptane, stirring, standing still, and removing the supernatant was repeated seven times, and 100-heptane was further added to prepare a carrier-attached transition metal catalyst slurry.

実験例2(重合番号1〜4) 大阪石油化学銖)製の精グロビレン(HLグレード)を
時期を変えてA、82つのサンプルを入手した。
Experimental Example 2 (Polymerization Numbers 1 to 4) Eighty-two samples of purified globylene (HL grade) manufactured by Osaka Petrochemical Co., Ltd. (A) were obtained at different times.

それぞれ純度は99.95%であり、プロパン600モ
ルppm 、エタン、エチレン20モルppm、アセチ
レン、ジエンは検出せず、全イオウは0.1モルppm
CO2、COは0.1モルppm以下水はAで1.0、
Bで1.1であった。
The purity of each is 99.95%, propane 600 mol ppm, ethane, ethylene 20 mol ppm, acetylene, diene not detected, total sulfur 0.1 mol ppm
CO2, CO is 0.1 mol ppm or less, water is 1.0 in A,
B was 1.1.

5/のオートクレーブに実験例1で作った触媒を用いて
重合を行った。重合反応は、まず100.、/のn−ヘ
フリンに窒素気流下にジエチルアルミニウムクロライド アルミニウムは表に示す条件で入れ次いで上記実験例1
で作った担体付遷移金属触媒30w9を入れ混合した後
オートフレ二プに入れ、次いでプロピレンを表に示す条
件でアルキルアルミニウム合した後装入し水素を1.4
 N z装入した後75℃で2時間重合し次いで未反応
のプロピレンをノ(−ジし80℃501wHpで6時間
乾燥した後秤量し、得られたパウダーはさらに135℃
テトラリン溶液で極限粘度数をさらに沸騰n−へブタン
で6時間’−”xioo%とじて算出、以下IIと略記
)7:][量 及びかさ比重を求めた結果は表に示す。
Polymerization was carried out using the catalyst prepared in Experimental Example 1 in a 5/5 autoclave. The polymerization reaction begins with 100. ,/N-Heflin under a nitrogen stream under the conditions shown in the table, and then the above Experimental Example 1.
The supported transition metal catalyst 30w9 prepared in 1. was added and mixed, then placed in an auto-freaker, and then propylene was combined with alkyl aluminum under the conditions shown in the table, and then charged and hydrogen was added to 1.4
After charging Nz, polymerization was carried out at 75°C for 2 hours, and unreacted propylene was poured into a polymer, dried at 80°C, 501wHp for 6 hours, and then weighed. The obtained powder was further heated at 135°C.
The intrinsic viscosity of the tetralin solution was further calculated by boiling n-hebutane for 6 hours.

実験例3 (重合番号5) 触媒として三塩化チタン触媒(丸紅ソルヴエー社製、T
MU−27,10011P)を用いて、重合温度70℃
、水素の装入量を2. 4 N !!とじ、有機アルミ
ニウムとしてジエチルアルミニウムクロライド1.0−
を用いて重合を行った結果は表に示す。
Experimental Example 3 (Polymerization No. 5) Titanium trichloride catalyst (manufactured by Marubeni Solve-A Co., Ltd., T
MU-27, 10011P) at a polymerization temperature of 70°C.
, the amount of hydrogen charged is 2. 4 N! ! Binding, diethylaluminum chloride 1.0- as organic aluminum
The results of polymerization using the above are shown in the table.

発明の効果 実験例に示すように比較的高活性ではあっても有機アル
ミニウムの使用量の多い(有機アルミニウム当りの収率
の小さい)触媒系では同一活性を示す高純度プロピレン
であっても担体付遷移金属触媒では収率が太き(変化す
るが本発明の方法を実施することでほぼ同一の活性とす
ることが可能であり、工業的規模のポリプロピレンの重
合管理に極めて有効である。
Effects of the Invention As shown in the experimental examples, in a catalyst system that has relatively high activity but uses a large amount of organoaluminium (low yield per organoaluminium), even high-purity propylene with the same activity cannot be attached to a carrier. Transition metal catalysts have higher yields (although they vary, it is possible to achieve almost the same activity by implementing the method of the present invention, which is extremely effective in controlling the polymerization of polypropylene on an industrial scale.

Claims (1)

【特許請求の範囲】[Claims] 少くともハロゲン化マグネシウムを含有する担体にハロ
ゲン化チタンを担持して得た担体付遷移金属触媒と有機
アルミニウムからなる触媒を用いて、プロピレン自身を
媒体とする塊状重合法或は気相重合法でプロピレンを重
合する方法において、使用するプロピレンとして、上記
有機アルミニウムの少くとも1部を溶解したものを用い
ることを特徴とするプロピレンの重合方法。
A bulk polymerization method using propylene itself as a medium or a gas phase polymerization method using a supported transition metal catalyst obtained by supporting titanium halide on a support containing at least magnesium halide and a catalyst consisting of organoaluminium. A method for polymerizing propylene, characterized in that the propylene used is one in which at least a part of the above organic aluminum is dissolved.
JP59121942A 1984-06-15 1984-06-15 Polymerization of propylene Granted JPS612706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121942A JPS612706A (en) 1984-06-15 1984-06-15 Polymerization of propylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121942A JPS612706A (en) 1984-06-15 1984-06-15 Polymerization of propylene

Publications (2)

Publication Number Publication Date
JPS612706A true JPS612706A (en) 1986-01-08
JPH0543725B2 JPH0543725B2 (en) 1993-07-02

Family

ID=14823737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121942A Granted JPS612706A (en) 1984-06-15 1984-06-15 Polymerization of propylene

Country Status (1)

Country Link
JP (1) JPS612706A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232201A2 (en) * 1986-01-28 1987-08-12 EASTMAN KODAK COMPANY (a New Jersey corporation) Process for the direct synthesis of highly amorphous propylene homopolymers and propylene-ethylene copolymers
JPH04107397A (en) * 1990-08-23 1992-04-08 Sekisui Chem Co Ltd Specials and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232201A2 (en) * 1986-01-28 1987-08-12 EASTMAN KODAK COMPANY (a New Jersey corporation) Process for the direct synthesis of highly amorphous propylene homopolymers and propylene-ethylene copolymers
JPH04107397A (en) * 1990-08-23 1992-04-08 Sekisui Chem Co Ltd Specials and manufacture thereof

Also Published As

Publication number Publication date
JPH0543725B2 (en) 1993-07-02

Similar Documents

Publication Publication Date Title
EP0177841B1 (en) Process for production of olefin polymers
JPS612706A (en) Polymerization of propylene
JPS58117206A (en) Production of catalytic component for olefin polymerization
JPS591285B2 (en) Alpha − Olefuinnojiyugohouhou
JPS62177003A (en) Catalytic component for olefin polymerization and catalyst therefrom
JPS6225110A (en) Catalyst component for polymerizing olefin and catalyst
JPS62141014A (en) Production of propylene block copolymer
JPS648002B2 (en)
JPH0580496B2 (en)
JPH0134248B2 (en)
JPH0580495B2 (en)
JPH0128048B2 (en)
JPS62121703A (en) Catalyst component and catalyst for polymerization of olefin
JPS6248706A (en) Production of olefin polymer
JPS62508A (en) Catalyst component for polymerization of olefin
JPS62132905A (en) Catalyst for olefin polymerization
JPS6018504A (en) Preparation of catalyst component for polymerization of olefin
JPH0351724B2 (en)
JPS63168410A (en) Preparation of supported titanium ingredient for polimerization of olefin
JPH0543724B2 (en)
JPH0557282B2 (en)
JPS60149606A (en) Polymerization of alpha-olefin
JPS627705A (en) Catalyst component and catalyst for polymerization of olefin
JPS5815486B2 (en) Polyolefin Inno Seizouhouhou
JPS642604B2 (en)